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Blind Image Quality Assessment Using a Deep
Bilinear Convolutional Neural Network

Weixia Zhang, Kede Ma , Member, IEEE, Jia Yan , Dexiang Deng, and Zhou Wang, Fellow, IEEE

Abstract— We propose a deep bilinear model for blind image
quality assessment that works for both synthetically and authen-
tically distorted images. Our model constitutes two streams of
deep convolutional neural networks (CNNs), specializing in two
distortion scenarios separately. For synthetic distortions, we first
pre-train a CNN to classify the distortion type and the level of
an input image, whose ground truth label is readily available
at a large scale. For authentic distortions, we make use of a
pre-train CNN (VGG-16) for the image classification task. The
two feature sets are bilinearly pooled into one representation
for a final quality prediction. We fine-tune the whole network
on the target databases using a variant of stochastic gradi-
ent descent. The extensive experimental results show that the
proposed model achieves state-of-the-art performance on both
synthetic and authentic IQA databases. Furthermore, we verify
the generalizability of our method on the large-scale Waterloo
Exploration Database, and demonstrate its competitiveness using
the group maximum differentiation competition methodology.

Index Terms— Blind image quality assessment, convolutional
neural networks, bilinear pooling, gMAD competition, perceptual
image processing.

I. INTRODUCTION

NOWADAYS, digital images are captured by various sta-
tionary and mobile cameras, compressed by traditional

and novel techniques [1], [2], transmitted through diverse
communication channels [3], and stored in a variety of storage
devices. Each stage in the image acquisition, processing,
transmission and storage pipeline could introduce unexpected
distortions, and cause perceptual information loss and qual-
ity degradation. Image quality assessment (IQA), therefore,
becomes increasingly important in monitoring the quality
of images and assuring the reliability of image processing
systems. Since the human visual system is the ultimate
judge of perceptual image quality, subjective IQA is most
reliable, but is also time-consuming and expensive. Hence,
it is essential to design accurate and efficient objective IQA
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algorithms to push IQA from laboratory research to real-world
applications [4]. Objective IQA is traditionally classified into
three categories depending on the availability of reference
information: full-reference IQA (FR-IQA), reduced-reference
IQA (RR-IQA), and no-reference or blind IQA (BIQA) [5].
Because no reference information is available (or may not even
exist) in many realistic situations, BIQA attracts a significant
amount of research interests in recent years [6].

Traditional BIQA models commonly adopt low-level fea-
tures either hand-crafted [7] or learned [8] to characterize
the level of deviations from statistical regularities of nat-
ural scenes, based on which a quality prediction function
is learned [9]. Until recently, there has been limited effort
towards end-to-end optimized BIQA using deep convolu-
tional neural networks (CNN) [10], [11], primarily due to
the lack of sufficient ground truth labels such as the mean
opinion scores (MOS) for training. A naïve solution is
to directly fine-tune a CNN pre-trained on ImageNet [12]
for quality prediction [13]. The resulting CNN-based qual-
ity model achieves reasonable performance on the LIVE
Challenge Database [14] (authentically distorted), but does
not deliver standout performance on legacy IQA databases
such as LIVE [15] and TID2013 [16] (synthetically distorted).
Another commonly adopted strategy is patch-based train-
ing, where the quality score of a patch is either inherited
from that of the corresponding image [10] or approximated
by FR-IQA models [17]. This strategy is very effective at
learning CNN models for synthetic distortions, but fails to
handle authentic distortions due to the non-homogeneity of
distortions and the absence of reference images for patch
quality annotation. Other methods [11], [18] take advantage
of the known synthetic degradation processes (e.g., distortion
types) to find reasonable initializations of CNN models for
quality prediction, which however are not directly applicable
to authentic distortions.

