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Abstract—We propose a multi-exposure image fusion (MEF) al-
gorithm by optimizing a novel objective quality measure, namely
the color MEF structural similarity (MEF-SSIMc) index. The de-
sign philosophy we introduce here is substantially different from
existing ones. Instead of pre-defining a systematic computational
structure for MEF (e.g., multiresolution transformation and trans-
form domain fusion followed by image reconstruction), we directly
operate in the space of all images, searching for the image that opti-
mizes MEF-SSIMc . Specifically, we first construct the MEF-SSIMc

index by improving upon and expanding the application scope of
the existing MEF-SSIM algorithm. We then describe a gradient
ascent-based algorithm, which starts from any initial point in the
space of all possible images and iteratively moves towards the direc-
tion that improves MEF-SSIMc until convergence. Numerical and
subjective experiments demonstrate that the proposed algorithm
consistently produces better quality fused images both visually and
in terms of MEF-SSIMc . The final high quality fused image ap-
pears to have little dependence on the initial image. The proposed
optimization framework is readily extensible to construct better
MEF algorithms when better objective quality models for MEF
are available.

Index Terms—Multi-exposure image fusion (MEF), gradient as-
cent, structural similarity (SSIM), perceptual optimization.

I. INTRODUCTION

MULTI-EXPOSURE image fusion (MEF) is a cost-
effective technique that bridges the gap between the high

dynamic range (HDR) of luminance levels in natural scenes and
the low dynamic range (LDR) of standard display devices [1].
The input sequence of an MEF algorithm consists of multiple
pictures of the same scene taken at different exposure levels,
each of which captures partial information of the scene. An
excellent MEF algorithm is expected to fuse perceptually im-
portant information of all input images into a single LDR image
that is visually appealing and has minimal visual artifacts [2].
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In recent years, many MEF algorithms have been pro-
posed [3]–[21]. However, none of them has been designed to
optimize a proven quality measure that correlates well with
human visual perception of image quality. Instead, they make
certain explicit or implicit hypotheses about what good visual
quality means, with little effort justifying the validity of such
hypotheses. For example, a commonly used approach is to max-
imize the fine details in fused images as a way to create vivid
appearance [9], [10]. However, detail enhancement does not nec-
essarily lead to consistent perceptual quality improvement and
may sometimes create unwanted visual artifacts [22]. Moreover,
all existing algorithms start by pre-defining a systematic compu-
tational structure for MEF (e.g., multi-resolution transformation
and transform domain fusion followed by image reconstruction),
with weak and indirect support of the validity and optimality of
such a structure. In addition, most existing MEF algorithms are
demonstrated using a limited number of hand-picked examples,
without subjective verifications on databases that contain suf-
ficient variations of image content or objective assessment by
well-established and subject-validated quality models [23].

A subjective database that is dedicated to MEF was created
recently [22], based on which a somewhat surprising result is
that previously published objective quality models [23]–[32] for
general purpose image fusion are very limited in predicting the
perceived quality of multi-exposure fused images. Motivated
by the lack of proper objective quality models for MEF, Ma
et al. [2] proposed one of the first objective measures specifically
for MEF by combining the design principle of the well-known
structural similarity (SSIM) index [33] with a patch consis-
tency measure. Here we call this measure the multi-exposure
fusion structural similarity (MEF-SSIM) index, which has been
shown to well correlate with human perception of image quality
and meanwhile inherit some nice mathematical properties from
SSIM [34] for optimization purposes [35]–[37].

In this paper, we propose a substantially different framework
to design MEF. Unlike existing MEF methods that employ a
pre-defined computational structure, we directly explore in the
space of all images, searching for the image that optimizes MEF-
SSIMc , which is a more advanced model built upon MEF-SSIM.
More specifically, we first construct the MEF-SSIMc model by
expanding the application scope of MEF-SSIM from grayscale
to color images and by better accounting for the impact of lumi-
nance changes on image quality. We then derive an analytic form
of the gradient of MEF-SSIMc in the space of all images and
use it to iteratively search for the optimal MEF-SSIMc image.
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Extensive numerical and subjective experiments demonstrate
that the proposed algorithm consistently produces better quality
fused images, regardless of the starting point of the iteration,
i.e., the initial image, which could be an image produced by an
existing MEF algorithm, a uniform gray image, a random noise
image, or even another completely irrelevant natural image. The
novel optimization framework is more general than the proposed
MEF algorithm. Whenever a better objective quality model for
MEF is available, it may be incorporated into the framework to
produce better MEF images.

II. RELATED WORK

A. Existing MEF Algorithms

Many existing MEF algorithms follow a weighted summation
framework

y =
K∑

k=1

wkxk , (1)

where K is the number of exposure levels in the source image
sequence. xk represents a co-located pixel or patch in the k-th
exposure image Xk , depending on whether the algorithm is a
pixel-wise or patch-wise method. y denotes the corresponding
pixel or patch in the fused image Y. The weight wk carries the
information about the perceptual importance of xk in the fusion
process. In transform domain approaches, xk and y may also
be co-located transform coefficients or a group of neighboring
coefficients. Most existing algorithms differ in the computation
of wk and how it may adapt over space or scale based on image
content. Equation (1) has been taken for granted by a majority of
MEF algorithms, but there has been very little discussion about
why weighted summation is a good way of fusion and how far
it is from optimality.

