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Abstract—We propose a rate-distortion optimization (RDO)
scheme based on the structural similarity (SSIM) index, which
was found to be a better indicator of perceived image quality
than mean-squared error, but has not been fully exploited in
the context of image and video coding. At the frame level,
an adaptive Lagrange multiplier selection method is proposed
based on a novel reduced-reference statistical SSIM estimation
algorithm and a rate model that combines the side information
with the entropy of the transformed residuals. At the macroblock
level, the Lagrange multiplier is further adjusted based on an
information theoretical approach that takes into account both the
motion information content and perceptual uncertainty of visual
speed perception. Finally, the mode for H.264/AVC coding is
selected by the SSIM index and the adjusted Lagrange multiplier.
Extensive experiments show that the proposed scheme can
achieve significantly better rate-SSIM performance and provide
better visual quality than conventional RDO coding schemes.

Index Terms—H.264/AVC coding, Lagrange multiplier,
rate-distortion optimization, reduced-reference image quality
assessment, structural similarity (SSIM) index.

I. Introduction

V IDEO CODECS are primarily characterized in terms of
the throughput of the channel and perceived distortion

of the reconstructed video. The main task of the video codec
is to convey the sequence of images with minimum possible
perceived distortion within available bit rate. Alternatively,
it can be posed as a communication problem of conveying
the sequence with minimum possible rate while maintaining
a specific perceived distortion level. In both versions of the
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problem, the fundamental issue is to obtain the best tradeoff
between the rate and perceived distortion. The process used to
achieve this objective is commonly known as rate-distortion
optimization (RDO), which can be expressed by minimizing
the perceived distortion D with the number of used bits R

subjected to a constraint Rc [1] as follows:

min{D} subject to R ≤ Rc. (1)

This is a typical constrained optimization problem which is
generally solved using two methods: Lagrangian optimization
and dynamic programming. In practice, the computation com-
plexity of dynamic programming is often too high and is used
only when direct Lagrangian optimization is difficult.

Lagrangian optimization technique converts the constrained
optimization problem (1) to an unconstrained optimization
problem [1], which can be expressed as

min{J} where J = D + λ · R (2)

where J is called the rate-distortion (RD) cost and the rate
R is measured in number of bits per pixel. λ is known as
the Lagrange multiplier which controls the tradeoff between
R and D.

Since our knowledge of the human visual system (HVS)
and statistics of natural images remains limited, the perceived
distortion D is difficult to measure. In practice, distortion
models such as sum of absolute difference (SAD) and mean-
squared error (MSE) are used in most actual comparisons [2].
Many RDO algorithms were proposed along this line. The
representative work includes RD-optimized transform [3], RD-
optimized quantization [4], and the dependent joint RDO using
soft decision quantization [5], [6]. However, the distortion
measures such as SAD and MSE are widely criticized for
not correlating well with perceived quality. Recently, a lot of
work has been done to develop objective quality assessment
measures which can accurately reflect the perceived distortion.
The most prominent ones include the structural similarity
(SSIM) index [7], visual information fidelity criterion [8], and
visual signal-to-noise ratio [9]. Among them, SSIM has been
preferred due to its best tradeoff among accuracy, simplicity,
and efficiency [10]. The correlation of SSIM with mean opin-
ion score, obtained using subjective tests, has been repeatedly
proven in the literature. In this paper, we focus on solving
(2), where SSIM is used to define the measure of perceived
distortion and λ is adapted at both frame and macroblock
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(MB) levels by taking the properties of the input sequences
(statistical properties of residuals, structural information, mo-
tion information, etc.) into consideration.

In order to achieve optimal RD performance, it is very
important to carefully choose λ and the best coding mode. To
achieve a good balance between R and D, in the H.264/AVC
[11] coding environment, the Lagrange multiplier is suggested
to be [12] as follows:

λ = 0.85 · 2
QH.264−12

3 (3)

where QH.264 is the quantization parameter (QP). This sug-
gestion was proposed based on empirical results and typical
RD models [1], [13]. It also suggests that λ is a function of
QP only and therefore is independent of the frame properties,
which simplifies the problem but may not result in optimal
λ as some MBs could be more important compared to the
others [14]. This motivated us to adapt λ according to the
video sequences at both frame and MB levels.

In the literature, significant progress has been made to adapt
λ on frame level when MSE is used as the distortion measure.
In [15], Chen et al. developed an adaptive λ estimation
algorithm by modeling the R and D in ρ domain, where ρ is
defined as the percentage of zero coefficients among quantized
transform residuals [16]. In [17], Laplace distribution-based
rate and distortion models were established to derive λ for
each frame dynamically.

Many rate control algorithms such as [18] and [19] showed
that better performance and rate control can be achieved by
modifying λ on MB level than having the same Lagrange
multiplier for all MBs in a frame. In [20] and [21], the authors
claimed that fixing the same Lagrange multiplier for the whole
frame may not be accurate enough to capture the nature of
motion, and therefore a context-adaptive Lagrange multiplier
(CALM) selection scheme was introduced. However, all these
methods ignored the perceptual aspect in the RDO scheme by
adopting SAD/MSE as the measures of perceived distortion.

Recently, a number of video coding methods aiming to
incorporate the properties of the HVS have been proposed.
Yang et al. proposed a just noticeable distortion (JND) model
for motion estimation and residue filtering process in [22]
and [23]. A foveated JND model was employed in [24] for
optimizing the QP and Lagrange multiplier. To incorporate
perceptual information into the MB-based adaptive RDO
scheme, three distortion sensitivity models were built into the
RDO framework in [25]. Pan et al. [26] proposed a content
complexity-based Lagrange multiplier selection scheme for
scalable video coding.

Since SSIM is proven to be more effective in quantifying
the suprathreshold compression artifacts, such as artifacts that
distort the structure of an image [27], it was incorporated into
motion estimation, mode selection, and rate control in hybrid
video coding [28]–[38]. For intra frame coding, new SSIM-
based RDO schemes were proposed in [28]–[30]. In [31]–
[33], the authors developed SSIM-based RDO schemes for
inter frame prediction and mode selection. However, following
the method proposed in [13], the Lagrange multiplier was
determined only by QP values in these schemes. Recently,

content-adaptive Lagrange multiplier selection schemes were
proposed in [34]–[37]. These algorithms employed a rate–
SSIM curve to describe the relationship between SSIM and
rate, which is given by D = ζRε, where ζ and ε are two
fitting parameters which account for the RD characteristics.
Subsequently, the key frames are identified and encoded twice
with MSE-based RDO in the sequences to obtain the best
parameters ζ and ε. However, two-pass encoding of the key
frames will bring more additional complexities to the encoder.
More importantly, this scheme is based on the assumption of
constant RD characteristics in a short time period and uses
a periodic refreshment technique to refresh the parameters,
which may not be accurate in general.

In this paper, we use SSIM as the distortion measure and
propose an adaptive RDO scheme for mode selection. The
three main contributions of our work are as follows.

1) We employ SSIM as the distortion measure in the pro-
posed mode selection scheme, where both the current
MB to be coded and neighboring pixels are taken into
account to fully exploit the properties of SSIM.