In this work, we aim for an end-to-end solution to BIQA of
both synthetically and authentically distorted images. We first
learn feature representations that are matched with the two
degradation scenarios separately. For synthetic distortions,
inspired by previous works [11], [18], [20], we construct a
large-scale pre-training set based on the Waterloo Explo-
ration Database [19] and PASCAL VOC 2012 [21], where
the images are synthesized with nine distortion types and
two to five distortion levels. Instead of rating each distorted
image in the pre-training set, we take advantage of the
known distortion type and level information and pre-train a
CNN through a multi-class classification task. For authentic
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distortions, it is difficult to simulate the degradation processes
due to their complexities [22]. Here, we opt to use another
CNN model (VGG-16 [23] to be exact) that is pre-trained
on ImageNet [12], containing many realistic natural images
of different quality, and is therefore better matched to the
rich content and distortion variations in authentically distorted
images. We model synthetic and authentic distortions as
two-factor variations, and bilinearly pool the two pre-trained
feature sets into a unified representation, resulting in a deep
bilinear CNN (DB-CNN) [24] for quality prediction. The
proposed DB-CNN is fine-tuned on target databases with a
variant of the stochastic gradient descent method. Extensive
experimental results on five IQA databases demonstrate the
effectiveness of DB-CNN for both synthetic and authen-
tic distortions. Furthermore, through the group MAximum
Differentiation (gMAD) competition [25], we observe that
DB-CNN is more robust than the most recent CNN-based
BIQA models [11], [26].

The remainder of this paper is organized in the following
manner. Section II reviews CNN-based models for BIQA
with emphasis on their limitations. Section III details the
construction of the proposed DB-CNN model. We present
extensive comparison and ablation experiments in Section IV.
Section V concludes the paper.

II. RELATED WORK

In this section, we provide a review of recent CNN-based
BIQA models. For a more detailed treatment of BIQA, readers
can refer to [6], [9], [27], and [28].

Tang et al. [29] pre-trained a deep belief network with a
radial basis function and fine-tuned it to predict image quality.
Bianco et al. [30] investigated various design choices of CNN
for BIQA. They first adopted CNN features pre-trained on
the image classification task as inputs to learn a quality
evaluator using support vector regression (SVR). They then
fine-tuned the pre-trained features in a multi-class classi-
fication setting by quantizing MOSs into five categories,
and fed the fine-tuned features to SVR. Nevertheless, their
proposal is not end-to-end optimized and involves heavy
manual parameter adjustments [30]. Kang et al. [10] trained
a CNN using a large number of spatially normalized image
patches and computed the quality score of an input image by
averaging the predicted scores of all image patches cropped
from it. They then simultaneously estimated image quality
and distortion type via a traditional multi-task CNN [18].
While the quality scores of patches are directly inherited from
the corresponding image, it may be problematic since local
perceptual quality is not always consistent with global quality
due to the high non-stationarity of image content across spatial
locations and the intricate interactions between content and
distortions [11], [13]. Taking this problem into consideration,
Bosse et al. [26] trained CNN models using two different
strategies: 1) directly averaging features from multiple patches
and 2) weighted averaging quality scores of patches weighted
by their relative importance. Kim and Lee [17] first pre-trained
a CNN model using numerous patches with proxy quality
scores acquired by an FR-IQA model [31] and then summa-
rized the patch-level feature representations using mean and

standard deviation statistics for fine tuning. A closely related
work to ours is MEON [11], a cascaded multi-task framework
for BIQA. A distortion type identification network is first
trained, for which large-scale training samples are readily
available. Then, starting from the pre-trained early layers and
the outputs of the distortion type identification network, a qual-
ity prediction network is trained subsequently. The proposed
DB-CNN takes a step further by taking not only distortion type
but also distortion level information into account, which results
in better quality-aware initializations. It is worth noting that the
aforementioned three methods [11], [17], [26] only partially
address the training data shortage problem in the synthetic
distortion scenario. Extending them to account for authentic
distortions is difficult.

III. DB-CNN FOR BIQA

In this section, we first describe the construction of the
pre-training set and the architecture of the CNN for syn-
thetically distorted images. We then present the tailored
VGG-16 network for authentically distorted images. Finally,
we introduce our bilinear pooling module along with the
fine-tuning procedure.