As one of the first attempts, an efficient Laplacian pyramid
decomposition for binocular image fusion was proposed in [38].
This decomposition scheme was later applied to MEF [3],
[11]. A similar decomposition scheme, namely boosting Lapla-
cian pyramid [19], was proposed for MEF with the weights
determined by well exposedness, gradient direction, and just
noticeable distortion-based saliency measures. Goshtasby [4]
proposed one of the first patch-wise MEF approaches by di-
rectly choosing the patch with the highest entropy to construct
the fused image. Later on, Ma and Wang developed a struc-
tural patch decomposition for MEF [39]. Raman et al. adopted
a bilateral filter [40] to extract edge information, which is sub-
sequently added to the base layer image for detail enhancement.
Song et al. [7] proposed a probabilistic fusion scheme by first
estimating the initial image with the maximum visual contrast
and scene gradient, and then generating the final image with re-
versals in image gradients suppressed. Another conditional ran-
dom field based MEF method was proposed in [14], where the
weights were determined by local contrast and color saturation.
A gradient-based detail-enhanced MEF method was proposed
in [12]. Li et al. [9] also enhanced the details of a given fused im-
age in a quadratic optimization framework. A guided filter [41]
was adopted in [10] to control the roles of pixel saliency and

spatial consistency when constructing the fused image. Mo-
tivated by the fact that traditional edge-preserving smoothing
techniques suffer from halo artifacts, a weighted guided image
filter was introduced in [20] and used for MEF [20]. A varia-
tional approach for MEF was proposed in [15] by combining
color matching and gradient direction information. Hara et al.
determined the global and local weights of their MEF algo-
rithm via a gradient-based contrast maximization and an image
saliency detection method, respectively [16].

To overcome the misalignment problem caused by camera and
object motion, several algorithms have been proposed. Zhang
et al. [13] used gradient direction to differentiate the dominant
background from the moving object. A median filter was used
to filter out the moving object in [8]. Li et al. [17] enabled their
two level detail enhancing image fusion scheme to account for
dynamic scenes by explicitly detecting and correcting inconsis-
tent pixels with respect to a chosen reference image. Qin et al.
tackled camera and object motions in the source sequence by a
patch-wise matching algorithm. The weight for each patch was
computed using a random walker method [18].

B. MEF-SSIM

Since the first step of our approach is to improve upon the
objective quality model, MEF-SSIM [2], we provide a brief in-
troduction here. Similar to the design philosophy of SSIM [33],
MEF-SSIM looks at an image patch from three conceptually dif-
ferent aspects: luminance, contrast and structure. In particular,
it explicitly performs the following patch decomposition

xk = ‖xk − μxk
‖ · xk − μxk

‖xk − μxk
‖ + μxk

= ‖x̃k‖ · x̃k

‖x̃k‖ + μxk

= ck · sk + lk , (2)

where ‖ · ‖ denotes the �2 norm of a vector, μxk
is the mean

value of the patch, and x̃k = xk − μxk
is the mean-removed

patch that contains the contrast and structure information only.
The scalar lk = μxk

, the scalar ck = ‖x̃k‖, and the unit-length
vector sk = x̃k/‖x̃k‖ roughly represent the luminance, contrast,
and structure components of xk , respectively [2].

The desired contrast of the fused image patch is determined
by the highest contrast of all source image patches

ĉ = max
{1≤k≤K }

ck = max
{1≤k≤K }

‖x̃k‖ . (3)

The desired structure of the fused image patch is computed by
a weighted average of the input structure vectors

ŝ =
s̄

‖s̄‖ , where s̄ =
∑K

k=1 w (x̃k ) sk∑K
k=1 w (x̃k )

(4)

and w(·) is a power weighting function given by

w(x̃k ) = ‖x̃k‖p . (5)

Here p ≥ 0 is an exponential parameter that is determined adap-
tively based on a patch consistency measure [2]. Once ĉ and ŝ
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are determined at each spatial location, they are combined using
(2) to yield a new vector

x̂ = ĉ · ŝ . (6)

A simplified formation of the SSIM index is then used to evaluate
the local image quality

S({xk},y) =
2σx̂y + C2

σ2
x̂ + σ2

y + C2
, (7)

where {xk} = {xk |1 ≤ k ≤ K} denotes the set of co-located
image patches in the source image sequence. σ2

x̂ , σ2
y , and σx̂y

denote the local variances of x̂ and y, and the local covariance
between x̂ and y, respectively. C2 is a small positive stabilizing
constant that accounts for the saturation effects of the visual
system at low contrast [33].

The local MEF-SSIM comparison is applied using a sliding
window approach across the entire image, resulting in a quality
map indicating how the structural details are preserved at each
spatial location (some examples will be given later in Fig. 3).
The local MEF-SSIM values are averaged to obtain an overall
quality measure of the fused image

Q({Xk},Y) =
1
M

M∑

j=1

S({xk (j)},y(j)) , (8)

where j is the spatial patch index and M is the total number of
patches.

III. MEF BY MEF-SSIMc OPTIMIZATION

In this section, we first introduce the general framework to de-
sign MEF algorithm, which uses a gradient ascent-based method
to optimize an improved MEF-SSIM quality measure named
MEF-SSIMc . We then provide detailed descriptions on each
component of the proposed approach, which includes the deriva-
tion of the MEF-SSIMc model, the computation of the gradient
of MEF-SSIMc in the space of all images, and additional im-
plementation details.