2) At the frame level, we present an adaptive Lagrange
multiplier selection scheme based on a novel statistical
reduced-reference (RR) SSIM model and a source-side
information combined rate model.

3) At the MB level, we present a Lagrange multiplier
adjustment scheme, where the scale factor for each MB
is determined by an information theoretical approach
based on the motion information content and perceptual
uncertainty of visual speed perception.

II. SSIM-Based RDO

Analogous to (2), the SSIM motivated RDO problem can
be defined as

min{J} where J = (1 − SSIM) + λ · R. (4)

The spatial domain SSIM index [7] is based on similarities
of local luminance, contrast, and structure between a reference
image and a distorted image. Given two local image patches
x and y, the local SSIM index is defined as

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(5)

where μx, σx, and σxy are the mean, standard deviation, and
cross correlation between the two patches, respectively. C1 and
C2 are used to avoid instability when the means and variances
are close to zero. SSIM index of the whole image is obtained
by averaging the local SSIM indices calculated using a sliding
window.

In the conventional mode selection process, the final coding
mode is determined by the number of entropy coding bits
and the distortion of the residuals, while the properties of
the reference image are ignored. Unlike MSE, the SSIM
index is totally adaptive according to the reference signal
[7]. Therefore, the properties of video sequences can also be
exploited when using SSIM to define the distortion model.

In H.264/AVC, the encoder processes a frame of video
in units of nonoverlapping MBs. However, SSIM index is
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Fig. 1. Illustration of using surrounding pixels to calculate the SSIM index.
Solid pixels: to be encoded. Hollow pixels: surrounding pixels from the input
frame. (a) Y component. (b) Cb and Cr components.

meant to be calculated with the help of overlapping sliding
windows, which are separated by one pixel. To bridge this
gap, we calculate the SSIM index between the reconstructed
MB and the original MB using an extended MB, which
includes the current MB to be coded and the surrounding
pixels, as illustrated in Fig. 1. Within this extended MB, we
use a small sliding window which moves pixel by pixel to
calculate the SSIM index. The size of the sliding window
used to calculate SSIM is set to be 4×4. Therefore, we extend
the MB boundaries for three pixels in each direction. For Y
component, the SSIM index of the current 16×16 MB to be
encoded is calculated within a 22×22 extended MB by using
the sliding window. In case of 4:2:0 format, for Cb and Cr
components the SSIM index is calculated within a 14×14
extended block. Additional benefit of this approach is that
it helps us to alleviate the problem of discontinuities at the
MB boundaries. When the MB is on the frame boundaries,
we ignore the surrounding pixels in the distortion calculation
and only use the MB to be coded for comparison.

Finally, SSIM indices of Y, Cb, and Cr components are
weighted averaged to obtain a single measure of SSIM as
follows:

SSIM = WY · SSIMY + WCb · SSIMCb + WCr · SSIMCr (6)

where WY , WCb, and WCr are the weights of Y, Cb, and Cr
components, respectively, and are defined as WY = 0.8 and
WCb = WCr = 0.1, respectively, [39].

III. Frame Level Lagrange Multiplier Selection

From (4), the Lagrange parameter is obtained by calculating
the derivative of J with respect to R, then setting it to zero,
and finally solving for λ as follows:

dJ

dR
= −dSSIM

dR
+ λ = 0 (7)

which yields

λ =
dSSIM

dR
=

dSSIM
dQ

dR
dQ

(8)

where Q is the quantization step. This implies that, in order
to estimate λ before actually encoding the current frame, we
need to establish accurate SSIM and rate models.

In video coding, the most common models for the distri-
bution of transformed residuals are Laplace distribution [17],
generalized Gaussian distribution (GGD) [40], and Cauchy
distribution [41]. Although GGD is a good statistical model
to describe the discrete cosine transform (DCT) coefficients,
it has more control parameters and closed-form expression
of the distortion model cannot be obtained [40]. For Cauchy
distribution, the mean and variance are not defined, which
makes it inappropriate for this framework [17]. The Laplace
distribution, which is a special case of GGD, does not suffer
from these problems and achieves a good tradeoff between
model fidelity and the complexity. Therefore, we model the
transformed residuals x with the Laplace distribution given by

fLap(x) =
�

2
· e−�·|x| (9)

where � is called the Laplace parameter.

A. RR SSIM Model

SSIM is a full-reference (FR) measure that requires both
the reference and distorted frames to compute. It cannot
be directly applied in this framework because the distorted
frame is not available. Therefore, we develop a RR quality
assessment algorithm which requires a set of RR features
extracted from the reference frame for SSIM estimation. The
RR-SSIM estimation method based on a multiscale multiorien-
tation divisive normalization transform (DNT) is proposed in
[42] and achieves high SSIM estimation accuracy. However, it
cannot be directly employed due to the high computational
complexity of DNT. We use a similar approach here, but
extract features from DCT coefficients instead.

FR DCT domain SSIM index was first presented by
Channappayya et al. [43] as follows:

SSIM(x, y) =

{
1 − (X(0) − Y (0))2

X(0)2 + Y (0)2 + N · C1

}
×⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
1 −

N−1∑
k=1

(X(k) − Y (k))2

N−1∑
k=1

(X(k)2 + Y (k)2) + N · C2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(10)

where X(k) and Y (k) represent the DCT coefficients for the
input signals x and y, respectively. This equation implies that
the SSIM index is represented by the product of two terms,
characterizing the distortions of the DC and AC coefficients,
respectively. Moreover, the squared errors of DC and AC
coefficients are normalized by their respective energy.

To develop the RR-SSIM model, we divide each frame into
nonoverlapping blocks and the size of each block is set to be
4×4. Then DCT transform is performed on each block. In this
way, we can obtain the statistical properties of the reference
signal, which is consistent with the design philosophy of the
SSIM index. Furthermore, we group the DCT coefficients
having the same frequency from each 4 × 4 DCT window
into one subband, which results in 16 subbands. Motivated by
the DCT domain SSIM index, the new RR distortion measure
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Fig. 2. Relationship between SSIM and MRR for different sequences.

is defined as

MRR =

(
1 − D0

2σ2
0 + C1

) (
1 − 1

N − 1

N−1∑
i=1

Di

2σ2
i + C2

)
(11)

where σi is the standard deviation of the ith subband and N

is the block size. Di represents the MSE between the original
and distorted frames in the ith subband, and is calculated as
follows:

Di =

(Q−γQ)∫
−(Q−γQ)

x2
i fLap(xi)dxi +

2
∞∑
n=1

(n+1)Q−γQ∫
nQ−γQ

(xi − nQ)2fLap(xi)dxi (12)

where γ is the rounding offset in the quantization. Fig. 2
presents the relationship between the RR distortion measure
MRR and the corresponding SSIM index for different se-
quences. The QP values in Fig. 2 cover a wide range from
0 to 50 with an interval of 2. The SSIM index and MRR are
calculated by averaging the respective values of individual
frames. Interestingly, MRR exhibits a nearly perfect linear
relationship with SSIM. We regard this as an outcome of the
similarity between their design principles. The clean linear
relationship also helps us to design an SSIM predictor based
on MRR because the remaining job is just to estimate the
slope and intercept of the straight line. More specifically, an
RR-SSIM estimator can be written as

