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Abstract—We propose a deep bilinear model for blind image
quality assessment (BIQA) that works for both synthetically and
authentically distorted images. Our model constitutes two streams
of deep convolutional neural networks (CNN), specializing in the
two distortion scenarios separately. For synthetic distortions, we
first pre-train a CNN to classify the distortion type and level of
an input image, whose ground truth label is readily available at
a large scale. For authentic distortions, we make use of a pre-
train CNN (VGG-16) for the image classification task. The two
feature sets are bilinearly pooled into one representation for a
final quality prediction. We fine-tune the whole network on target
databases using a variant of stochastic gradient descent. Exten-
sive experimental results show that the proposed model achieves
state-of-the-art performance on both synthetic and authentic
IQA databases. Furthermore, we verify the generalizability of
our method on the large-scale Waterloo Exploration Database,
and demonstrate its competitiveness using the group maximum
differentiation competition methodology.

Index Terms—Blind image quality assessment, convolutional
neural networks, bilinear pooling, gMAD competition, perceptual
image processing.

I. INTRODUCTION

NOWADAYS, digital images are captured by various sta-
tionary and mobile cameras, compressed by traditional

and novel techniques [1], [2], transmitted through diverse
communication channels [3], and stored in a variety of storage
devices. Each stage in the image acquisition, processing,
transmission and storage pipeline could introduce unexpected
distortions, and cause perceptual information loss and qual-
ity degradation. Image quality assessment (IQA), therefore,
becomes increasingly important in monitoring the quality of
images and assuring the reliability of image processing sys-
tems. Since the human visual system is the ultimate judge of
perceptual image quality, subjective IQA is most reliable, but
is also time-consuming and expensive. Hence, it is essential to
design accurate and efficient objective IQA algorithms to push
IQA from laboratory research to real-world applications [4].
Objective IQA is traditionally classified into three categories
depending on the availability of reference information: full-
reference IQA (FR-IQA), reduced-reference IQA (RR-IQA),
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and no-reference or blind IQA (BIQA) [5]. Because no ref-
erence information is available (or may not even exist) in
many realistic situations, BIQA attracts a significant amount
of research interests in recent years [6].

Traditional BIQA models commonly adopt low-level fea-
tures either hand-crafted [7] or learned [8] to characterize
the level of deviations from statistical regularities of nat-
ural scenes, based on which a quality prediction function
is learned [9]. Until recently, there has been limited effort
towards end-to-end optimized BIQA using deep convolutional
neural networks (CNN) [10], [11], primarily due to the lack of
sufficient ground truth labels such as the mean opinion scores
(MOS) for training. A naı̈ve solution is to directly fine-tune a
CNN pre-trained on ImageNet [12] for quality prediction [13].
The resulting CNN-based quality model achieves reasonable
performance on the LIVE Challenge Database [14] (authenti-
cally distorted), but does not deliver standout performance on
legacy IQA databases such as LIVE [15] and TID2013 [16]
(synthetically distorted). Another commonly adopted strategy
is patch-based training, where the quality score of a patch
is either inherited from that of the corresponding image [10]
or approximated by FR-IQA models [17]. This strategy is
very effective at learning CNN models for synthetic distor-
tions, but fails to handle authentic distortions due to the
non-homogeneity of distortions and the absence of reference
images for patch quality annotation. Other methods [11], [18]
take advantage of the known synthetic degradation processes
(e.g., distortion types) to find reasonable initializations of CNN
models for quality prediction, which however are not directly
applicable to authentic distortions.

In this work, we aim for an end-to-end solution to BIQA
of both synthetically and authentically distorted images. We
first learn feature representations that are matched with the
two degradation scenarios separately. For synthetic distortions,
inspired by previous works [11], [18], [20], we construct a
large-scale pre-training set based on the Waterloo Exploration
Database [19] and PASCAL VOC 2012 [21], where the images
are synthesized with nine distortion types and two to five dis-
tortion levels. Instead of rating each distorted image in the pre-
training set, we take advantage of the known distortion type
and level information and pre-train a CNN through a multi-
class classification task. For authentic distortions, it is difficult
to simulate the degradation processes due to their complexi-
ties [22]. Here, we opt to use another CNN model (VGG-
16 [23] to be exact) that is pre-trained on ImageNet [12],
containing many realistic natural images of different quality,
and is therefore better matched to the rich content and distor-
tion variations in authentically distorted images. We model
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Fig. 1. Sample distorted images synthesized from a reference image in the Waterloo Exploration Database [19]. (a) Gaussian blur. (b) White Gaussian noise.
(c) JPEG compression. (d) JPEG2000 compression. (e) Pink noise. (f) Contrast stretching. (g) Image color quantization with dithering. (h) Over-exposure. (i)
Under-exposure.

synthetic and authentic distortions as two-factor variations,
and bilinearly pool the two pre-trained feature sets into a
unified representation, resulting in a deep bilinear CNN (DB-
CNN) [24] for quality prediction. The proposed DB-CNN is
fine-tuned on target databases with a variant of the stochastic
gradient descent method. Extensive experimental results on
four IQA databases demonstrate the effectiveness of DB-
CNN for both synthetic and authentic distortions. Furthermore,
through the group MAximum Differentiation (gMAD) compe-
tition [25], we observe that DB-CNN is more robust than the
most recent CNN-based BIQA models [11], [26].