A. CNN for Synthetic Distortions

To address the enormous content variations in real world
images, we start with two large-scale databases, i.e., Water-
loo Exploration Database [19] and PASCAL VOC 2012 [21].
Waterloo Exploration Database contains 4, 744 pristine images
covering various image content. It also provides source code to
synthesize four common distortions, i.e., JPEG compression,
JPEG2000 compression, Gaussian blur and while Gaussian
noise at five degradation levels from the pristine images.
PASCAL VOC 2012 is a large database for object recogni-
tion, detection and semantic segmentation. It contains 17, 125
images of acceptable quality covering 20 semantic classes.
We merge the two databases to a total of 21, 869 source
images. In addition to the four common distortion types men-
tioned above, we add five more — pink noise, contrast stretch-
ing, image quantization with color dithering, over-exposure,
and under-exposure. Since some source images (especially in
PASCAL VOC 2012) may not have perfect quality, we only
include synthesized distorted images in the pre-training set and
make sure that the added distortions dominate the perceived
quality. Following [19], we synthesize distorted images with
five degradation levels except for over-exposure and under-
exposure, for which only two levels are generated [32]. Sam-
ple distorted images are shown in Fig. 1 and the degradation
levels of the five new distortion types are shown in Fig. 2.
In summary, the pre-training set contains 852, 891 distorted
images.

Due to the scale of the pre-training set, it is far from
realistic to carry out a full subjective test to obtain a MOS
for each image. We resolve this problem by taking advantage
of the distortion type and level information used in the
synthesis process, and pre-train the network to classify the
distortion type and meanwhile identify the degradation level.
Compared to previous methods that only exploit distortion type
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Fig. 1. Sample distorted images synthesized from a reference image in the Waterloo Exploration Database [19]. (a) Gaussian blur. (b) White Gaussian noise.
(c) JPEG compression. (d) JPEG2000 compression. (e) Pink noise. (f) Contrast stretching. (g) Image color quantization with dithering. (h) Over-exposure.
(i) Under-exposure.

information [11], [18], [20], our pre-training strategy offers
better initializations, leading to better local optimum (shown
in Section IV-B.5). Specifically, we form the ground truth label
for pre-training as a 39-class indicator vector with only one
entry activated to encode the underlying distortion type at the
specific distortion level. The dimension of the ground truth
vector comes from the fact that there are seven distortion types
with five levels and two distortion types with two levels.

Inspired by the simple architecture design of VGG-16
network [23], we design our CNN for synthetic distortions
(S-CNN) with a similar philosophy subject to some modifica-
tions. The network architecture is detailed in Fig. 3. In a nut-
shell, the size of the input RGB image is cropped to 224×224.
All convolutions have a kernel size of 3 × 3. Zero padding is
adopted to keep the resolution of feature activations. We adopt
rectified linear unit (ReLU) as the nonlinear activation func-
tion since it delivers reliable performance in many computer
vision applications [23], [33]. Although generalized divisive
normalization (GDN) demonstrates promising performance in
MEON [11] with lower depths and fewer parameters, consid-
ering that our S-CNN is a deeper network with more parame-
ters, we opt to use ReLU for its simplicity and effectiveness
in accelerating the training of deep neural networks [34].
Spatial max-pooling is replaced by the strided convolution

with a step of two such that the spatial resolution is reduced
by half in both directions. The feature activations at the last
convolutional layer are averaged into a single feature vector
followed by fully connected layers. All model parameters are
collectively denoted by W. The softmax function and the cross
entropy loss are considered here for training. Specially, given
N training data tuples {(X(1), p(1)), ..., (X(N), p(N))}, where
X(i) denotes the i -th raw input RGB image and p(i) is the
ground-truth multi-class indicator vector. By denoting the i -th
activation value of the last fully connected layer of the k-th
input image as y(k)

i , the softmax function is defined as

p̂(k)
i (X(k); W) =

exp
(

y(k)
i (X(k); W)

)
∑39

j=1 exp
(

y(k)
j (X(k); W)

) , (1)

where p̂(k) = [ p̂(k)
1 , · · · , p̂(k)

39 ]T is a 39-dimensional probabil-
ity vector of the k-th input in a mini-batch, which indicates the
probability of each distortion type at the specific degradation
level. The empirical cross entropy loss is computed by

�s({X(k)}; W) = −
N∑

k=1

39∑
i=1

p(k)
i log p̂(k)

i (X(k); W) . (2)
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Fig. 2. Illustration of the five new distortion types with increasing degradation levels from left to right. (a)-(e) Contrast stretching. (f)-(j) Pink noise.
(k)-(o) Image color quantization with dithering. (p)-(q) Over-exposure. (r)-(s) Under-exposure.