Ŝ = α + β · MRR. (13)

The proposed RR-SSIM model is totally based on the
features extracted from the original frames in the DCT domain
and the residuals. It can be observed from Fig. 2 that the slopes
for different video sequences are different. Thus, before coding
the current frame we should first estimate the parameters α and
β. This requires the knowledge of two points on the straight
line relating Ŝ and MRR. We use (1, 1) as one of the points
as it is always located on the line and also because it does not
require any computation. This solves half of the problem as
we still need Ŝ and MRR of the second point. The SSIM index
Ŝ and Laplace parameter for each subband �i is not available

Fig. 3. Average percentages of header bits and source bits at various QPs.
(a) Foreman (IPP). (b) Foreman (IBP).

since we have not encoded the frame yet. Therefore, we
estimate them from the previous frames of the same type. The
estimation details are provided in Section V. The distortion
measure MRR can be calculated by incorporating (12) into
(11), and the standard deviation of the ith subband σi is calcu-
lated by DCT transform of the original frame. This procedure
provides us with the second point required to find out α and β.

B. Proposed Rate Model

Our rate model is derived based on an entropy model that
excludes the bit rate of the skipped blocks [17] as follows:

H = (1 − Ps) · [−P0 − Ps

1 − Ps

· log2
P0 − Ps

1 − Ps

−2
∞∑
n=1

Pn

1 − Ps

· log2
Pn

1 − Ps

] (14)

where Ps is the probability of the skipped blocks, P0 and Pn

are the probabilities of transformed residuals quantized to the
zeroth and nth quantization levels, respectively, which can be
modeled by the Laplace distribution as follows:

P0 =

(Q−γQ)∫
−(Q−γQ)

fLap(x)dx (15)

Pn =

(n+1)Q−γQ∫
nQ−γQ

fLap(x)dx. (16)

Subsequently, supposing the rate model in [17] to be R∗, a
linear relationship between ln(R∗/H) and � · Q is observed,
where R∗ is based on the assumption of negligible side
information. However, in H.264/AVC, the side information
(or header bits) may take a large portion of the total bit
rate, especially in low bit rate video coding scenario [44], as
illustrated in Fig. 3. Therefore, in our rate model, the side
information is also taken into consideration. Notice that for the
same quantization step, a larger � indicates small residuals,
leading to a larger proportion of the side information. For total
bit rate R, there is also an approximately linear relationship
between ln(R/H) and � · Q, as can be seen in Figs. 4 and 5.
Also, the relationship is totally consistent with the effect of
dependent entropy coding and side information. In high bit
rate video coding scenario, the effect of dependent entropy
coding compensates the side information and ln(R/H)
approaches zero, while for low bit rate ln(R/H) becomes
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Fig. 4. Relationship between ln(R/H) and � · Q for different sequences
[group of picture (GoP) structure: IPP]. (a) CAVLC entropy coding.
(b) CABAC entropy coding.

Fig. 5. Relationship between ln(R/H) and � · Q for B frame of different
sequences. (a) CAVLC entropy coding. (b) CABAC entropy coding.

larger because of the dominating effect of side information,
as illustrated in Figs. 4 and 5.

Fig. 6 shows that the header bits change monotonically with
the source bits. Consequently, the final rate model R can be
approximated by

R = H · eξ�Q+ψ (17)

where ξ and ψ are two parameters to control the relationship
between ln(R/H) and � · Q. It can be observed from Figs. 4
and 5 that the parameters ξ and ψ are not very sensitive to
the video content. Also, for B frames the slope is smaller than
that of the I and P frames. It is mainly due to the fact that in
case of B frames the residuals are relatively smaller, resulting
in a larger value of �. Therefore, for both context-adaptive
variable length coding (CAVLC) and context-adaptive binary
arithmetic coding (CABAC) entropy coding methods, ξ and
ψ, are set empirically to be

ξ =

{
0.03, B frame
0.07, otherwise

ψ =

{ −0.07, B frame
−0.1, otherwise.

(18)

There is one limitation of the proposed rate model. At low
bit rate, the skip mode is selected more often and hence the
source rate of sequences coded at low bit rate is close to zero.
The proposed rate model does not work well in such a situation
because the side information modeling is based on the source
rate. Efficient model of the side information is still an open
problem.

Based on the statistical model of the transformed residuals,
we obtain the final closed-form solutions of the R and D

Fig. 6. Source bits and header bits for each frame at QP=30. (a) Foreman
(IPP). (b) Foreman (IBP).

models. It is observed that the R and D models are functions
of two sets of variables: Q and the other variables that describe
the inherent properties of the video sequences such as �i and
σi. When Q varies within a small range, it can be regarded
as independent of the other variables [17]. Consequently,
before coding the current frame, the frame level Lagrange
multiplier can be determined by incorporating the closed-form
expressions of R and D into (8).

IV. MB Level Lagrange Multiplier Adjustment

Natural video sequence is not just a stack of indepen-
dent still images, it also contains critical motion information
that relates these images. Therefore, the frames in a natural
video cannot be considered independently as far as HVS is
concerned. Perception of motion information between frames
plays an important role toward video quality assessment by
HVS. In the conventional video coding framework, motion
estimation is performed solely for motion compensation pur-
poses in order to reduce the amount of data to be transmit-
ted. Once the residual frame is calculated, all the MBs are
considered equally for bit allocation. This does not conform
with HVS, as perceptual information content is different in
each MB that depends on the motion information content and
perceptual uncertainty in video signals [14]. In [18], the rela-
tionship among the Lagrange multiplier λ, the corresponding
rate R, and the distortion D was analyzed. A larger λ results
in a higher D and a lower R and vice versa, which implies
that we can influence the rate and perceptual distortion of each
MB by adjusting its Lagrange multiplier. This motivated us to
assign more bits to the MBs which are more important as far
as perceptual information content is concerned. Lagrange mul-
tiplier is adjusted with the help of a spatiotemporal weighting
factor, η, which increases with the information content and
decreases with the perceptual uncertainty.

We employ the scheme proposed in [14] which uses an
information communication framework to model the visual
perception. We define the relative motion vector, vr, as the
difference between the absolute motion vector, va, and global
background motion vector vg: vr = va − vg.

In [45], the visual judgment of the speed of motion is
modeled by combining some prior knowledge of the visual
world and the current noisy measurements. Based on this
approach, the motion information content is estimated by the
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Fig. 7. Illustration of the parameters � and ωavg for each frame. (a) Laplace
distribution parameter � for each frame in Bus (IPP) and Mobile (IBP) with
CIF format. (b) Average weight ωavg for each frame in Bus (IPP) and Mobile
(IBP) with CIF format.

self-information of the relative motion I = ϕ log vr+ν, where ϕ,
ν are the parameters of power-law function for the distribution
of relative motion and are determined based on psychophysical
study conducted in [45].