The remainder of this paper is organized in the following
manner. Section II reviews CNN-based models for BIQA
with emphasis on their limitations. Section III details the
construction of the proposed DB-CNN model. We present
extensive comparison and ablation experiments in Section IV.
Section V concludes the paper.

II. RELATED WORK

In this section, we provide a review of recent CNN-based
BIQA models. For a more detailed treatment of BIQA, readers
can refer to [6], [9], [27], [28].

Tang et al. [29] pre-trained a deep belief network with a
radial basis function and fine-tuned it to predict image quality.

Bianco et al. [30] investigated various design choices of CNN
for BIQA. They first adopted CNN features pre-trained on the
image classification task as inputs to learn a quality evaluator
using support vector regression (SVR). They then fine-tuned
the pre-trained features in a multi-class classification setting
by quantizing MOSs into five categories, and fed the fine-
tuned features to SVR. Nevertheless, their proposal is not
end-to-end optimized and involves heavy manual parameter
adjustments [30]. Kang et al. [10] trained a CNN using
a large number of spatially normalized image patches and
computed the quality score of an input image by averaging the
predicted scores of all image patches cropped from it. They
then simultaneously estimated image quality and distortion
type via a traditional multi-task CNN [18]. While the quality
scores of patches are directly inherited from the corresponding
image, it may be problematic since local perceptual quality
is not always consistent with global quality due to the high
non-stationarity of image content across spatial locations and
the intricate interactions between content and distortions [11],
[13]. Taking this problem into consideration, Bosse et al. [26]
trained CNN models using two different strategies: 1) directly
averaging features from multiple patches and 2) weighted
averaging quality scores of patches weighted by their relative
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Fig. 2. Illustration of the five new distortion types with increasing degradation levels from left to right. (a)-(e) Contrast stretching. (f)-(j) Pink noise. (k)-(o)
Image color quantization with dithering. (p)-(q) Over-exposure. (r)-(s) Under-exposure.

importance. Kim et al. [17] first pre-trained a CNN model
using numerous patches with proxy quality scores acquired by
an FR-IQA model [31] and then summarized the patch-level
feature representations using mean and standard deviation
statistics for fine tuning. A closely related work to ours is
MEON [11], a cascaded multi-task framework for BIQA.
A distortion type identification network is first trained, for
which large-scale training samples are readily available. Then,
starting from the pre-trained early layers and the outputs of
the distortion type identification network, a quality prediction
network is trained subsequently. The proposed DB-CNN takes
a step further by taking not only distortion type but also
distortion level information into account, which results in
better quality-aware initializations. It is worth noting that the
aforementioned three methods [11], [17], [26] only partially
address the training data shortage problem in the synthetic
distortion scenario. Extending them to account for authentic
distortions is difficult.

III. DB-CNN FOR BIQA

In this section, we first describe the construction of the
pre-training set and the architecture of the CNN for synthet-
ically distorted images. We then present the tailored VGG-
16 network for authentically distorted images. Finally, we
introduce our bilinear pooling module along with the fine-
tuning procedure.

A. CNN for Synthetic Distortions

To address the enormous content variations in real world
images, we start with two large-scale databases, i.e., Waterloo
Exploration Database [19] and PASCAL VOC 2012 [21].
Waterloo Exploration Database contains 4, 744 pristine images
covering various image content. It also provides source code to
synthesize four common distortions, i.e., JPEG compression,
JPEG2000 compression, Gaussian blur and while Gaussian
noise at five degradation levels from the pristine images.
PASCAL VOC 2012 is a large database for object recogni-
tion, detection and semantic segmentation. It contains 17, 125
images of acceptable quality covering 20 semantic classes. We
merge the two databases to a total of 21, 869 source images.
In addition to the four common distortion types mentioned
above, we add five more — pink noise, contrast stretching,
image quantization with color dithering, over-exposure, and
under-exposure. Since some source images (especially in
PASCAL VOC 2012) may not have perfect quality, we only
include synthesized distorted images in the pre-training set and
make sure that the added distortions dominate the perceived
quality. Following [19], we synthesize distorted images with
five degradation levels except for over-exposure and under-
exposure, for which only two levels are generated [32]. Sample
distorted images are shown in Fig. 1 and the degradation
levels of the five new distortion types are shown in Fig. 2.
In summary, the pre-training set contains 852, 891 distorted
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Fig. 3. The architecture of S-CNN for synthetic distortions. We follow the style and convention in [2], and denote the parameterization of the convolutional
layer as “height × width | input channel × output channel | stride | padding”. For brevity, we ignore all ReLU layers here.

images.
Due to the scale of the pre-training set, it is far from

realistic to carry out a full subjective test to obtain a MOS
for each image. We resolve this problem by taking advantage
of the distortion type and level information used in the
synthesis process, and pre-train the network to classify the
distortion type and meanwhile identify the degradation level.
Compared to previous methods that only exploit distortion type
information [11], [18], [20], our pre-training strategy offers
better initializations, leading to better local optimum (shown
in Section IV-B5). Specifically, we form the ground truth label
for pre-training as a 39-class indicator vector with only one
entry activated to encode the underlying distortion type at the
specific distortion level. The dimension of the ground truth
vector comes from the fact that there are seven distortion types
with five levels and two distortion types with two levels.