A. Framework

Considering MEF-SSIMc as the quality criterion of the fused
image, the problem of MEF can be formulated as

Yopt = arg max
Y

Q({Xk},Y) . (9)

Due to the nonconvexity of MEF-SSIMc and the high dimen-
sionality of the optimization problem (which equals to the
number of pixels in the image), the analytic solution of (9) is im-
plausible. A practical alternative is to employ a gradient-based
iterative optimization procedure [34], [35], [42]. Specifically,
we consider the fused image as a point or a vector starting from
the origin in the space of all possible images, which has the
same dimension as the number of pixels in the image, and each
dimension is the intensity value of a pixel. At the i-th iteration,
we use a gradient ascent algorithm to improve the MEF-SSIMc

index of the resulting image Yi from the last iteration by

Yi+1 = Yi + λ∇YQ({Xk},Y)
∣∣∣
Y=Y i

, (10)

where ∇YQ({Xk},Y) is the gradient of Q({Xk},Y) with
respect to Y and constitutes another vector in the image space.
λ is a step parameter controlling the speed of movement in
the image space. The iterations continue until a pre-defined
convergence criterion is satisfied.

B. MEF-SSIMc Model

The original MEF-SSIM index works with the luminance
component only. This is sufficient for many quality assessment
tasks when the main distortions introduced by MEF algorithms
are captured by luminance contrast and structural changes [2].
However, in practical MEF applications, recovering a vivid color
appearance is pivotal. Therefore, we extend the MEF-SSIM in-
dex to work with color images. Recall the patch decomposition
used in MEF-SSIM [2] given in (2). To extend such a patch rep-
resentation for color patches, we concatenate the patch vectors
of all color channels into one. Thus, the vector length of xk

and sk becomes CN 2 , where N is the patch size and C is the
number of color channels. Correspondingly, the physical mean-
ings of ck , sk and lk of such color patches are generalized to
patch strength, patch structure and mean patch intensity, respec-
tively. This patch decomposition inherently takes into account
color information as part of the overall contrast and structure.
For example, in order to preserve color information, the rela-
tive signal strength between multiple color channels in a color
space such as RGB is contained in the structural component
of the proposed color patch representation. As such, preserving
patch structure will also implicitly preserve color information.
By contrast, existing MEF algorithms that treat RGB channels
separately do not have an appropriate mechanism to enforce
color preservation and thus often produce unwanted color or
luminance changes.

The original MEF-SSIM index excludes the luminance com-
parison. When it comes to constructing MEF algorithms, the
mean intensity of each color patch needs to be explicitly speci-
fied. Inspired by the method used in [11], [39], we estimate the
desired mean intensity of the fused image patch by

l̂ =
∑K

k=1 u (μk , lk ) lk∑K
k=1 u (μk , lk )

, (11)

where u(·) is a weighting function that takes the global mean
intensity μk of the color image Xk and the local mean intensity
of the current patch xk as inputs. u(·) quantifies the well ex-
posedness of xk in Xk so that a large penalty is given when Xk

and/or xk are under/over-exposed. A two dimensional Gaussian
profile is adopted

u (μk , lk ) = exp
(
− (μk − μc)2

2σ2
g

− (lk − lc)2

2σ2
l

)
, (12)

where σg and σl control the spreads of the profile along μk

and lk dimensions, respectively. μc and lc are constants for the
mid-intensity values. For example, for source image sequences
normalized to [0, 1], both μc and lc are 0.5. The first term encour-
ages the spatial intensity consistency across the image while the
second term preserves the local structures that are well exposed.
By imposing both factors, we are able to produce more visually
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Fig. 1. SRCC between MEF-SSIMc and MOS on the subjective database [2].
Rightmost column: average performance over image content.

appealing fused images as will be shown in Section IV. Once l̂
is computed, we update (6) by

x̂ = ĉ · ŝ + l̂ , (13)

which now conforms to the patch decomposition of Eq. (2).
The construction of MEF-SSIMc follows the definition of the

SSIM index [33]

S({xk},y) =
(2μx̂μy + C1)(2σx̂y + C2)

(μ2
x̂ + μ2

y + C1)(σ2
x̂ + σ2

y + C2)
, (14)

where μx̂ and μy denote the mean intensities of the desired
color image patch and a given color image patch, respectively.
C1 and C2 are small positive constants to avoid instability when
the denominator is close to 0.

The local quality values of the MEF-SSIMc index are aver-
aged to obtain an overall quality measure of the fused image

Q({Xk},Y) =
1
M

M∑

j=1

S({RjXk},RjY) , (15)

where Rj is a binary matrix whose number of columns equals
the image dimension and number of rows equals to patch size
CN 2 . It serves as an operator that extracts the j-th local patch
from the image. For example, at the j-th location, xk = RjXk

and y = RjY.
In order to demonstrate that MEF-SSIMc well correlates with

human perception, we compute Spearman’s rank correlation
coefficient (SRCC) between its quality predictions and mean
opinion scores (MOSs) on the subjective database in [2], which
contains 17 source sequences and 8 state-of-the-art MEF algo-
rithms, resulting in a total of 136 fused images. The SRCC re-
sults across different content are shown in Fig. 1 and we achieve
0.858 on average. This verifies the prediction performance of
MEF-SSIMc and its suitability for perceptual optimization.