The perceptual uncertainty is estimated by the entropy of the
likelihood function of the noisy measurement, which is given
by U = log vg − τ log c + δ, where τ and δ are the parameters
of the log-normal distribution, used to determine percep-
tual uncertainty, determined based on psychophysical study
[45]. The spatiotemporal importance weight function is given
by

ω = I − U = ϕ log vr + ν − {log vg − τ log c + δ}. (19)

The contrast measure c can be derived by [14]

c = 1 − e−(c′/φ)κ (20)

c′ =
σp

μp + μ0
(21)

where σp and μp are computed within the MB, representing
the standard deviation and the mean, respectively. κ and
φ are constants that control the slope and the position of
the functions, respectively, [14], and are used to take into
account the contrast response saturation effect at small and
large contrast values. μ0 is a constant to avoid instability
near 0.

The global motion does not influence the perceptual weight
of each MB, thus the weight for each MB is defined as
follows:

ω = log

(
1 +

vr

v0

)
+ log

(
1 +

c

c0

)
(22)

where v0 and c0 are constants used to avoid unstable evaluation
of the weight function when the relative motion vr and the
local contrast c may be close to zero. Note that this weight
function increases monotonically with the relative motion and
the local contrast, which is in line with the philosophy of
visual attention. Consequently, the MBs with higher weights
should be allocated more bits and vice versa. This motivated
us to adjust the Lagrange multiplier by

λ′ = η · λ. (23)

To determine the adjustment factor η for every MB, we
calculate the weight based on the local information, then η is

Algorithm 1: Summary of the proposed RDO (GoP struc-
ture: IPP)

begin
Calculate λi for the ith frame switch the value of i

do
case 0, 1, 2, 3

λi ← λHR

end
otherwise

1) DCT transform of the input frame.

2) λi ←
{

λHR, H = 0
dSSIM

dQ
dR
dQ

, otherwise.

end
end

end
begin

For each MB in the frame

1) Calculate the scale factor at MB level η.
2) Adjust the Lagrange multiplier:

λ′
i ← η · λi.

3) Calculate the RD cost for each Mode k:

Jk ← 1 − SSIMk + λ′
i · Rk.

4) Select the Mode j with minimal RD cost.
5) Encode the MB with Mode j.

end
begin

Update �i, Ŝ, �, ωavg, and vg.
end

determined in a similar manner as in [19]

η =
(ωavg

ω

)ε

. (24)

The parameter ωavg represents the average weight of the
current frame and ε is set to be 0.25 as in [19]. Following
[14], we set v0=0.32 and c0=0.70.

V. Implementation Issues

The Lagrange parameter should be determined before cod-
ing the current frame in order to perform RDO. However, the
parameters �i,Ŝ, �, ωavg, and vg can only be calculated after
coding the current frame. As shown in Fig. 7, the parameters
of the frames with the same coding type varies smoothly
even for sequences of high motion. This is due to the fact
that the inherent properties of the input sequences can be
considered unchanged during a short period of time. Therefore,
we estimate them by averaging their three previous values
from the frames coded in the same manner, that is

�̂
j
i =

1

3

3∑
n=1

�
j−n
i (25)

where the j indicates the frame number. The global motion
vector, vg, is derived using maximum likelihood estimation
which finds the peak of the motion vector histogram [46].
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To encode the first few frames, the adaptive Lagrange
multiplier selection method is not used since it is difficult to
estimate �i, Ŝ, �, ωavg, and vg. Motivated by the high rate
λ selection method [1], [13], we derive a Lagrange multiplier
based on the high bit rate assumption for such a situation.

With the high rate assumption, the SSIM index in the DCT
domain can be approximated by [47]

E[SSIM(x, y)]

≈ {1 − E[X(0) − Y (0)]2 × E[
1

2X(0)2 + N · C1
]}

×{1 − E[
N−1∑
k=1

(X(k) − Y (k))2]

×E[
1

2
N−1∑
k=1

X(k)2 + N · C2

]} (26)

where E denotes the mathematical expectation operator. Fur-
thermore, in (27), we use Ddc, Dac, Edc, Eac to simplify this
equation and the expectation of SSIM index can be rewritten
as

Ddc = E[X(0) − Y (0)]2

Edc = E[
1

2X(0)2 + N · C1
]

Dac = E[
N−1∑
k=1

(X(k) − Y (k))2]

Eac = E[
1

2
N−1∑
k=1

X(k)2 + N · C2] (27)

E[SSIM(x, y)] = (1 − Edc × Ddc) × (1 − Eac × Dac). (28)

If the high rate assumption is valid, the source probability
distribution can be approximated as uniform distribution and
the MSE can be modeled by [48]

D = s · Q2. (29)

The Lagrange multiplier based on the high rate assumption
rate and MSE models is then given by [13]

λ̂HR = −dD

dR
= c · Q2 (30)

where c is a constant. Therefore, the general form of λHR for
SSIM-based RDO can be derived by calculating the derivative
of SSIM with respect to R (8), which leads to

λHR =
d(Eac · Edc · Dac · Ddc)

dR
− d(Edc · Ddc)

dR
− d(Eac · Dac)

dR
.

(31)
Although Eac and Edc are based on the properties of the
frames, to provide a constant solution for SSIM-based RDO
in the first few frames, we derive a general solution for them.
Considering (29)–(31), the constant Lagrange multiplier for
SSIM-based RDO can be expressed by

λHR = a · Q2 − b · Q4. (32)

The values for a and b are determined empirically by
experimenting with SSIM and the rate models as follows:

a =

{
2.1 × 10−4, B frame
7 × 10−5, otherwise

(33)

b =

{
1.5 × 10−9, B frame
5 × 10−10, otherwise.

(34)

In our rate model (17), the modeling of side information
is totally based on the source rate. In the extreme case, e.g.,
when the source rate is zero, this rate model will fail because
the header bit cannot be zero in the real video coding scenario.
Therefore, we propose an escape method to keep a reasonable
performance, where the Lagrange multiplier is given by

λ =

{
λHR, H = 0
dSSIM

dQ
dR
dQ

, otherwise.
(35)

We summarize the whole process of proposed RDO scheme
for IPP coding structure in Algorithm 1. Similar process
applies to IBP as well. It can be observed that the complexities
introduced by the proposed method are only moderate. The
additional computations are the DCT transform of the original
frame, the calculation of the parameters (�i, Ŝ, �, ωavg, and
vg) and the calculation of SSIM for each mode.

VI. Validations

To validate the accuracy and efficiency of the proposed
perceptual RDO scheme, we integrate our mode selection
scheme into the H.264/AVC reference software JM15.1 [49].
All test video sequences are in YCbCr 4:2:0 format. In this
section, we present the results of three experiments which are
used to validate various aspects of the proposed perceptual
RDO algorithm. In the first experiment, we verify the proposed
RR-SSIM model by comparing estimated SSIM values with
actual SSIM values. In the second experiment, the performance
of the proposed perceptual RDO algorithm is evaluated and
compared with that of the conventional RDO scheme. In the
third experiment, we compare the proposed method with state-
of-the-art SSIM and MSE-based RDO schemes.