Inspired by the simple architecture design of VGG-16
network [23], we design our CNN for synthetic distortions (S-
CNN) with a similar philosophy subject to some modifications.
The network architecture is detailed in Fig. 3. In a nutshell,
the size of the input RGB image is cropped to 224 × 224.
All convolutions have a kernel size of 3× 3. Zero padding is
adopted to keep the resolution of feature activations. We adopt
rectified linear unit (ReLU) as the nonlinear activation func-
tion since it delivers reliable performance in many computer
vision applications [23], [33]. Although generalized divisive
nomarlization (GDN) demonstrates promising performance in
MEON [11] with lower depths and fewer parameters, consider-
ing that our S-CNN is a deeper network with more parameters,
we opt to use ReLU for its simplicity and effectiveness in
accelerating the training of deep neural networks [34]. Spatial
max-pooling is replaced by the strided convolution with a
step of two such that the spatial resolution is reduced by
half in both directions. The feature activations at the last
convolutional layer are averaged into a single feature vector
followed by fully connected layers. All model parameters are
collectively denoted by W. The softmax function and the cross
entropy loss are considered here for training. Specially, given
N training data tuples {(X(1),p(1)), ..., (X(N),p(N))}, where
X(i) denotes the i-th raw input RGB image and p(i) is the
ground-truth multi-class indicator vector. By denoting the i-th
activation value of the last fully connected layer of the k-th

input image as y(k)i , the softmax function is defined as

p̂
(k)
i (X(k);W) =

exp
(
y
(k)
i (X(k);W)

)
∑39

j=1 exp
(
y
(k)
j (X(k);W)

) , (1)

where p̂(k) = [p̂
(k)
1 , · · · , p̂(k)39 ]T is a 39-dimensional probabil-

ity vector of the k-th input in a mini-batch, which indicates the
probability of each distortion type at the specific degradation
level. The empirical cross entropy loss is computed by

`s({X(k)};W) = −
N∑

k=1

39∑
i=1

p
(k)
i log p̂

(k)
i (X(k);W) . (2)

B. CNN for Authentic Distortions

Unlike training S-CNN for synthetic distortions, where
special strategies (such as the one used in Section III-A) may
be employed to produce a large amount of training data, it
is difficult to obtain sufficient ground truth data to train a
CNN for authentic distortions from scratch, on the other hand,
limited number of labeled training data often leads to overfit-
ting problem. Here we opt to a CNN, namely VGG-16 [23]
that has been pre-trained for the image classification task on
ImageNet [12], to extract relevant features for authentically
distorted image. The hypothesis is that the VGG-16 feature
representations can adapt to authentic distortions because the
distortions in ImageNet occur as a natural consequence of pho-
tography rather than simulations. As a result, features trained
from such a data set are likely to improve the classification
performance [13].

C. DB-CNN by Bilinear Pooling

We consider bilinear techniques to combine S-CNN for
synthetic distortions and VGG-16 for authentic distortions
into a single model. Bilinear models have been shown to
be effective in modeling two-factor variations, such as style
and content of images [35], location and appearance for fine-
grained recognition [24], temporal and spatial aspects for
video analysis [36], text and visual features for question-
answering [37], and flow and image features for action
recognition [38]. Here we tackle the BIQA problem with a
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similar philosophy, where synthetic and authentic distortions
are modeled as the two-factor variations, resulting in a DB-
CNN model.

The structure of DB-CNN is presented in Fig. 4. We tailor
the pre-trained S-CNN and VGG-16 by discarding all layers
after the last convolution. Given an input image X and its
activations of the last convolutional layers of the two streams,
Y1 and Y2 are with size of h1 ×w1 × d1 and h2 ×w2 × d2,
respectively. The bilinear pooling of Y1 and Y2 requires
h1 × w1 = h2 × w2, which holds in our case for an input
image of arbitrary size because S-CNN and VGG-16 share
the same padding and downsampling routines. We use VGG-
16 mainly due to the fact that the design of S-CNN is inspired
by VGGNet for its conciseness and effectiveness, which brings
convenience to hold h1 × w1 = h2 × w2 as required by the
intrinsic characteristic of bilinear pooling. Other CNNs such
as ResNet [39] may also be adopted in our framework if
the structure of S-CNN is adjusted appropriately. The bilinear
pooling of Y1 and Y2 is formulated as

B = YT
1 Y2, (3)

where the outer product B is of dimension d1 × d2.
Bilinear representation is usually mapped from Riemannian

manifold into an Euclidean space [40] using signed square
root and `2 normalization [41]:

B̃ =
sign(B)�

√
|B|

‖sign(B)�
√
|B|‖2

, (4)

where � refers to element-wise multiplication. B̃ is fed to a
fully connected layer for quality prediction, which produces an
overall quality score. We consider the `2 norm as the empirical
loss, which is widely used in previous works [10], [13], [26]
to fine-tune the whole DB-CNN on a target IQA database

` =
1

N

N∑
i=1

‖si − ŝi‖2, (5)

where si is the ground truth subjective quality score of the i-th
image in a mini-batch and ŝi is the predicted quality score by
the proposed DB-CNN.

According to the chain rule, the backward propagation of
the loss ` through the bilinear pooling layer to Y1 and Y2

can be computed by

∂`

∂Y1
= Y2

(
∂`

∂B

)T

(6)

and
∂`

∂Y2
= Y1

(
∂`

∂B

)
. (7)

It is worth noting that bilinear pooling is a global strategy
and therefore DB-CNN accepts an input image of arbitrary
size. As a result, we can directly feed the whole image instead
of patches cropped from it into DB-CNN during both training
and testing.