C. Gradient of MEF-SSIMc

To compute the gradient ∇YQ({Xk},Y), we start from the
local MEF-SSIMc index and rewrite (14) as

S({xk},y) =
A1 A2

B1 B2
, (16)

where

A1 = 2μx̂μy + C1 (17)

B1 = μ2
x̂ + μ2

y + C1 (18)

A2 = 2σx̂y + C2 (19)

B2 = σ2
x̂ + σ2

y + C2 . (20)

Recalling that both image patches are treated as column vectors
of length CN 2 , we have the sample statistics given by

μx̂ =
1

CN 2 1T x̂ (21)

σ2
x̂ =

1
CN 2 (x̂ − μx̂)T (x̂ − μx̂) (22)

σx̂y =
1

CN 2 (x̂ − μx̂)T (y − μy) , (23)

where1 is a CN 2-vector with all entries equaling to 1. μy and σ2
y

are computed similarly. The gradient of the local MEF-SSIMc

measure with respect to y can then be expressed as

∇yS({xk},y) =
(A′

1A2 + A1A
′
2)

B1B2

− (B′
1B2 + B1B

′
2)A1A2

(B1B2)2 , (24)

where

A′
1 = ∇yA1 =

2μx̂

CN 2 1 (25)

B′
1 = ∇yB1 =

2μy

CN 2 1 (26)

A′
2 = ∇yA2 =

2
CN 2 (x̂ − μx̂) (27)

B′
2 = ∇yB2 =

2
CN 2 (y − μy) . (28)

Plugging (17), (18), (19), (20), (25), (26), (27), and (28) into
(24), we obtain the gradient of the local MEF-SSIMc index.
Finally, we compute the gradient of the overall MEF-SSIMc

index with respect to the fused image Y. Since gradient is a
linear operator, this can be done by summing over all the local
gradients

∇YQ({Xk},Y) =
1
M

M∑

j=1

RT
j ∇yS({RjXk},RjY) , (29)

where RT
j inverts the process of Rj by placing the local gradient

patch back into the corresponding location in the image.
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TABLE I
INFORMATION OF SOURCE INPUT IMAGE SEQUENCES

Source sequence Size Image credit

Arno 339 × 512 × 3 Bartlomiej Okonek
Balloons 339 × 512 × 9 Erik Reinhard
Belgium house 384 × 512 × 9 Dani Lischinski
Cave 384 × 512 × 4 Bartlomiej Okonek
Chinese garden 340 × 512 × 3 Bartlomiej Okonek
Church 512 × 335 × 3 Jianbing Shen
Farmhouse 341 × 512 × 3 HDR projects
House 340 × 512 × 4 Tom Mertens
Kluki 341 × 512 × 3 Bartlomiej Okonek
Landscape 341 × 512 × 3 HDRsoft
Lamp 384 × 512 × 15 Martin Ĉadı́k
Laurenziana 512 × 356 × 3 Bartlomiej Okonek
Lighthouse 340 × 512 × 3 HDRsoft
Madison capitol 384 × 512 × 30 Chaman Singh Verma
Mask 341 × 512 × 3 HDRsoft
Office 340 × 512 × 6 MATLAB
Ostrow 341 × 512 × 3 Bartlomiej Okonek
Room 341 × 512 × 3 Pangeasoft
Set 341 × 512 × 3 Jianbing Shen
Studio 341 × 512 × 5 HDRsoft
Tower 512 × 341 × 3 Jacques Joffre
Venice 341 × 512 × 3 HDRsoft
Window 384 × 512 × 3 Hvdwolf
Yellow hall 339 × 512 × 3 Jianbing Shen

D. Implementation Details

The parameters of the proposed approach come from two
parts: the model parameters in the MEF-SSIMc index and the
parameters that control the optimization process. Most of the
model parameters are inherited from previous publications.
These include the adaptively determined p in (5) based on
the patch consistency measure in [2]; two spread parameters
σg = 0.2 and σl = 0.2 in (12) from [11]; two stabling con-
stants C1 = (K1L)2 and C2 = (K2L)2 , where K1 = 0.01 and
K2 = 0.03 from [33], and L is the dynamic range of the source
image sequence (L = 255 for an 8-bit sequence). To reduce
the computation in each iteration, we use an 8 × 8 square win-
dow to compute the local statistics. Our optimization procedure
stops when the difference between the MEF-SSIMc values of
two consecutive iterations is smaller than a threshold, that is,
|Qk+1 − Qk | < ε = 10−6 . The step size λ is empirically set to
150 throughout the paper to achieve a balance between conver-
gence speed and stability.

IV. EXPERIMENTAL RESULTS

Twenty four source image sequences are selected in our exper-
iment, which span diverse scenes containing both light and dark
regions with different color appearances, as shown in Table I and
Fig. 2. On the other hand, the proposed algorithm is initialized
with the fused images created by 14 existing MEF algorithms.
These include two simple operators that linearly combine the
input images using local and global energy as weighting fac-
tors denoted by LE and GE, respectively, and sophisticated ones
with different perceptual emphasis such as Mertens09 [11], Ra-
man09 [5], Shen11 [6], Zhang12 [13], Song12 [7], Li12 [9],

Fig. 2. Source image sequences used in the subjective experiment. Each se-
quence is represented by one fused image that has the best quality in the sub-
jective experiment.

Shutao12 [8], Gu12 [12], Li13 [10], Bruce14 [43], Shen14 [19],
and Ma15 [39]. All fusion results of existing MEF algorithms
are either obtained from the authors or generated by publicly
available implementations with default settings.