A. Comparison Between Estimated and Actual SSIM

In this section, we compare the estimated (RR) and actual
(FR) values of the SSIM index for different sequences with a
set of various QP values. The first frame is I-frame while
all the rest are inter-coded frames. Equation (13) suggests
that we first need to calculate the parameters α and β which
vary across different video content. Thus, for each frame, we
calculate the slope with the help of two points. (Ŝ, MRR) and
(1, 1), where the point (Ŝ, MRR) is obtained by setting QP=40,
the middle point among the quantization steps used for testing
the proposed scheme. Once α and β are determined, we can
use (13) to estimate SSIM for other QP values. Fig. 8 plots
the estimated and actual values of the SSIM index for various
values of QP. It is observed that the proposed SSIM model is
robust and accurate for different video contents with different
resolutions. Moreover, we have also calculated the Pearson
linear correlation coefficient (PLCC) and mean absolute error
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Fig. 8. Comparison of the actual FR-SSIM and estimated RR-SSIM values.
(a) Foreman at CIF (IPP). (b) Mobile at CIF (IBP). (c) Highway at QCIF
(IPP). (d) Akiyo at QCIF (IBP).

TABLE I

MAE and PLCC Between FR-SSIM and RR-SSIM Estimation for

Different Sequences

Sequences GoP Structure PLCC MAE
Foreman (CIF) IPP 0.999 0.002
News (CIF) IPP 0.999 0.002
Mobile (CIF) IBP 0.999 0.004
Paris (CIF) IBP 0.999 0.003
Highway (QCIF) IPP 0.998 0.003
Suize (QCIF) IPP 0.998 0.004
Carphone (QCIF) IBP 0.997 0.006
Akiyo (QCIF) IBP 0.998 0.005
City (720P) IPP 0.994 0.015
Crew (720P) IBP 0.997 0.009

All 0.996 0.005

(MAE) between FR-SSIM and RR-SSIM which are given in
Table I for ten different sequences. The values suggest that the
proposed RR-SSIM model achieves high accuracy for different
sequences.

B. Performance Evaluation of the Proposed Algorithms

We compare the RD performance of our proposed percep-
tual RDO algorithm and the conventional RDO with distortion
measured in terms of SSIM, weighted SSIM, and peak signal-
to-noise ratio (PSNR). The three quantities for the whole video
sequence are obtained by simply averaging the respective
values of individual frames. The size of sliding window to
calculate the SSIM index is set to be 8×8. In this experiment,
we employ the method proposed in [50] to calculate the dif-
ferences between two RD curves.1 Furthermore, the weighted
SSIM index is defined as [14]

SSIMω =

∑
x

∑
y ω(x, y)SSIM(x, y)∑
x

∑
y

ω(x, y)
(36)

1Since R-SSIM curve exhibits a similar shape as R-PSNR curve, we use
the same tool proposed in [50] to calculate the average of SSIM differences.

Fig. 9. Performance comparisons of different RDO algorithms for sequences
with CABAC entropy coding method. (a) Flower at CIF (IPP). (b) Bridge at
QCIF (IPP). (c) Bus at CIF (IBP). (d) Salesman at QCIF (IBP).

where ω(x, y) indicates the weight value for (x, y) as defined
in (22). The SSIM indices of Y, Cb, and Cr components are
combined according to (6). Since the SSIMω takes the motion
information into account, it is more accurate for perceptual
video quality assessment [14].

For coding complexity overhead evaluation, we calculate
�T as follows:

�T =
Tpro RDO − Torg RDO

Torg RDO
× 100% (37)

where Torg RDO and Tpro RDO indicate the total coding time
with the conventional and the proposed SSIM-based RDO
schemes, respectively.

To verify the efficiency of the proposed perceptual RDO
method, extensive experiments are conducted on standard
sequences in QCIF and CIF formats. In these experiments,
RD performance of the conventional RDO coding strategy and
the proposed SSIM motivated perceptual RDO coding strategy
is compared. The common coding configurations are set as
follows: all available inter and intra modes are enabled, five
reference frames, one I frame followed by 99 inter frames,
high complexity RDO, and the fixed QPs are set from 28
to 40. The results of the experiments are shown in Tables II
and III, and the RD performances are compared in Fig. 9.

For IPP GoP structure, on average 15% rate reduction for
fixed SSIM and 16% rate reduction while fixing weighted
SSIM are achieved for both QCIF and CIF sequences. When
the GoP structure is IBP, the rate reductions are 9% on
average for fixed SSIM and 10% on average for fixed weighted
SSIM. In general, there are three main reasons behind the
improved performance. First, we use SSIM for RDO purposes,
which is a better predictor of perceived quality by HVS as
compared to ubiquitous MSE. Second, the Lagrange multiplier
is calculated adaptively by the accurate RR-SSIM and rate
models. Third, we consider the motion between the frames,
which is an important information in visual perception of video
signals, to further improve the rate distribution among the MBs
considering the HVS. The lower gain of IBP coding scheme
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TABLE II

Performance of the Proposed Algorithms (Compared with Original RDO Technique) for QCIF Sequences at 30 f/s

Sequences
CABAC CAVLC

�SSIM �Ra (%) �SSIMω �Rb (%) �PSNR (dB) �SSIM �Ra (%) �SSIMω �Rb (%) �PSNR (dB)

Akiyo
IPP.. 0.0116 −17.85 0.0142 −19.83 0.13 0.0123 −19.33 0.0151 −21.09 0.21

IBP.. 0.0075 −5.77 0.0100 −8.93 −0.06 0.0091 −9.64 0.0116 −11.17 0.06

Bridge-close
IPP.. 0.0171 −30.65 0.0192 −34.20 −0.02 0.0194 −35.64 0.0228 −41.12 0.01

IBP.. 0.0148 −29.11 0.0168 −32.77 −0.15 0.0150 −30.90 0.0177 −35.98 −0.17

Highway
IPP.. 0.0108 −21.00 0.0127 −20.70 −0.26 0.0109 −21.78 0.0144 −23.09 −0.42

IBP.. 0.0043 −7.80 0.0057 −9.40 −0.49 0.0046 −10.91 0.0064 −12.82 −0.46

Grandma
IPP.. 0.0188 −23.03 0.0219 −25.38 0.25 0.0192 −22.70 0.0220 −24.47 0.28
IBP.. 0.0158 −19.44 0.0192 −21.74 0.13 0.0164 −19.68 0.0198 −21.59 0.14

Container
IPP.. 0.0088 −18.06 0.0088 −17.12 −0.10 0.0091 −17.63 0.0096 −17.01 −0.10
IBP.. 0.0048 −12.30 0.0054 −13.11 −0.47 0.0055 −11.04 0.0058 −10.72 −0.47

Salesman
IPP.. 0.0189 −17.72 0.0199 −18.11 0.11 0.0200 −18.14 0.0210 −18.28 0.12
IBP.. 0.0103 −9.44 0.0125 −11.24 −0.21 0.0101 −9.25 0.0118 −10.39 −0.26

News
IPP.. 0.0082 −12.76 0.0098 −11.82 −0.15 0.0078 −12.71 0.0096 −12.96 −0.19
IBP.. 0.0052 −7.36 0.0071 −8.56 −0.35 0.0046 −6.50 0.0061 −8.21 −0.38

Carphone
IPP.. 0.0035 −6.29 0.0042 −7.21 −0.52 0.0034 −5.59 0.0042 −6.62 −0.45

IBP.. 0.0010 −2.45 0.0015 −3.55 −0.56 0.0010 −2.36 0.0019 −4.42 −0.56

Average
IPP.. 0.0122 −18.42 0.0138 −19.30 −0.07 0.0128 −19.19 0.0148 −20.58 −0.07

IBP.. 0.0080 −11.71 0.0098 −13.66 −0.27 0.0082 −12.54 0.0101 −14.41 −0.26
aRate reduction while maintaining SSIM.
bRate reduction while maintaining weighted SSIM.