IV. EXPERIMENTS

In this section, we first describe the experimental setups,
including IQA databases, evaluation protocols, performance
criteria, and implementation details of DB-CNN. After that,
we compare the performance of DB-CNN with state-of-the-art
BIQA models on individual databases and cross databases. We
also test the robustness of DB-CNN on the Waterloo Explo-
ration Database using discriminability and rating consistency
testing criteria. Finally, we conduct several critical ablation
experiments to justify the rationality of DB-CNN.

A. Experimental Setups

1) IQA Databases: The main experiments are conducted on
three legacy singly synthetic IQA databases, i.e., LIVE [15],
CSIQ [42] and TID2013 [16] along with a multiply distorted
synthetic dataset LIVE MD [43] and the authentic LIVE
Challenge database [14]. LIVE [15] contains 779 distorted
images synthesized from 29 reference images covering five
distortion types—JPEG compression (JPEG), JPEG2000 com-
pression (JP2K), Gaussian blur (GB), white Gaussian noise
(WN) and fast fading error (FF) at seven to eight degradation
levels. Difference MOS (DMOS) is collected with a higher
value indicating lower perceptual quality, roughly in the range
[0, 100]. CSIQ [42] is composed of 866 distorted images
generated from 30 reference images, including six distortion
types, i.e., JPEG, JP2K, GB, WN, contrast change (CG), and
pink noise (PN) at three to five degradation levels. DMOS in
the range [0, 1] is provided as the ground truth. TID2013 [16]
consists of 3, 000 distorted images from 25 reference images
with 24 distortion types at five degradation levels. MOS in the
range [0, 9] is provided to indicate the perceptual quality. LIVE
MD [43] contains 450 images generated from 15 source im-
ages with corruption under two multiple distortion scenarios,
i.e., blur followd by JPEG compression and blur followed by
white Gaussian noise. DMOS in the range[0, 100] is provideds
as the subjective quality score for each image. LIVE Chal-
lenge [14] is an authentic IQA database, which contains 1, 162
images captured from diverse real-world scenes by numerous
photographers with various levels of photography skills using
different camera devices, and hence undergo complex realistic
distortions. MOS in the range [0, 100] is collected from over
8, 100 unique human evaluators via an online crowdsourcing
platform.

2) Experimental Protocols and Performance Criteria: We
conduct experiments by following the same protocol in [13].
Specifically, for synthetic databases LIVE, CSIQ, TID2013
and LIVE MD, distorted images are divided into two splits,
80% of which are used for fine-tuning the DB-CNN and the
rest 20% for testing. The splitting is conducted according to
source images to guarantee the independence of image content.
The training and testing procedures are randomly repeated ten
times on all databases.

We adopt two commonly used metrics to benchmark the
models: Spearman rank order correlation coefficient (SRCC)
and Pearson linear correlation coefficient (PLCC). SRCC
measures the prediction monotonicity and PLCC measures
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Fig. 4. The structure of the proposed DB-CNN.

prediction precision. As suggested in [44], the predicted qual-
ity scores are passed through a nonlinear logistic mapping
function before computing PLCC:

s̃ = β1

(
1

2
− 1

exp(β2(ŝ− β3))

)
+ β4ŝ+ β5, (8)

where {βi; i = 1, 2, 3, 4, 5} are regression parameters to be
fitted. SRCC and PLCC results from the ten sessions are
reported.

3) Implementation Details: All parameters of S-CNN are
initialized with the method introduced in [33] and trained
from scratch using the Adam optimization algorithm [45]
with a mini-batch of 64. We run 30 epoches with a learning
rate decaying logarithmically in the interval [10−2, 10−4].
Batch normalization [46] is used to assure the stability during
training. Images are scaled to 256×256×3 and we randomly
crop 224× 224× 3 patches as inputs.

During fine-tuning of DB-CNN, we again adopt Adam [45]
with a learning rate of 10−6 for LIVE [15] and CSIQ [42],
10−5 for TID2013 [16], LIVE MD [43] and LIVE Chal-
lenge [14], respectively. The mini-batch size is set to eight.
We feed images of original size to DB-CNN during both fine-
tuning and testing phases.

DB-CNN is implemented using the MatConvNet tool-
box [47] and will be made publicly available at github.com/
zwx8981/BIQA project.

B. Experimental Results

1) Performance on Individual Databases: We compare
the proposed model against several state-of-the-art BIQA
methods: BRISQUE [7], M3 [48], FRIQUEE [22], COR-
NIA [8], HOSA [49], and dipIQ [27], whose source codes
are provided by the respective authors. We re-train and/or
validate using the same randomly generated training-testing
splits. For deep learning-based counterparts, we directly report
the performance in the corresponding papers due to the un-
availability of the training codes. SRCC and PLCC results on
the four databases are listed in Table I, from which we obtain
several interesting observations. First, while all competing
models achieve comparable performance on LIVE [15], their
performance on CSIQ [42] and TID2013 [16] are rather
diverse. Compared with classical domain knowledge-based

TABLE I
AVERAGE SRCC AND PLCC RESULTS ACROSS TEN SESSIONS. THE TOP

TWO RESULTS ARE HIGHLIGHTED IN BOLDFACE

SRCC LIVE CSIQ TID2013 LIVE MD LIVE Challenge
[15] [42] [16] [43] [14]