A. A Visual Demonstration

To better understand and to demonstrate the proposed MEF-
SSIMc optimization algorithm, we visually exam how an
arbitrary image evolves to a fused image of high quality. Specif-
ically, we first apply the proposed algorithm to initial images
that contain no specific information about the source image se-
quences. Three types of such initial images are chosen: 1) a flat
uniform gray image with a constant mid-level pixel intensity
(127 for an 8-bit image); 2) a white Gaussian random noise im-
age; 3) a natural image that is completely irrelevant to the source
image sequence. The demonstration is shown in Fig. 3, where
it can be observed that regardless of the arbitrary initializations,
the proposed algorithm is able to explore the image space over
iterations and finally find (converge to) a high quality fused
image of faithful structures and vivid color appearance with re-
spect to the given source sequence. The quality improvement
during the MEF-SSIMc optimization is also clearly reflected
in the corresponding MEF-SSIMc quality maps, where brighter
indicates better quality.

B. Improvement Upon Existing MEF Algorithms

In practice, to explore the image space more efficiently, it is
useful to employ an image created by an existing MEF algorithm



MA et al.: MEF BY OPTIMIZING A STRUCTURAL SIMILARITY INDEX 65

Fig. 3. Visual demonstration of the proposed MEF-SSIMc optimization algorithm. (a1), (c1), and (e1) are initial images that contain no information about
the source image sequences. (a2)–(a5), (c2)–(c5), and (e2)–(e5) are the fused images “Kluki”, “Landscape”, and “Yellow hall” created by the proposed iterative
method, respectively. (b1)–(b5), (d1)–(d5), and (f1)–(f5) are the MEF-SSIMc quality maps of (a1)–(a5), (c1)–(c5), and (e1)–(e5), respectively, where brighter
indicates better quality. Image (e1) by courtesy of Yuanyuan Gao’s Studio.

as the initial image for the iterative MEF-SSIMc optimization.
We have carried out extensive experiments this way to improve
upon 10 existing MEF algorithms. Here, we first provide visual
comparisons of MEF images before and after MEF-SSIMc op-
timization. We then provide numerical analysis to confirm the
quality gains obtained through the process. Further verifications
by subjective testing are presented in Section IV-C.

Fig. 4 provides the visual comparison where we use
Song12 [7] to generate the initial image of the “Farmhouse”
sequence. As can be observed, Song12 [7] introduces se-
vere color distortions in the fused image with a noisy overall

appearance. These are typical distortions generated by pixel-
wise MEF algorithms if their weighting maps are not heav-
ily smoothed before fusion. The proposed approach, without
specific detection and treatment of the artifacts, successfully
corrects the problem and makes the image much sharper and
cleaner.

Fig. 5 compares the case when using Gu12 [12] to create
the initial image of the “House” sequence. Based on gradient
information, Gu12 [12] focuses on detail enhancement only
and fails to preserve the color appearance in the source se-
quence. As a result, the fused image appears to be pale and
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Fig. 4. Visual comparison of MEF images. (a) Source image sequence “Farmhouse” by courtesy of HDR projects. (b) Initial image generated by Song12 [7].
(c) Final image after MEF-SSIMc optimization.

Fig. 5. Visual comparison of MEF images. (a) Source image sequence “House” by courtesy of Tom Mertens. (b) Initial image generated by Gu12 [12]. (c) Final
image after MEF-SSIMc optimization.
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Fig. 6. Visual comparison of MEF images. (a) Source image sequence “Arno” by courtesy of Bartlomiej Okonek. (b) Initial image generated by Shen14 [19].
(c) Final image after MEF-SSIMc optimization.

unnatural. By contrast, the MEF-SSIMc optimized image recov-
ers the vivid color appearance and looks much more natural and
warmer.

Fig. 6 demonstrates the case when using Shen14 [19] for the
initialization of the “Arno” sequence. It is apparent that the fused
image by Shen14 [19] suffers from heavy halo artifacts near
edges and drastic luminance changes between the sun and cloud
regions. Through MEF-SSIMc optimization, these artifacts are
fully repaired. As a result, the MEF-SSIMc optimized image
looks much more natural and visually appealing.

Finally, Fig. 7 shows the case when the initial image is given
by Li12 [9], which is a detail enhancement algorithm based on
Mertens09 [11]. It can be seen that it fails to preserve some
salient details such as the top of the tower and the brightest
region of the cloud at the middle-left part of the image. By con-
trast, those details are faithfully recovered in the MEF-SSIMc

optimized image. Moreover, the overall brightness of the image
is much more consistent.

To provide a comprehensive quantitative analysis regarding
the improvement of the proposed MEF-SSIMc optimization
approach upon existing MEF algorithms, we list the MEF-
SSIMc values between the initial images and the corresponding
MEF-SSIMc optimized images in Table II. The initial images of
24 source image sequences are created by 10 MEF algorithms
including 2 naı̈ve and 8 state-of-the-art ones. From the table, we
observe that consistent improvement in terms of MEF-SSIMc

is achieved even when the initial images are created by the
most competitive MEF algorithms [6], [11]. This suggests that
the proposed MEF algorithm is highly effective at optimizing
MEF-SSIMc .