Fig. 10. Visual quality comparison between the conventional RDO and proposed RDO scheme, where the 40th frame (cropped for visualization) of the
Flower sequence is shown. (a) Original. (b) H.264/AVC coded with conventional RDO; bit rate: 203.5 kbit/s; SSIM: 0.8710; PSNR: 25.14 dB. (c) H.264/AVC
coded with proposed RDO; bit rate: 199.82 kbit/s; SSIM: 0.8805; PSNR: 24.57 dB.

may be explained by two reasons. First, the B frame is usually
coded at relatively low bit rate while our proposed scheme
achieves superior performance at high bit rate compared to
low bit rate, as can be observed from Fig. 9. Second, the
parameters estimation scheme proposed in Section V is not
as accurate for this GoP structure because the frames of the
same coding types are not adjacent to each other.

Rate reduction peaks for sequences with slow motion such
as Bridge, in which case 35% of the bits can be saved for the
same SSIM value of the received video. It is observed that for
these sequences with larger �, the superior performance is
mainly due to the selection of the MB mode with less bits. A
similar phenomenon has also been observed in [17] and [18].
Another interesting observation is that the performance gain
of the proposed method decreases at very low bit rate, such
as the Bridge and Salesman in Fig. 9. It is due to the fact that
at low bit rate a large percentage of MBs have already been
coded with the best mode in the conventional RDO scheme,

such as SKIP mode. Also, the limitation of the proposed
rate model as stated in Section III also brings the limited
performance gain at low bit rate. We have also compared the
performance in terms of PSNR of the luminance component,
which is shown in Tables II and III. Because our scheme is
totally adaptive to the video sequences, for some sequences,
such as Akiyo and Container, PSNR increases. However, on
average PSNR decreases because our optimization objective
is SSIM rather than PSNR.

To show the advantage of our frame-MB joint RDO scheme,
the performance comparisons of the frame-level perceptual
RDO (FP-RDO) and the frame-MB level perceptual RDO
(FMP-RDO) are also listed in Table IV. As can be observed
from Table IV, the weighted SSIM increases for sequences
with high motion, such as Flower. However, the weighted
SSIM decreases for constant sequences, such as Silent.
This performance degradation mainly comes from the inter
prediction technique used in video coding. For instance, the



WANG et al.: SSIM-MOTIVATED RATE-DISTORTION OPTIMIZATION FOR VIDEO CODING 525

TABLE III

Performance of the Proposed Algorithms (Compared with Original RDO Technique) for CIF Sequences at 30 f/s

Sequences
CABAC CAVLC

�SSIM �Ra (%) �SSIMω �Rb (%) �PSNR (dB) �SSIM �Ra (%) �SSIMω �Rb (%) �PSNR (dB)

Silent
IPP.. 0.0109 −13.98 0.0118 −14.69 −0.18 0.0114 −14.13 0.0123 −14.85 −0.21
IBP.. 0.006 −7.79 0.0077 −9.96 −0.34 0.0063 −7.84 0.0074 −9.10 −0.37

Bus
IPP.. 0.0134 −14.85 0.0122 −13.88 −0.70 0.0148 −15.61 0.0136 −14.89 −0.62
IBP.. 0.0083 −9.39 0.0087 −9.51 −0.66 0.0080 −8.63 0.0081 −8.49 −0.73

Mobile
IPP.. 0.0047 −8.52 0.0053 −10.50 −0.58 0.0051 −9.52 0.0059 −11.76 −0.63

IBP.. 0.0017 −3.23 0.0026 −5.52 −0.64 0.0009 −1.77 0.0019 −4.35 −0.68

Paris
IPP.. 0.0080 −12.07 0.0096 −14.35 −0.38 0.0076 −11.30 0.0090 −13.69 −0.43
IBP.. 0.0036 −5.17 0.0050 −7.36 −0.62 0.0029 −4.02 0.0043 −6.55 −0.36

Flower
IPP.. 0.0076 −14.19 0.0068 −11.69 −0.57 0.0070 −13.31 0.0063 −10.86 −0.71
IBP.. 0.0035 −6.92 0.0029 −4.65 −0.47 0.0021 −4.01 0.0014 −1.78 −0.71

Foreman
IPP.. 0.0023 −4.80 0.0020 −4.26 −0.75 0.0028 −5.72 0.0027 −5.11 −0.58
IBP.. 0.0008 −1.89 0.0008 −1.97 −0.55 0.0009 −1.66 0.0008 −1.65 −0.70

Tempete
IPP.. 0.0072 −10.28 0.0083 −11.70 −0.35 0.0078 −11.27 0.0088 −12.48 −0.36

IBP.. 0.0031 −4.13 0.0040 −5.51 −0.41 0.0029 −4.26 0.0038 −5.56 −0.58

Waterfall
IPP.. 0.0207 −15.51 0.0193 −14.22 −0.27 0.0237 −17.20 0.0226 −16.39 −0.22
IBP.. 0.0097 −9.37 0.0099 −9.98 −0.47 0.0092 −8.80 0.0093 −9.35 −0.46

Average
IPP.. 0.0094 −11.78 0.0094 −11.91 −0.47 0.0100 −12.26 0.0102 −12.50 −0.47

IBP.. 0.0046 −5.99 0.0052 −6.81 −0.52 0.0042 −5.12 0.0046 −5.85 −0.57
aRate reduction while maintaining SSIM. bRate reduction while maintaining weighted SSIM.