BRISQUE [7] 0.939 0.746 0.604 0.886 0.608
M3 [48] 0.951 0.795 0.689 0.892 0.607
FRIQUEE [22] 0.940 0.835 0.680 0.923 0.682
CORNIA [8] 0.947 0.678 0.678 0.899 0.629
HOSA [49] 0.946 0.741 0.735 0.913 0.640
Le-CNN [10] 0.956 — — — —
BIECON [17] 0.961 0.815 0.717 0.909 0.595
DIQaM-NR [26] 0.960 — 0.835 — 0.606
WaDIQaM-NR [26] 0.954 — 0.761 — 0.671
ResNet-ft [13] 0.950 0.876 0.712 0.909 0.819
IW-CNN [13] 0.963 0.812 0.800 0.914 0.663
DB-CNN 0.968 0.946 0.816 0.927 0.851

PLCC LIVE CSIQ TID2013 LIVE MD LIVE Challenge
BRISQUE [7] 0.935 0.829 0.694 0.917 0.629
M3 [48] 0.950 0.839 0.771 0.919 0.630
FRIQUEE [22] 0.944 0.874 0.753 0.934 0.705
CORNIA [8] 0.950 0.776 0.768 0.921 0.671
HOSA [49] 0.947 0.823 0.815 0.926 0.678
Le-CNN [10] 0.953 — — — —
BIECON [17] 0.962 0.823 0.762 0.933 0.613
DIQaM-NR [26] 0.972 — 0.855 — 0.601
WaDIQaM-NR [26] 0.963 — 0.787 — 0.680
ResNet-ft [13] 0.954 0.905 0.756 0.920 0.849
IW-CNN [13] 0.964 0.791 0.802 0.929 0.705
DB-CNN 0.971 0.959 0.865 0.934 0.869

models, CNN-based models deliver better performance on
CSIQ and TID2013, which we believe arises from the end-
to-end feature learning in replacement of hand-crafted feature
engineering. Second, as for the multiply distorted image
dataset LIVE MD, DB-CNN also delivers better performance
against other methods although it dose not incorporate any
multiply distorted image in the pre-training set. This suggests
that DB-CNN generalizes well to slightly different distortion
scenarios. Last, as for the authentic database LIVE Challenge,
FRIQUEE [22] that combines a set of quality-aware features
extracted from multiple color spaces outperforms other clas-
sical BIQA models and all CNN-based models except for
ResNet-ft [13] and the proposed DB-CNN. It manifests that
the intrinsic characteristics of authentic distortions cannot be
fully captured by low-level features learned from synthetically

github.com/zwx8981/BIQA_project
github.com/zwx8981/BIQA_project
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TABLE II
AVERAGE SRCC AND PLCC RESULTS OF INDIVIDUAL DISTORTION TYPES

ACROSS TEN SESSIONS ON LIVE [15]

SRCC JPEG JP2K WN GB FF
BRISQUE [7] 0.965 0.929 0.982 0.964 0.828
M3 [48] 0.966 0.930 0.986 0.935 0.902
FRIQUEE [22] 0.947 0.919 0.983 0.937 0.884
CORNIA [8] 0.947 0.924 0.958 0.951 0.921
HOSA [49] 0.954 0.935 0.975 0.954 0.954
dipIQ [27] 0.969 0.956 0.975 0.940 —
DB-CNN 0.972 0.955 0.980 0.935 0.930

PLCC JPEG JP2K WN GB FF
BRISQUE [7] 0.971 0.940 0.989 0.965 0.894
M3 [48] 0.977 0.945 0.992 0.947 0.920
FRIQUEE [22] 0.955 0.935 0.991 0.949 0.936
CORNIA [8] 0.962 0.944 0.974 0.961 0.943
HOSA [49] 0.967 0.949 0.983 0.967 0.967
dipIQ [27] 0.980 0.964 0.983 0.948 —
DB-CNN 0.986 0.967 0.988 0.956 0.961

TABLE III
AVERAGE SRCC AND PLCC RESULTS OF INDIVIDUAL DISTORTION TYPES

ACROSS TEN SESSIONS ON CSIQ [42]

SRCC JPEG JP2K WN GB PN CC
BRISQUE [7] 0.806 0.840 0.723 0.820 0.378 0.804
M3 [48] 0.740 0.911 0.741 0.868 0.663 0.770
FRIQUEE [22] 0.869 0.846 0.748 0.870 0.753 0.838
CORNIA [8] 0.513 0.831 0.664 0.836 0.493 0.462
HOSA [49] 0.733 0.818 0.604 0.841 0.500 0.716
dipIQ [27] 0.936 0.944 0.904 0.932 — —
MEON [11] 0.948 0.898 0.951 0.918 — —
DB-CNN 0.940 0.953 0.948 0.947 0.940 0.870

PLCC JPEG JP2K WN GB PN CC
BRISQUE [7] 0.828 0.887 0.742 0.891 0.496 0.835
M3 [48] 0.768 0.928 0.728 0.917 0.717 0.787
FRIQUEE [22] 0.885 0.883 0.778 0.905 0.769 0.864
CORNIA [8] 0.563 0.883 0.687 0.904 0.632 0.543
HOSA [49] 0.759 0.899 0.656 0.912 0.601 0.744
dipIQ [27] 0.975 0.959 0.927 0.958 — —
MEON [11] 0.979 0.925 0.958 0.946 — —
DB-CNN 0.982 0.971 0.956 0.969 0.950 0.895

distorted images. The success of DB-CNN on LIVE Challenge
verifies the effectiveness of employing more relevant features
from VGG-16 to measure the severity of authentic distortions.
In summary, the proposed DB-CNN model achieves state-
of-the-art performance on both synthetic and authentic IQA
databases.