Fig. 7. Visual comparison of MEF images. (a) Source image sequence
“Tower” by courtesy of Jacques Joffre. (b) Initial image generated by Li12 [9].
(c) Final image after MEF-SSIMc optimization.
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TABLE II
MEF-SSIMc COMPARISON BETWEEN INITIAL AND OPTIMIZED IMAGES

Image LE GE Mertens09 Raman09 Shen11 Shutao12 Zhang12 Bruce14 Li13 Ma15
[11] [5] [6] [8] [13] [43] [10] [39]

Arno Initial 0.9468 0.9388 0.9474 0.8936 0.9604 0.9681 0.9342 0.9258 0.9002 0.9767
Optimized 0.9935 0.9935 0.9935 0.9934 0.9936 0.9935 0.9935 0.9935 0.9934 0.9935

Balloons Initial 0.8425 0.7422 0.9509 0.5408 0.9343 0.9288 0.8478 0.6044 0.9470 0.9501
Optimized 0.9913 0.9913 0.9913 0.9911 0.9913 0.9913 0.9913 0.9911 0.9913 0.9913

Belgium house Initial 0.8073 0.7389 0.9495 0.5854 0.9015 0.9207 0.8349 0.6136 0.9490 0.9544
Optimized 0.9817 0.9815 0.9820 0.9812 0.9819 0.9819 0.9818 0.9813 0.9820 0.9819

Cave Initial 0.9251 0.7468 0.9526 0.4926 0.9385 0.9689 0.7833 0.8808 0.9813 0.9723
Optimized 0.9907 0.9906 0.9906 0.9905 0.9907 0.9907 0.9908 0.9907 0.9908 0.9908

Chinese garden Initial 0.9296 0.8374 0.9577 0.7976 0.9179 0.9734 0.8995 0.8885 0.9819 0.9695
Optimized 0.9925 0.9925 0.9926 0.9928 0.9925 0.9926 0.9929 0.9928 0.9926 0.9927

Church Initial 0.9156 0.8596 0.9503 0.7385 0.8763 0.9674 0.8688 0.8320 0.9870 0.9813
Optimized 0.9927 0.9926 0.9928 0.9922 0.9927 0.9928 0.9905 0.9924 0.9928 0.9928

Farmhouse Initial 0.9428 0.8280 0.9760 0.7296 0.9450 0.9766 0.9155 0.8618 0.9788 0.9807
Optimized 0.9930 0.9929 0.9931 0.9928 0.9930 0.9931 0.9930 0.9929 0.9931 0.9931

House Initial 0.8049 0.8003 0.9196 0.7198 0.8867 0.8578 0.9046 0.8377 0.9005 0.9134
Optimized 0.9690 0.9690 0.9690 0.9693 0.9691 0.9688 0.9692 0.9692 0.9689 0.9692

Kluki Initial 0.9319 0.8906 0.9323 0.8807 0.9341 0.9484 0.9223 0.9282 0.9391 0.9428
Optimized 0.9853 0.9851 0.9852 0.9854 0.9852 0.9852 0.9855 0.9854 0.9850 0.9852

Lamp Initial 0.8043 0.7269 0.9451 0.5733 0.9054 0.9212 0.9062 0.5756 0.9376 0.9309
Optimized 0.9806 0.9803 0.9806 0.9805 0.9806 0.9806 0.9807 0.9804 0.9805 0.9807

Landscape Initial 0.9624 0.9252 0.9914 0.9045 0.9423 0.9837 0.9618 0.9620 0.9764 0.9747
Optimized 0.9963 0.9963 0.9963 0.9963 0.9963 0.9962 0.9963 0.9963 0.9961 0.9963

Laurenziana Initial 0.9302 0.8654 0.9418 0.8481 0.9128 0.9647 0.9125 0.9214 0.9615 0.9490
Optimized 0.9880 0.9880 0.9880 0.9880 0.9880 0.9880 0.9880 0.9879 0.9880 0.9880

Lighthouse Initial 0.9521 0.8807 0.9706 0.8820 0.9472 0.9185 0.9582 0.9571 0.9261 0.9599
Optimized 0.9953 0.9953 0.9953 0.9953 0.9953 0.9951 0.9953 0.9953 0.9950 0.9953

Madison capitol Initial 0.8534 0.7594 0.9298 0.5747 0.8659 0.8476 0.8520 0.5999 0.9280 0.9471
Optimized 0.9801 0.9802 0.9802 0.9801 0.9801 0.9799 0.9802 0.9801 0.9799 0.9802

Mask Initial 0.9352 0.8581 0.9649 0.8055 0.9188 0.9797 0.9220 0.8816 0.9756 0.9673
Optimized 0.9927 0.9928 0.9928 0.9924 0.9928 0.9928 0.9928 0.9928 0.9928 0.9928

Office Initial 0.9178 0.9457 0.9627 0.8696 0.9439 0.9640 0.9442 0.9224 0.9450 0.9773
Optimized 0.9905 0.9912 0.9906 0.9914 0.9898 0.9913 0.9916 0.9915 0.9910 0.9906

Ostrow Initial 0.9052 0.9271 0.8941 0.9186 0.9280 0.9474 0.9256 0.9434 0.9532 0.9662
Optimized 0.9932 0.9932 0.9932 0.9906 0.9932 0.9932 0.9896 0.9896 0.9932 0.9932

Room Initial 0.9366 0.8851 0.9084 0.8647 0.9007 0.9438 0.8936 0.9048 0.9646 0.9673
Optimized 0.9878 0.9877 0.9878 0.9709 0.9878 0.9877 0.9718 0.9722 0.9878 0.9878

Set Initial 0.9527 0.9290 0.9739 0.9303 0.9475 0.9615 0.9524 0.9649 0.9656 0.9821
Optimized 0.9954 0.9953 0.9953 0.9953 0.9954 0.9953 0.9954 0.9954 0.9953 0.9954

Studio Initial 0.8839 0.6901 0.8993 0.6243 0.8957 0.9255 0.8352 0.7524 0.9347 0.9170
Optimized 0.9799 0.9797 0.9799 0.9796 0.9799 0.9799 0.9798 0.9796 0.9798 0.9799

Tower Initial 0.9405 0.8678 0.9541 0.8183 0.9201 0.9766 0.9265 0.9223 0.9780 0.9563
Optimized 0.9925 0.9924 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925