TABLE IV

Performance Comparison of the Proposed FP-RDO and FM-PRDO Coding (Anchor: Conventional RDO Technique)

Sequences
CABAC CAVLC

IPPPP IBPBP IPPPP IBPBP

�Ra (%) �Rb (%) �Ra (%) �Rb (%) �Ra (%) �Rb (%) �Ra (%) �Rb (%)

Flower (CIF)
FMP-RDO −14.19 −11.69 −6.92 −4.65 −13.31 −10.86 −4.01 −1.78
FP-RDO −14.34 −11.43 −6.73 −4.05 −12.73 −9.75 −2.04 0.38

Waterfall (CIF)
FMP-RDO −15.51 −14.22 −9.37 −9.98 −17.20 −16.39 −8.80 −9.35
FP-RDO −15.45 −14.43 −8.79 −9.47 −16.13 −15.48 −7.98 −8.62

Bus (CIF)
FMP-RDO −14.85 −13.88 −9.39 −9.51 −15.61 −14.89 −8.63 −8.49
FP-RDO −14.71 −13.72 −8.95 −8.84 −16.05 −14.96 −8.72 −8.63

Silent (CIF)
FMP-RDO −13.98 −14.69 −7.79 −9.96 −14.13 −14.85 −7.84 −9.10
FP-RDO −14.62 −15.28 −8.07 −9.79 −15.23 −15.59 −8.53 −9.85

Salesman (QCIF)
FMP-RDO −17.72 −18.11 −9.44 −11.24 −18.14 −18.28 −9.25 −10.39
FP-RDO −17.09 −17.48 −8.44 −10.43 −18.17 −19.06 −8.28 −9.75

Carphone (QCIF)
FMP-RDO −6.29 −7.21 −2.45 −3.55 −5.59 −6.62 −2.36 −4.42
FP-RDO −6.89 −7.31 −2.11 −3.43 −4.40 −5.86 −2.61 −4.85

Container (QCIF)
FMP-RDO −18.06 −17.12 −12.30 −13.11 −17.63 −17.01 −11.04 −10.72
FP-RDO −17.23 −16.21 −12.41 −13.16 −18.20 −17.90 −11.89 −11.71

Bridge (QCIF)
FMP-RDO −30.65 −34.20 −29.11 −32.77 −35.64 −41.12 −30.90 −35.98
FP-RDO −30.93 −34.24 −30.16 −33.88 −33.78 −39.32 −30.40 −35.48

aRate reduction while maintaining of SSIM.
bRate reduction while maintaining weighted SSIM.

TABLE V

SSIM Indices and Bit Rates of Testing Sequences Used in the

Subjective Test

Sequences
Conventional RDO Proposed RDO

SSIM Bit Rate (kbit/s) SSIM Bit Rate (kbit/s)
1 Bus 0.996 6032.68 0.9955 5807.44
2 Hall 0.9899 4976.36 0.99 4745.04
3 Container 0.9745 994.04 0.9754 883.72
4 Tempete 0.9726 1248.4 0.9707 1044.72
5 Akiyo 0.9711 97.81 0.9722 75.68
6 Silent 0.9655 457.68 0.9669 423.02
7 Mobile 0.9577 728.87 0.9572 703.34
8 Stefan 0.8956 179.42 0.8973 174.33

MB with higher weight in the current frame may get the
prediction pixels from an unimportant MB in the pervious

TABLE VI

Encoding Complexity Overhead of the Proposed Scheme

Sequences �T with CABAC (%) �T with CAVLC (%)
Akiyo (QCIF) 5.21 5.72
News (QCIF) 5.18 5.60
Mobile (QCIF) 5.82 6.14
Silent (CIF) 7.04 7.46
Foreman (CIF) 6.79 7.03
Tempete (CIF) 7.04 7.13
Average 6.18 6.51

frame, which can cause more quantization errors. Our current
work focuses on RDO frame by frame. The interrelationship
between frames and the rate control at the GoP level will be
studied in the future.
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TABLE VII

Performance Comparison of Using Different Previous Frames for Parameter Estimation

Sequences
Three Previous Frames Five Previous Frames Seven Previous Frames

�SSIM �R (%) �SSIM �R (%) �SSIM �R (%)

IPP
CABAC 0.0116 −17.85 0.0115 −16.91 0.0116 −18.57

Akiyo (QCIF)
CAVLC 0.0123 −19.33 0.0120 −17.64 0.0118 −16.80

IBP
CABAC 0.0075 −5.77 0.0078 −6.83 0.0069 −5.10
CAVLC 0.0091 −9.64 0.0085 −8.41 0.0090 −9.26

IPP
CABAC 0.0108 −21.00 0.0103 −20.51 0.0102 −20.33

Highway (QCIF)
CAVLC 0.0109 −21.78 0.0107 −20.41 0.0105 −19.70

IBP
CABAC 0.0043 −7.80 0.0045 −8.13 0.0045 −8.24
CAVLC 0.0046 −10.91 0.0048 −11.72 0.0045 −10.10

IPP
CABAC 0.0047 −8.52 0.0051 −9.22 0.0045 −8.01

Mobile (CIF)
CAVLC 0.0051 −9.52 0.0047 −8.41 0.0053 −10.09

IBP
CABAC 0.0017 −3.23 0.0015 −2.81 0.0015 −3.03
CAVLC 0.0009 −1.77 0.0010 −1.89 0.0010 −2.01

IPP
CABAC 0.0076 −14.19 0.0074 −13.87 0.0075 −13.90

Flower (CIF)
CAVLC 0.0070 −13.31 0.0068 −12.88 0.0072 −14.60

IBP CABAC 0.0035 −6.92 0.0032 −5.74 0.0033 −6.04
CAVLC 0.0021 −4.01 0.0022 −4.58 0.0023 −4.60

Fig. 10 shows the original frame, H.264/AVC coded frame
with the conventional RDO and H.264/AVC coded frame with
the proposed RDO method. Note that the bit rates for the
two coding methods are almost the same. However, since our
proposed RDO scheme is based on SSIM index optimization,
higher SSIM and lower PSNR are achieved. Furthermore,
the quality of the reconstructed frame has been obviously
improved by the proposed scheme. It can be observed that
more information and details have been preserved, such as the
branches on the roof. The visual quality improvement is due
to the fact that we can select the best mode from perceptual
point of view, resulting in more bits allocated to the areas
which are more sensitive to our visual systems.

To further validate our scheme, we carried out a subjective
quality evaluation test based on a two-alternative forced choice
(2AFC) process that is widely used in psychophysical studies,
where in each trial, a subject is shown a pair of video
sequences and is asked (forced) to choose the one he/she
thinks to have better quality. In our experiment, we selected
eight pairs of sequences of CIF format that were coded by
the conventional and the proposed RDO schemes to achieve
the same SSIM levels (where the proposed scheme uses much
lower bit rates). Table V lists all the test sequences as well as
their SSIM values and bit rates. In the 2AFC test, each pair is
repeated six times with random order. As a result, we obtained
48 2AFC results for each subject. Ten subjects participated in
this experiment.

The subjective test results are reported in Fig. 11, which
shows the percentage � by which the subjects are in favor
of the conventional RDO against the proposed RDO schemes.
As can be observed in the figure, the overall percentage (the
rightmost bar in the figure) is very close to 50% (52.5%),
meaning that there is no significant perceptual difference of
visual quality between the video sequences coded by the
two schemes (though the proposed scheme uses much lower
bit rates). In the figure, we also plot the variations of the
percentage over the ten subjects and over the eight sequences,
together with the error bars (±one standard deviation between
the measurements). It turns out that for almost all cases the

Fig. 11. Error-bar plot for the subjective test. (a) Error-bar plot with in units
of � and standard deviation for each subject (1–10: subject number; 11:
average). (b) Error-bar plot with in units of � and standard deviation for
each test sequence (1–8: sequence number; 9: average).

value of � is close to 50% and all error bars cross the 50%
line, showing the robustness of the measurement. These results
provide useful evidence that the proposed method achieves the
same level of quality with lower bit rates.