2) Performance on Individual Distortion Types: To take
a closer look at the behaviors of DB-CNN on individual
distortion types along with several competing BIQA models,
we train models using images with all kinds of distortion types
and test them on a specific distortion type. Table II, III, and IV
show the results on LIVE [15], CSIQ [42], and TID2013 [16],
respectively, where we can observe that DB-CNN is among the
top two performing models 34 out of 46 times, showing a sig-
nificant advantage. Specifically, on LIVE, DB-CNN does not
perform well on FF, which we believe is caused by its absence
during the construction of the pre-training set. As for CSIQ,
DB-CNN outperforms other counterparts by a large margin
especially on pink noise and contrast change, which validates
the effectiveness of pre-training S-CNN, a stream of DB-
CNN. On the most challenging synthetic database TID2013,

all BIQA models fail to deliver satisfactory performance on
three distortion types, i.e., non-eccentricity pattern noise, local
block-wise distortions, and mean shift. DB-CNN performs
relatively better on contrast change, which is consistent with
the results on CSIQ and change of color saturation, which is
attributed to its feature extraction from color images. Although
we do not synthesize as many distortion types as in TID2013,
an interesting finding is that DB-CNN still performs well on
distortion types with similar artifacts that have been contained
in our pre-training set. To be specific, as shown in Fig. 5,
grainy noise ubiquitously exists in images distorted by additive
Gaussian noise, additive noise in color components, and high
frequency noise; Gaussian blur, image denoising, and sparse
sampling and reconstruction mainly introduce blur; image
color quantization with dither and quantization noise also share
similar appearances. Trained by synthesized images with dis-
tortions of additive Gaussian noise, Gaussian blur, and image
color quantization with dither, DB-CNN well generalizes to
unseen distortions with similar perceived artifacts.

3) Performance across Different Databases: Robust BIQA
models are expected to not only perform well on the training
database, but also generalize well to other IQA databases. In
this subsection, we conduct cross database validations to com-
pare the generalizability of DB-CNN against BRISQUE [7],
M3 [48], FRIQUEE [22], CORNIA [8], and HOSA [49]. The
results of CNN-based counterparts are reported if available
from the original papers. All experiments are conducted by
training models on one entire database and test them on
the other databases. SRCC results are reported in Table V.
It is expected that models trained on LIVE are much eas-
ier to generalize to CSIQ and vice versa than other cross
database pairs. As for training on TID2013 and testing on
the other two synthetic databases, the proposed DB-CNN
performs superior to other models. Unfortunately, it is evident
that models trained on synthetic databases are difficult to
generalize to the LIVE Challenge authentic database or vice
versa. This shows different intrinsic characteristics between
synthetic and authentic distortions. Despite this, DB-CNN still
achieves higher prediction accuracies than all other models
under such a challenging experimental setup, which justifies
the effectiveness of the proposed method.

4) Results on the Waterloo Exploration Database: Al-
though SRCC and PLCC have been widely used as the
performance criteria in IQA research, they cannot be applied to
arbitrarily large-scale databases due to the absence of ground
truth MOS labels of all images. Three testing criteria are
introduced along with the large-scale Waterloo Exploration
Database in [19], i.e., Pristine/Distorted Image Discriminabil-
ity Test (D-Test), Listwise Ranking Consistency Test (L-Test),
and Pairwise Preference Consistency Test (P-Test), which
measure the ability of BIQA models in discriminating distorted
from pristine images, rating images with the same content and
the same distortion type but different degradation levels in
a consistent rank, and predicting concordance with pairs of
images whose quality is clearly discriminable, respectively.
More details of these criteria can be found in [19]. Here we
examine the robustness of the proposed DB-CNN model using
these criteria on the Waterloo Exploration Database. We first
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TABLE IV
AVERAGE SRCC RESULTS OF INDIVIDUAL DISTORTION TYPES ACROSS TEN SESSIONS ON TID2013 [16]. WE OBTAIN SIMILAR RESULTS USING PLCC