Venice Initial 0.9020 0.8372 0.8848 0.7970 0.8952 0.9321 0.8445 0.9016 0.9500 0.9360
Optimized 0.9757 0.9756 0.9756 0.9756 0.9756 0.9756 0.9756 0.9756 0.9757 0.9757

Window Initial 0.9281 0.8821 0.9381 0.7960 0.9236 0.9647 0.8881 0.8849 0.9705 0.9713
Optimized 0.9866 0.9863 0.9847 0.9887 0.9868 0.9865 0.9889 0.9888 0.9861 0.9867

Yellow hall Initial 0.9742 0.9591 0.9830 0.9577 0.9677 0.9600 0.9668 0.9633 0.9477 0.9902
Optimized 0.9986 0.9986 0.9986 0.9985 0.9986 0.9986 0.9986 0.9985 0.9985 0.9986

Average Initial 0.9094 0.8467 0.9449 0.7726 0.9212 0.9459 0.9000 0.8513 0.9533 0.9597
Optimized 0.9885 0.9884 0.9884 0.9877 0.9884 0.9885 0.9877 0.9877 0.9884 0.9885

LE and GE stand for local and global energy based weighting, respectively.
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TABLE III
MEAN OPINION SCORES OF FUSED IMAGES BEFORE AND AFTER MEF-SSIMc OPTIMIZATION

Image set Mean opinion scores (MOS)

Mertens09 [11] Gu12 [12] Bruce14 [43] Shen14 [19]

Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Arno 5.71 7.83 3.88 8.13 4.83 8.08 5.21 7.88
Balloons 7.21 8.33 5.21 7.96 3.25 8.83 3.13 7.54
Belgium house 6.46 8.17 4.67 7.96 4.46 8.00 2.63 8.29
Cave 7.08 7.83 5.67 8.38 5.71 8.04 2.83 8.25
Chinese garden 7.38 8.29 4.50 8.38 6.17 7.83 2.67 8.21
Church 6.68 7.71 5.63 7.63 5.83 7.96 4.42 8.25
Farmhouse 6.58 7.29 8.33 7.21 4.50 7.46 5.42 7.33
House 7.92 7.54 3.29 8.13 5.08 8.04 2.21 7.88
Kluki 6.79 8.13 4.50 8.13 3.29 8.00 3.29 8.33
Lamp 7.79 7.04 3.54 7.75 3.92 7.54 1.29 7.33
Landscape 7.33 6.75 3.96 7.67 8.33 7.50 3.13 6.88
Laurenziana 7.46 8.25 3.63 7.92 6.33 8.13 3.38 8.21
Lighthouse 7.79 8.04 6.38 7.38 7.21 7.92 2.38 8.00
Madison capitol 7.04 7.67 5.00 7.13 4.58 7.58 2.00 7.33
Mask 7.25 8.04 4.00 8.25 4.21 7.96 2.29 8.38
Office 8.08 7.75 4.13 8.21 6.25 7.25 2.08 7.88
Ostrow 7.38 7.50 5.25 7.71 6.00 7.88 4.79 7.92
Room 7.00 7.92 4.75 7.71 6.54 7.92 3.50 7.79
Set 7.96 8.25 5.21 8.21 8.08 8.50 3.83 8.29
Studio 6.96 7.17 3.92 7.42 5.50 6.96 2.42 6.80
Tower 6.38 7.75 4.67 8.33 5.50 8.00 2.75 8.08
Venice 7.13 7.96 5.00 7.88 6.29 7.25 2.29 8.08
Window 7.63 7.58 6.04 7.46 7.00 7.83 3.88 8.00
Yellow hall 8.33 7.79 7.25 8.04 7.04 7.67 5.50 8.33

Average 7.22 7.77 4.93 7.87 5.82 7.82 3.22 7.88

Fig. 8. A representative image pair for the case of the MOS drop after MEF-SSIMc optimization. (a) “Farmhouse” by Gu12 [12]. (b) After MEF-SSIMc

optimization.

C. Validation by Subjective Testing

In order to further verify that MEF-SSIMc optimization in-
deed results in perceptual gains of the fused images, we carry out
a subjective experiment. Specifically, the same 24 source image
sequences are included (shown in Fig 2). Four existing MEF al-
gorithms are included, which are LE, Gu12 [12], Bruce14 [43],
and Mertens09 [11], respectively. The last method is shown to
be the best MEF algorithm on average in a recent subjective
experiment [2]. The 96 fused images are then served as initial
images of the proposed MEF-SSIMc optimization algorithm,
resulting in 96 corresponding MEF-SSIMc optimized images.
In summary, we have a total of 192 fused images, which can
be divided into 24 sets with 8 images per set according to the

scene content. In our subjective test, we adopt a multi-stimulus
quality scoring strategy without showing the reference source
image sequence. More specifically, all 8 fused images in one
set are shown to the subject at the same time on one computer
screen at actual pixel resolution but in random spatial order.
The subject is asked to give an integer score for each images
that best reflects their perceptual quality. The score ranges from
0 to 10, where 10 denotes the best quality and 0 the worst. A
total of 24 naı̈ve observers, including 11 males and 13 females
participate in the subjective experiment. One outlier is detected
and removed based on the outlier removal scheme suggested
in [44]. The final rating score for each image is computed as
the average of the subjective scores, namely the MOS, from all
valid subjects.
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TABLE IV
STATISTICAL SIGNIFICANCE MATRIX BASED ON T-STATISTICS

M G B S MO GO BO SO

M - 1 1 1 0 0 0 0
G 0 - 0 1 0 0 0 0
B 0 1 - 1 0 0 0 0
S 0 0 0 - 0 0 0 0
MO 1 1 1 1 - - - -
GO 1 1 1 1 - - - -
BO 1 1 1 1 - - - -
SO 1 1 1 1 - - - -

A symbol “1” means that the performance of the row model is statistically better than that
of the column model, a symbol “0” means that the row model is statistically worse, and a
symbol “-” means that the row and column models are statistically indistinguishable. M:
Mertens09 [11]; G: Gu12 [12]; B: Bruce14 [43]; S: Shen14 [19]. O: After MEF-SSIMc

optimization.