Fig. 3. The architecture of S-CNN for synthetic distortions. We follow the style and convention in [2], and denote the parameterization of the convolutional
layer as “height × width | input channel × output channel | stride | padding”. For brevity, we ignore all ReLU layers here.

B. CNN for Authentic Distortions

Unlike training S-CNN for synthetic distortions, where
special strategies (such as the one used in Section III-A)
may be employed to produce a large amount of training data,
it is difficult to obtain sufficient ground truth data to train a
CNN for authentic distortions from scratch, on the other hand,
limited number of labeled training data often leads to overfit-
ting problem. Here we opt to a CNN, namely VGG-16 [23]
that has been pre-trained for the image classification task on
ImageNet [12], to extract relevant features for authentically
distorted image. The hypothesis is that the VGG-16 feature
representations can adapt to authentic distortions because the

distortions in ImageNet occur as a natural consequence of pho-
tography rather than simulations. As a result, features trained
from such a data set are likely to improve the classification
performance [13].

C. DB-CNN by Bilinear Pooling

We consider bilinear techniques to combine S-CNN for
synthetic distortions and VGG-16 for authentic distortions
into a single model. Bilinear models have been shown to
be effective in modeling two-factor variations, such as style
and content of images [35], location and appearance for
fine-grained recognition [24], temporal and spatial aspects for
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Fig. 4. The structure of the proposed DB-CNN.

video analysis [36], text and visual features for question-
answering [37], and flow and image features for action
recognition [38]. Here we tackle the BIQA problem with
a similar philosophy, where synthetic and authentic distor-
tions are modeled as the two-factor variations, resulting in
a DB-CNN model.

The structure of DB-CNN is presented in Fig. 4. We tailor
the pre-trained S-CNN and VGG-16 by discarding all layers
after the last convolution. Given an input image X and its
activations of the last convolutional layers of the two streams,
Y1 and Y2 are with size of h1 × w1 × d1 and h2 × w2 × d2,
respectively. The bilinear pooling of Y1 and Y2 requires
h1×w1 = h2×w2, which holds in our case for an input image
of arbitrary size because S-CNN and VGG-16 share the same
padding and downsampling routines. We use VGG-16 mainly
due to the fact that the design of S-CNN is inspired by
VGGNet for its conciseness and effectiveness, which brings
convenience to hold h1 × w1 = h2 × w2 as required by
the intrinsic characteristic of bilinear pooling. Other CNNs
such as ResNet [39] may also be adopted in our framework if
the structure of S-CNN is adjusted appropriately. The bilinear
pooling of Y1 and Y2 is formulated as

B = YT
1 Y2, (3)

where the outer product B is of dimension d1 × d2.
Bilinear representation is usually mapped from Riemannian

manifold into an Euclidean space [40] using signed square
root and �2 normalization [41]:

B̃ = sign(B) � √|B|
‖sign(B) � √|B|‖2

, (4)

where � refers to element-wise multiplication. B̃ is fed to a
fully connected layer for quality prediction, which produces an
overall quality score. We consider the �2 norm as the empirical
loss, which is widely used in previous works [10], [13], [26]
to fine-tune the whole DB-CNN on a target IQA database

� = 1

N

N∑
i=1

‖si − ŝi‖2, (5)

where si is the ground truth subjective quality score of the i -th
image in a mini-batch and ŝi is the predicted quality score by
the proposed DB-CNN.

According to the chain rule, the backward propagation of
the loss � through the bilinear pooling layer to Y1 and Y2 can
be computed by

∂�

∂Y1
= Y2

(
∂�

∂B

)T

(6)

and
∂�

∂Y2
= Y1

(
∂�

∂B

)
. (7)

It is worth noting that bilinear pooling is a global strategy
and therefore DB-CNN accepts an input image of arbitrary
size. As a result, we can directly feed the whole image instead
of patches cropped from it into DB-CNN during both training
and testing.