AS THE PERFORMANCE METRIC

SRCC BRISQUE [7] M3 [48] FRIQUEE [22] CORNIA [8] HOSA [49] MEON [11] DB-CNN
Additive Gaussian noise 0.711 0.766 0.730 0.692 0.833 0.813 0.790
Additive noise in color components 0.432 0.560 0.573 0.137 0.551 0.722 0.700
Spatially correlated noise 0.746 0.782 0.866 0.741 0.842 0.926 0.826
Masked noise 0.252 0.577 0.345 0.451 0.468 0.728 0.646
High frequency noise 0.842 0.900 0.847 0.815 0.897 0.911 0.879
Impulse noise 0.765 0.738 0.730 0.616 0.809 0.901 0.708
Quantization noise 0.662 0.832 0.764 0.661 0.815 0.888 0.825
Gaussian blur 0.871 0.896 0.881 0.850 0.883 0.887 0.859
Image denoising 0.612 0.709 0.839 0.764 0.854 0.797 0.865
JPEG compression 0.764 0.844 0.813 0.797 0.891 0.850 0.894
JPEG2000 compression 0.745 0.885 0.831 0.846 0.919 0.891 0.916
JPEG transmission errors 0.301 0.375 0.498 0.694 0.730 0.746 0.772
JPEG2000 transmission errors 0.748 0.718 0.660 0.686 0.710 0.716 0.773
Non-eccentricity pattern noise 0.269 0.173 0.076 0.200 0.242 0.116 0.270
Local bock-wise distortions 0.207 0.379 0.032 0.027 0.268 0.500 0.444
Mean shift 0.219 0.119 0.254 0.232 0.211 0.177 -0.009
Contrast change -0.001 0.155 0.585 0.254 0.362 0.252 0.548
Change of color saturation 0.003 -0.199 0.589 0.169 0.045 0.684 0.631
Multiplicative Gaussian noise 0.717 0.738 0.704 0.593 0.768 0.849 0.711
Comfort noise 0.196 0.353 0.318 0.617 0.622 0.406 0.752
Lossy compression of noisy images 0.609 0.692 0.641 0.712 0.838 0.772 0.860
Color quantization with dither 0.831 0.908 0.768 0.683 0.896 0.857 0.833
Chromatic aberrations 0.615 0.570 0.737 0.696 0.753 0.779 0.732
Sparse sampling and reconstruction 0.807 0.893 0.891 0.865 0.909 0.855 0.902

TABLE V
SRCC RESULTS IN A CROSS DATABASE SETTING

Training LIVE [15] CSIQ [42]
Testing CSIQ TID2013 LIVE Challenge LIVE TID2013 LIVE Challenge
BRISQUE [7] 0.562 0.358 0.337 0.847 0.454 0.131
M3 [48] 0.621 0.344 0.226 0.797 0.328 0.183
FRIQUEE [22] 0.722 0.461 0.411 0.879 0.463 0.264
CORNIA [8] 0.649 0.360 0.443 0.853 0.312 0.393
HOSA [49] 0.594 0.361 0.463 0.773 0.329 0.291
DIQaM-NR [26] 0.681 0.392 — — — —
WaDIQaM-NR [26] 0.704 0.462 — — — —
DB-CNN 0.758 0.524 0.567 0.877 0.540 0.452

Training TID2013 [16] LIVE Challenge [14]
Testing LIVE CSIQ LIVE Challenge LIVE CSIQ TID2013
BRISQUE [7] 0.790 0.590 0.254 0.238 0.241 0.280
M3 [48] 0.873 0.605 0.112 0.059 0.109 0.058
FRIQUEE [22] 0.755 0.635 0.181 0.644 0.592 0.424
CORNIA [8] 0.846 0.672 0.293 0.588 0.446 0.403
HOSA [49] 0.846 0.612 0.319 0.537 0.336 0.399
DIQaM-NR [26] — 0.717 — — — —
WaDIQaM-NR [26] — 0.733 — — — —
DB-CNN 0.891 0.807 0.457 0.746 0.697 0.424

retrain the S-CNN stream using distorted images generated
from PASCAL VOC 2012 only to ensure the independence
of image content between training and testing. Experimental
results are tabulated in Table VI, where we observe that DB-
CNN achieves the best two results in D-Test and P-Test, and
is competitive in L-Test.

We also conduct gMAD competition games [25] on Wa-
terloo Exploration Database [19]. Evaluating in a large-scale
dataset is more credible in real-world application to overcome
the contradiction between the high-dimensional inner chara-
teristic of digital images and the extremely limited sample
space of tradional IQA datasets, which only contain at most a
few thousands images covering very limited content variations.
gMAD competition is a preferable way to evaluate an IQA

model since it can automatically and most efficiently select
the optimal test image pairs from a large-scale image dataset
such as Waterloo Exploration Database [19] and let the model
competes against other opponents. gMAD extends the idea of
MAximum Differentiation (MAD) competition [50] that one
counter-example is sufficient to disprove a model by allowing
a group of models for competition and by finding the optimal
stimuli in a large database [25]. Image pairs are automatically
generated by searching for the maximum quality difference by
an aggressive model (attacker), while keeping predictions of
another resistant model (defender). To be specific, DB-CNN
first plays the role of attacker while deepIQA [26] a defender.
Then the procedure is repeated with the roles of two models
exchanged. As shown in Fig. 6 (a)-(d), deepIQA [26] considers
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Images with different distortion types may share similar distorted appearances. (a) Additive Gaussian noise. (b) Additive noise in color components. (c)
High frequency noise. (d) Gaussian blur. (e) Image denoising. (f) Sparse sampling and reconstruction. (i) Image color quantization with dither. (j) Quantization
noise.

pairs (a) and (b) of the same quality at low- and high-quality
level respectively, which are obviously not in agreement with
the perceptual quality. On the contrary, DB-CNN predicts
much better quality of top images in pairs (a) and (b), which
is closer to human subjective opinions. As for (c) and (d),
with the roles exchanged, deepIQA [26] fails to falsify DB-
CNN, which shows a better resistance of DB-CNN. We then
let DB-CNN fights against MEON [11], pairs of which are
shown in Fig. 7 (a)-(d). We can observe from (a) and (c) that
both DB-CNN and MEON are able to fail each other at low-
quality level by finding strong counter-examples. Specificially,
DB-CNN fails to disprove MEON [11] in (a), which reveal
its weakness in BLUR and conversely, MEON [11] does not
handle JP2K well enough, which leads to the successful defend
of DB-CNN in pair (c). As for high quality pair of (b), DB-
CNN fails MEON [11] by finding the bottom image of (b)
to have apparently lower quality than the top one. On the
other hand, DB-CNN also successfully defends attack from

MEON [11] in pair (d), which has two images with similar
perceptual quality.