Fig. 9. MEF-SSIMc as a function of iteration on the “Tower” sequence with
initial fused images created by different MEF algorithms.

Fig. 10. MEF-SSIMc as a function of iteration on the “House” sequence with
initial fused images created by different MEF algorithms.

The results are listed in Table III, from which we have sev-
eral interesting observations. First, using MEF-SSIMc as the
optimization goal, the proposed algorithm leads to consistent
perceptual gains for all four types of initial images. Second, the
proposed algorithm is generally insensitive to initializations in
the sense that no matter which initial image is used, the proposed
algorithm is able to recover a high quality image of similar per-
ceptual quality. Third, 7 out of 96 images experience a MOS
drop after MEF-SSIMc optimization and a representative image
pair is shown in Fig. 8. It can be observed that the proposed op-
timization process enhances the overall contrast and reduces the
ringing artifacts near sharp edges, but meanwhile reduces the
overall luminance. This may explain the MOS drop. We have
similar observations on the other cases as well.

We use a hypothesis testing approach based on t-statistics [45]
to evaluate the statistical significance of the subjective experi-
mental results. Specifically, we treat the MOSs of each column
in Table III as one category. The null hypothesis is that the
MOSs in one category is statistically indistinguishable (with
95% confidence) from those in another category. The test is car-
ried out for all possible pair combinations of categories and the
results are summarized in Table IV, from which we can see that
MEF-SSIMc optimized images have statistically significantly
better MOSs in all cases. The MOSs between MEF-SSIMc

optimized images with different initializations are statistically
indistinguishable.

In summary, we believe that the proposed approach robustly
produces better quality fused images regardless of initial images.
Moreover, it reinforces the robustness and usefulness of MEF-
SSIMc as an objective quality model in the area of MEF for
not only comparing the performance and tuning the parameters
of MEF algorithms but also guiding the design of new MEF
algorithms.

D. Convergence and Complexity

Because of the nonconvexity of MEF-SSIMc and the dimen-
sion of the search space, analytical convergence assessment of
the proposed algorithm is difficult. Therefore, we observe the
convergence performance empirically. Figs. 9 and 10 show the
MEF-SSIMc value as a function of iteration on the “Tower”
and “House” sequences, respectively, using different initial im-
ages as starting points. There are several useful observations.
First, the MEF-SSIMc values increase monotonically with iter-
ations. Second, the proposed algorithm converges in all cases
regardless of the initial images. Third, different initial images
may result in slightly different converged images. From these
observations, we conclude that the proposed iterative algo-
rithm is well behaved, but the high-dimensional search space is
complex and contains many local optima, and the proposed
algorithm may be trapped in one of them. Even though find-
ing the absolute global optimum is difficult, all local optima
correspond to similar and high quality images; thus a local
optimum is sufficient to provide a useful solution in practical
applications.

Since the statistics of the source image sequence can be
pre-computed and stored before optimization, the computation
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complexity of the proposed algorithm does not increase with the
number of exposures in the source image sequence and has a
computational complexity of O(N 2M) in each iteration, where
M is the number of patches in one exposure and N is the window
size. Note that although most MEF algorithms are pixel-wise,
they compute the perceptual weights within a local window and
therefore have a similar complexity of O(N 2MK) [4], [5],
[8]–[13], [39], where K is the number of exposures. Our un-
optimized MATLAB implementation takes around 2.5 seconds
per iteration for a 341 × 512 × 30 sequence on a computer with
an Intel Quad-Core 2.67 GHz processor.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a substantially different approach
to design MEF algorithms. In particular, we directly operate in
the space of all images, iteratively searching for an image that
optimizes MEF-SSIMc , which is an advanced MEF image qual-
ity model built upon the existing MEF-SSIM index. Extensive
experimental results show that the proposed approach consis-
tently produces better quality fused images both qualitatively
and quantitatively. Moreover, the optimization algorithm is well
behaved in the sense that given any initial image, it is able to
find a high quality fused image with both sharp structures and
vivid color appearance.

The proposed optimization framework is general. Whenever
a new and better MEF image quality model is available, it can be
integrated into the same framework and creates a better MEF al-
gorithm. The most challenging part of such an algorithm would
likely to be the computation of the gradient of the new model
in the space of images. On the other hand, the MEF-SSIMc op-
timization algorithm proposed in this paper can be improved in
many ways. Specifically, since the proposed algorithm is itera-
tive, it may not be suitable for real-time applications. An efficient
non-iterative algorithm with the spirit of MEF-SSIMc in mind
is highly desirable. Furthermore, the proposed algorithm can
only find local optima due to the nonconvexity of MEF-SSIMc .
Relaxing MEF-SSIMc into a convex metric would benefit from
many powerful convex optimization tools [46] to find the global
optimum efficiently.
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