IV. EXPERIMENTS

In this section, we first describe the experimental setups,
including IQA databases, evaluation protocols, performance
criteria, and implementation details of DB-CNN. After that,
we compare the performance of DB-CNN with state-of-the-
art BIQA models on individual databases and cross databases.
We also test the robustness of DB-CNN on the Waterloo
Exploration Database using discriminability and rating con-
sistency testing criteria. Finally, we conduct several critical
ablation experiments to justify the rationality of DB-CNN.

A. Experimental Setups

1) IQA Databases: The main experiments are conducted on
three legacy singly synthetic IQA databases, i.e., LIVE [15],
CSIQ [42] and TID2013 [16] along with a multiply distorted
synthetic dataset LIVE MD [43] and the authentic LIVE Chal-
lenge database [14]. LIVE [15] contains 779 distorted images
synthesized from 29 reference images covering five distortion
types—JPEG compression (JPEG), JPEG2000 compression
(JP2K), Gaussian blur (GB), white Gaussian noise (WN) and
fast fading error (FF) at seven to eight degradation levels.
Difference MOS (DMOS) is collected with a higher value
indicating lower perceptual quality, roughly in the range
[0, 100]. CSIQ [42] is composed of 866 distorted images
generated from 30 reference images, including six distortion
types, i.e., JPEG, JP2K, GB, WN, contrast change (CG), and
pink noise (PN) at three to five degradation levels. DMOS in
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TABLE I

AVERAGE SRCC AND PLCC RESULTS ACROSS TEN SESSIONS. THE TOP
TWO RESULTS ARE HIGHLIGHTED IN BOLDFACE

the range [0, 1] is provided as the ground truth. TID2013 [16]
consists of 3, 000 distorted images from 25 reference images
with 24 distortion types at five degradation levels. MOS in
the range [0, 9] is provided to indicate the perceptual quality.
LIVE MD [43] contains 450 images generated from 15 source
images with corruption under two multiple distortion scenar-
ios, i.e., blur followed by JPEG compression and blur followed
by white Gaussian noise. DMOS in the range[0, 100] is
provided as the subjective quality score for each image. LIVE
Challenge [14] is an authentic IQA database, which contains
1, 162 images captured from diverse real-world scenes by
numerous photographers with various levels of photography
skills using different camera devices, and hence undergo
complex realistic distortions. MOS in the range [0, 100] is
collected from over 8, 100 unique human evaluators via an
online crowdsourcing platform.

2) Experimental Protocols and Performance Criteria:
We conduct experiments by following the same protocol
in [13]. Specifically, for synthetic databases LIVE, CSIQ,
TID2013 and LIVE MD, distorted images are divided into
two splits, 80% of which are used for fine-tuning the
DB-CNN and the rest 20% for testing. The splitting is
conducted according to source images to guarantee the
independence of image content. For the authentic LIVE
Challenge database, we directly divide all images into two
splits with the 80%-20% train-test ratio. The training and
testing procedures are randomly repeated ten times on all
databases.

We adopt two commonly used metrics to benchmark the
models: Spearman rank order correlation coefficient (SRCC)
and Pearson linear correlation coefficient (PLCC). SRCC
measures the prediction monotonicity and PLCC measures
prediction precision. As suggested in [44], the predicted qual-
ity scores are passed through a nonlinear logistic mapping

TABLE II

AVERAGE SRCC AND PLCC RESULTS OF INDIVIDUAL DISTORTION
TYPES ACROSS TEN SESSIONS ON LIVE [15]

TABLE III

AVERAGE SRCC AND PLCC RESULTS OF INDIVIDUAL DISTORTION
TYPES ACROSS TEN SESSIONS ON CSIQ [42]

function before computing PLCC:

s̃ = β1

(
1

2
− 1

exp(β2(ŝ − β3))

)
+ β4ŝ + β5, (8)

where {βi ; i = 1, 2, 3, 4, 5} are regression parameters to be
fitted. SRCC and PLCC results from the ten sessions are
reported.

3) Implementation Details: All parameters of S-CNN are
initialized with the method introduced in [33] and trained
from scratch using the Adam optimization algorithm [45] with
a mini-batch of 64. We run 30 epoches with a learning
rate decaying logarithmically in the interval [10−3, 10−5].
Batch normalization [46] is used to assure the stability during
training. Images are scaled to 256×256×3 and we randomly
crop 224 × 224 × 3 patches as inputs.