5) Ablation Experiments: In order to evaluate the design ra-
tionality of DB-CNN, we conduct several ablation experiments
with setups and protocols following Section IV-A. We first
work with a baseline version, where only one stream (either
S-CNN and VGG-16) is included. The bilinear pooling is kept,
which turns out to be the outer-product of the activations
of the last convolutional layer with themselves. We then
replace the bilinear pooling module with a simple feature
concatenation and ensure that the number of parameters of
the subsequent fully connected layer is approximately the
same as in DB-CNN. From Table VII, we observe that S-
CNN and VGG-16 can only deliver promising performance
on synthetic and authentic databases, respectively. By contrast,
DB-CNN is capable of simultaneously handling synthetic and
authentic distortions. We also train two DB-CNN models,
one from scratch and the other using the distortion type
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Best DB-CNN

Worst DB-CNN

Fixed deepIQA

Best DB-CNN

Worst DB-CNN

Fixed deepIQA

Best deepIQA

Worst deepIQA

Fixed DB-CNN

Best deepIQA

Worst deepIQA

Fixed DB-CNN

(a) (b) (c) (d)

Fig. 6. gMAD competition results between DB-CNN and deepIQA [26]. (a) Fixed deepIQA at the low-quality level. (b) Fixed deepIQA at the high-quality
level. (c) Fixed DB-CNN at the low-quality level. (d) Fixed DB-CNN at the high-quality level.

Best DB-CNN

Worst DB-CNN

Fixed MEON

Best DB-CNN

Worst DB-CNN

Fixed MEON

Best MEON

Worst MEON

Fixed DB-CNN

Best MEON

Worst MEON

Fixed DB-CNN

(a) (b) (c) (d)

Fig. 7. gMAD competition results between DB-CNN and MEON [11]. (a) Fixed MEON at the low-quality level. (b) Fixed MEON at the high-quality level.
(c) Fixed DB-CNN at the low-quality level. (d) Fixed DB-CNN at the high-quality level.

information only during pre-training S-CNN, to validate the
necessity of pre-trained stages. From the table, we observe
that with more meaningful initializations, DB-CNN achieves
better performance.

V. CONCLUSION

We propose a deep bilinear CNN-based BIQA model
for both synthetic and authentic distortions by conceptually
modeling them as two-factor variations followed by bilinear
pooling. DB-CNN demonstrates state-of-the-art performance
on both synthetic and authentic IQA databases, which we
believe arises from the two-steam architecture for variation
modeling, pre-training for better initializations, and bilinear
pooling for meaningful feature blending. In addition, through
validations across different databases, experiments on the

TABLE VI
RESULTS ON THE WATERLOO EXPLORATION DATABASE [19]

Model D-Test L-Test P-Test
BRISQUE [7] 0.9204 0.9772 0.9930
M3 [48] 0.9203 0.9106 0.9748
CORNIA [8] 0.9290 0.9764 0.9947
HOSA [49] 0.9175 0.9647 0.9983
dipIQ [27] 0.9346 0.9846 0.9999
deepIQA [26] 0.9074 0.9467 0.9628
MEON [11] 0.9384 0.9669 0.9984
DB-CNN 0.9616 0.9614 0.9992

Waterloo Exploration Database, and results from the gMAD
competition, we have shown the scalability, generalizability,
and robustness of the proposed DB-CNN model.

DB-CNN is versatile and extensible. For example, more
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TABLE VII
AVERAGE SRCC RESULTS OF ABLATION EXPERIMENTS ACROSS TEN
SESSIONS. “SCRATCH” MEANS DB-CNN IS TRAINED FROM SCRATCH

WITH RANDOM INITIALIZATIONS. “DISTYPE” MEANS THE S-CNN
STREAM IS PRE-TRAINED TO CLASSIFY DISTORTION TYPES ONLY,

IGNORING THE DISTORTION LEVEL INFORMATION

SRCC LIVE CSIQ TID2013 LIVE
[15] [42] [16] Challenge [14]

S-CNN 0.963 0.950 0.810 0.680
VGG-16 0.943 0.824 0.758 0.848
Concatenation 0.951 0.856 0.701 0.811
DB-CNN scratch 0.875 0.541 0.488 0.625
DB-CNN distype 0.963 0.928 0.761 —
DB-CNN 0.968 0.946 0.816 0.851

distortion types and levels can be added into the pre-training
set; more sophisticated designs of S-CNN and more powerful
CNNs such as ResNet [39] can be utilized. One may also
improve DB-CNN by considering other variants of bilinear
pooling [51].

The current work deals with synthetic and authentic distor-
tions separately by fine-tuning DB-CNN on either synthetic or
authentic databases. How to extend DB-CNN toward a more
unified BIQA model, especially in the early feature extraction
stage, is an interesting direction yet to be explored.
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