During fine-tuning of DB-CNN, we again adopt Adam [45]
with a learning rate of 10−6 for LIVE [15] and CSIQ [42],
10−5 for TID2013 [16], LIVE MD [43] and LIVE
Challenge [14], respectively. The mini-batch size is set
to eight. We feed images of original size to DB-CNN during
both fine-tuning and testing phases.
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TABLE IV

AVERAGE SRCC RESULTS OF INDIVIDUAL DISTORTION TYPES ACROSS TEN SESSIONS ON TID2013 [16]. WE OBTAIN SIMILAR RESULTS
USING PLCC AS THE PERFORMANCE METRIC

DB-CNN is implemented using the MatConvNet tool-
box [47] and will be made publicly available at github.com/
zwx8981/BIQA_project.

B. Experimental Results

1) Performance on Individual Databases: We compare the
proposed model against several state-of-the-art BIQA meth-
ods: BRISQUE [7], M3 [48], FRIQUEE [22], CORNIA [8],
HOSA [49], and dipIQ [27], whose source codes are provided
by the respective authors. We re-train and/or validate using
the same randomly generated training-testing splits. For deep
learning-based counterparts, we directly report the perfor-
mance in the corresponding papers due to the unavailability
of the training codes. SRCC and PLCC results on the five
databases are listed in Table I, from which we obtain several
interesting observations. First, while all competing models
achieve comparable performance on LIVE [15], their perfor-
mance on CSIQ [42] and TID2013 [16] are rather diverse.
Compared with classical domain knowledge-based models,
CNN-based models deliver better performance on CSIQ and
TID2013, which we believe arises from the end-to-end feature
learning in replacement of hand-crafted feature engineering.
Second, as for the multiply distorted image dataset LIVE
MD, DB-CNN also delivers better performance against other
methods although it does not incorporate any multiply syn-
thetically distorted image in the pre-training set. This suggests
that DB-CNN generalizes well to slightly different distortion
scenarios. Last, as for the authentic database LIVE Challenge,
FRIQUEE [22] that combines a set of quality-aware features
extracted from multiple color spaces outperforms other clas-
sical BIQA models and all CNN-based models except for
ResNet-ft [13] and the proposed DB-CNN. It manifests that
the intrinsic characteristics of authentic distortions cannot be

fully captured by low-level features learned from synthetically
distorted images. The success of DB-CNN on LIVE Challenge
verifies the effectiveness of employing more relevant features
from VGG-16 to measure the severity of authentic distortions.
In summary, the proposed DB-CNN model achieves state-
of-the-art performance on both synthetic and authentic IQA
databases.

2) Performance on Individual Distortion Types: To take
a closer look at the behaviors of DB-CNN on individual
distortion types along with several competing BIQA models,
we train models using images with all kinds of distortion types
and test them on a specific distortion type. Table II, III, and IV
show the results on LIVE [15], CSIQ [42], and TID2013 [16],
respectively, where we can observe that DB-CNN is among
the top two performing models 34 out of 46 times, showing a
significant advantage. Specifically, on LIVE, DB-CNN does
not perform well on FF, which we believe is caused by
its absence during the construction of the pre-training set.
As for CSIQ, DB-CNN outperforms other counterparts by a
large margin especially on pink noise and contrast change,
which validates the effectiveness of pre-training S-CNN,
a stream of DB-CNN. On the most challenging synthetic
database TID2013, all BIQA models fail to deliver satisfactory
performance on three distortion types, i.e., non-eccentricity
pattern noise, local block-wise distortions, and mean shift.
DB-CNN performs relatively better on contrast change, which
is consistent with the results on CSIQ and change of color
saturation, which is attributed to its feature extraction from
color images. Although we do not synthesize as many dis-
tortion types as in TID2013, an interesting finding is that
DB-CNN still performs well on distortion types with similar
artifacts that have been contained in our pre-training set. To be
specific, as shown in Fig. 5, grainy noise ubiquitously exists
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Fig. 5. Images with different distortion types may share similar distorted appearances. (a) Additive Gaussian noise. (b) Additive noise in color components.
(c) High frequency noise. (d) Gaussian blur. (e) Image denoising. (f) Sparse sampling and reconstruction. (i) Image color quantization with dither.
(j) Quantization noise.

in images distorted by additive Gaussian noise, additive noise
in color components, and high frequency noise; Gaussian
blur, image denoising, and sparse sampling and reconstruction
mainly introduce blur; image color quantization with dither
and quantization noise also share similar appearances. Trained
by synthesized images with distortions of additive Gaussian
noise, Gaussian blur, and image color quantization with dither,
DB-CNN well generalizes to unseen distortions with similar
perceived artifacts.

3) Performance Across Different Databases: Robust BIQA
models are expected to not only perform well on the
training database, but also generalize well to other IQA
databases. In this subsection, we conduct cross database val-
idations to compare the generalizability of DB-CNN against
BRISQUE [7], M3 [48], FRIQUEE [22], CORNIA [8], and
HOSA [49]. The results of CNN-based counterparts are
reported if available from the original papers. All experiments
are conducted by training models on one entire database and
test them on the other databases. SRCC results are reported

in Table V. It is expected that models trained on LIVE are
much easier to generalize to CSIQ and vice versa than other
cross database pairs. As for training on TID2013 and testing
on the other two synthetic databases, the proposed DB-CNN
performs superior to other models. Unfortunately, it is evident
that models trained on synthetic databases are difficult to
generalize to the LIVE Challenge authentic database or vice
versa. This shows different intrinsic characteristics between
synthetic and authentic distortions. Despite this, DB-CNN still
achieves higher prediction accuracies than all other models
under such a challenging experimental setup, which justifies
the effectiveness of the proposed method.

4) Results on the Waterloo Exploration Database: Although
SRCC and PLCC have been widely used as the performance
criteria in IQA research, they cannot be applied to arbitrarily
large-scale databases due to the absence of ground truth MOS
labels of all images. Three testing criteria are introduced
along with the large-scale Waterloo Exploration Database
in [19], i.e., Pristine/Distorted Image Discriminability Test
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Fig. 6. gMAD competition results between DB-CNN and deepIQA [26]. (a) Fixed deepIQA at the low-quality level. (b) Fixed deepIQA at the high-quality
level. (c) Fixed DB-CNN at the low-quality level. (d) Fixed DB-CNN at the high-quality level.

TABLE V

SRCC RESULTS IN A CROSS DATABASE SETTING

(D-Test), Listwise Ranking Consistency Test (L-Test), and
Pairwise Preference Consistency Test (P-Test), which measure
the ability of BIQA models in discriminating distorted from
pristine images, rating images with the same content and
the same distortion type but different degradation levels in
a consistent rank, and predicting concordance with pairs of
images whose quality is clearly discriminable, respectively.
More details of these criteria can be found in [19]. Here we
examine the robustness of the proposed DB-CNN model using
these criteria on the Waterloo Exploration Database. We first
retrain the S-CNN stream using distorted images generated
from PASCAL VOC 2012 only to ensure the independence
of image content between training and testing. Experimental
results are tabulated in Table VI, where we observe that
DB-CNN achieves the best two results in D-Test and P-Test,
and is competitive in L-Test.

We also conduct gMAD competition games [25] on Water-
loo Exploration Database [19]. Evaluating in a large-scale
dataset is more credible in real-world application to overcome
the contradiction between the high-dimensional inner charac-
teristic of digital images and the extremely limited sample
space of traditional IQA datasets, which only contain at most a
few thousands images covering very limited content variations.
gMAD competition is a preferable way to evaluate an IQA
model since it can automatically and most efficiently select
the optimal test image pairs from a large-scale image dataset
such as Waterloo Exploration Database [19] and let the model
competes against other opponents. gMAD extends the idea
of MAximum Differentiation (MAD) competition [50] that
one counter-example is sufficient to disprove a model by
allowing a group of models for competition and by finding
the optimal stimuli in a large database [25]. Image pairs
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Fig. 7. gMAD competition results between DB-CNN and MEON [11]. (a) Fixed MEON at the low-quality level. (b) Fixed MEON at the high-quality level.
(c) Fixed DB-CNN at the low-quality level. (d) Fixed DB-CNN at the high-quality level.

TABLE VI

RESULTS ON THE WATERLOO EXPLORATION DATABASE [19]

are automatically generated by searching for the maximum
quality difference by an aggressive model (attacker), while
keeping predictions of another resistant model (defender).
To be specific, DB-CNN first plays the role of attacker while
deepIQA [26] a defender. Then the procedure is repeated with
the roles of two models exchanged. As shown in Fig. 6 (a)-(d),
deepIQA [26] considers pairs (a) and (b) of the same quality
at low- and high-quality level respectively, which are obvi-
ously not in agreement with the perceptual quality. On the
contrary, DB-CNN predicts much better quality of top images
in pairs (a) and (b), which is closer to human subjective
opinions. As for (c) and (d), with the roles exchanged,
deepIQA [26] fails to falsify DB-CNN, which shows a better
resistance of DB-CNN. We then let DB-CNN fights against
MEON [11], pairs of which are shown in Fig. 7 (a)-(d).
We can observe from (a) and (c) that both DB-CNN and
MEON are able to fail each other at low-quality level by
finding strong counter-examples. Specifically, DB-CNN fails
to disprove MEON [11] in (a), which reveal its weakness in
BLUR and conversely, MEON [11] does not handle JP2K well
enough, which leads to the successful defend of DB-CNN
in pair (c). As for high quality pair of (b), DB-CNN fails
MEON [11] by finding the bottom image of (b) to have
apparently lower quality than the top one. On the other hand,
DB-CNN also successfully defends attack from MEON [11]

TABLE VII

AVERAGE SRCC RESULTS OF ABLATION EXPERIMENTS ACROSS TEN

SESSIONS. “SCRATCH” MEANS DB-CNN IS TRAINED FROM SCRATCH
WITH RANDOM INITIALIZATIONS. “DISTYPE” MEANS THE S-CNN

STREAM IS PRE-TRAINED TO CLASSIFY DISTORTION TYPES

ONLY, IGNORING THE DISTORTION LEVEL INFORMATION

in pair (d), which has two images with similar perceptual
quality.

5) Ablation Experiments: In order to evaluate the design
rationality of DB-CNN, we conduct several ablation exper-
iments with setups and protocols following Section IV-A.
We first work with a baseline version, where only one stream
(either S-CNN and VGG-16) is included. The bilinear pooling
is kept, which turns out to be the outer-product of the activa-
tions of the last convolutional layer with themselves. We then
replace the bilinear pooling module with a simple feature
concatenation and ensure that the number of parameters of the
subsequent fully connected layer is approximately the same
as in DB-CNN. From Table VII, we observe that S-CNN
and VGG-16 can only deliver promising performance on
synthetic and authentic databases, respectively. By contrast,
DB-CNN is capable of simultaneously handling synthetic and
authentic distortions. We also train two DB-CNN models,
one from scratch and the other using the distortion type
information only during pre-training S-CNN, to validate the
necessity of pre-trained stages. From the table, we observe
that with more meaningful initializations, DB-CNN achieves
better performance.
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V. CONCLUSION

We propose a deep bilinear CNN-based BIQA model
for both synthetic and authentic distortions by conceptually
modeling them as two-factor variations followed by bilinear
pooling. DB-CNN demonstrates state-of-the-art performance
on both synthetic and authentic IQA databases, which we
believe arises from the two-steam architecture for variation
modeling, pre-training for better initializations, and bilinear
pooling for meaningful feature blending. In addition, through
validations across different databases, experiments on the
Waterloo Exploration Database, and results from the gMAD
competition, we have shown the scalability, generalizability,
and robustness of the proposed DB-CNN model.

DB-CNN is versatile and extensible. For example, more
distortion types and levels can be added into the pre-training
set; more sophisticated designs of S-CNN and more powerful
CNNs such as ResNet [39] can be utilized. One may also
improve DB-CNN by considering other variants of bilinear
pooling [51].

The current work deals with synthetic and authentic distor-
tions separately by fine-tuning DB-CNN on either synthetic or
authentic databases. How to extend DB-CNN toward a more
unified BIQA model, especially in the early feature extraction
stage, is an interesting direction yet to be explored.
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