Table VI reports the computation overhead of the proposed
scheme with both CABAC and CAVLC entropy coding meth-
ods, where �T is calculated according to (37). The coding
time is obtained by encoding 100 frames of IPPP GoP structure
with Intel 2.83 GHz Core processor and 4 GB random access
memory. On average the computation overhead is 6.3% for
our scheme. As already indicated in [34] that the computation
of SSIM index in the mode selection process causes about 5%
overhead. Therefore, in our method the computation overhead
is mainly due to the calculation of the SSIM index for each
mode. We also observe that the overhead is stable for different
video sequences.

Table VII lists the experimental results of using three,
five, and seven previous frames to estimate the parameters
in Section V, respectively. Both IPP and IBP GoP structures
are tested and both CAVLC and CABAC entropy coding
algorithms are employed. As indicated in Table VII, the final
performance is not sensitive to the number of pervious frames
used in the estimation. This can be explained by the stable
properties of video sequences during a short period of time,
as shown in Fig. 7. This suggests us to use three previous
frames, as they are enough to capture the properties of the
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TABLE VIII

Performance Comparison with the State of the Art RDO Coding Algorithms for IPP GOP Structure

(Anchor: Conventional RDO Technique)

Sequences
Proposed Huang et al.’s Yang et al.’s CALM RDOQ

�SSIM �R (%) �SSIM �R (%) �SSIM �R (%) �SSIM �R (%) �SSIM �R (%)

Akiyo (CIF)
QP1 0.0026 −26.11 0.0020 −19.40 0.0004 −4.28 0 0.46 0.0001 −1.08

QP2 0.0078 −28.06 0.0056 −15.78 0.0024 −13.60 0 0.25 0 0.11

Bus(CIF)
QP1 0.0016 −7.77 0.0011 −5.95 0.0015 −7.12 0 −0.04 0.0006 −2.20

QP2 0.0099 −14.87 0.0086 −13.25 0.0038 −6.03 0 −0.07 0.0007 −1.36

Coastguard (CIF)
QP1 0.0013 −4.77 0.0004 −2.28 0.0005 −2.16 0 −0.06 0.0006 −1.54

QP2 0.0076 −8.91 0.0038 −5.04 0.0036 −3.97 −0.0002 0.3 0.0005 −0.80

Silent (CIF)
QP1 0.0026 −9.64 0.0013 −5.28 −0.0002 0.04 0 −0.14 0.0012 −4.15

QP2 0.0091 −12.43 0.0046 −6.83 −0.0008 0.58 0 −0.05 0 −0.08

Hall (CIF)
QP1 0.0034 −25.89 0.0035 −26.41 0.0013 −10.01 0 0.27 0.0005 −3.78

QP2 0.0062 −25.46 0.0059 −22.84 0.0003 −1.51 0 0.11 0.0002 −2.80

Mother−Dau (CIF)
QP1 0.0008 −6.43 0.0004 −2.76 0 0.56 0 0.03 0.0003 −1.49

QP2 0.0049 −8.94 0.0022 −4.69 0.0015 −2.84 0 −0.3 0 −0.19

Spincalendar (720P)
QP1 0.0028 −11.89 0.0030 −12.78 0.0021 −8.29 0 0.02 0.0022 −9.13

QP2 0.0042 −15.57 0.0040 −12.81 0.0006 −2.16 0 −0.43 0.0011 −2.50

Night (720P)
QP1 0.0019 −6.65 0.0011 −3.45 −0.0002 0.85 0 0.14 0.0009 −4.70

QP2 0.0062 −16.02 0.0029 −11.38 0.0002 −0.96 0 0.09 0.0010 −2.05

Average
QP1 0.0021 −12.39 0.0016 −9.79 0.0007 −3.8 0 0.09 0.0008 −3.51

QP2 0.0070 −16.28 0.0047 −11.58 0.0015 −3.81 0 −0.01 0.0004 −1.21

TABLE IX

Performance Comparison with the State-of-the-Art RDO Coding Algorithms for IBP GoP Structure

(Anchor: Conventional RDO Technique)

Sequences
Proposed Huang et al.’s Yang et al.’s CALM RDOQ

�SSIM �R (%) �SSIM �R (%) �SSIM �R (%) �SSIM �R (%) �SSIM �R (%)

Akiyo (CIF)
QP1 0.0014 −17.39 0.0007 −9.72 0.0003 −5.01 0 −0.49 0 −0.19

QP2 0.0030 −8.56 0.0022 −6.41 0.0015 −4.60 0 0.32 −0.0005 2.01

Bus (CIF)
QP1 0.0004 −2.04 0.0006 −3.95 0.0003 −1.12 0 0.15 0.0002 −1.20

QP2 0.0048 −7.58 0.0036 −5.25 0.0038 −6.05 0 0.12 0.0021 −3.36

Coastguard (CIF)
QP1 0.0007 −3.41 0.0003 −1.96 0.0005 −2.59 0 0.46 0.0006 −2.86

QP2 0.0027 −3.31 0.0011 −2.04 0.0009 −1.67 0 0.25 0.0014 −1.89

Silent (CIF)
QP1 0.0014 −4.64 0.0013 −4.28 0 −0.03 0 0.06 0.0006 −2.75
QP2 0.0050 −6.76 0.0036 −4.60 0.0018 −2.11 0 0 0.0012 −1.73

Hall (CIF)
QP1 0.0009 −7.60 0.0003 −2.41 0.0003 −2.72 0 0.21 0.0003 −2.09

QP2 0.0031 −19.42 0.0007 −4.87 0.0005 −3.27 0 0.43 0.0003 −2.51

Mother−Dau (CIF)
QP1 0.0009 −7.43 0.0006 −5.80 0.0001 −1.23 0 −0.59 0.0003 −2.28
QP2 0.0041 −5.94 0.0007 −1.69 0.0015 −2.91 0.0001 −0.16 0.0003 −0.51

Spincalendar (720P)
QP1 0.0006 −5.79 0.0010 −7.18 0.0004 −4.10 0 0.15 0.0005 −5.60

QP2 0.0037 −4.59 0.0021 −3.81 0.0009 −1.16 0 −0.53 0.0013 −2.57

Night (720P)
QP1 0.0013 −4.94 0.0010 −3.51 0.0002 −0.91 0 -0.15 0.0010 −3.61

QP2 0.0019 −5.73 0.0006 −2.11 0.0004 −1.96 0 -0.23 0.0016 −3.33

Average
QP1 0.0010 −6.66 0.0007 −4.85 0.0003 −2.21 0 -0.03 0.0004 −2.57

QP2 0.0035 −7.74 0.0018 −3.85 0.0014 −2.97 0 0.03 0.0010 −1.74

video sequences and to obtain an accurate estimation of the
required parameters.

C. Comparisons with State-of-the-Art RDO Algorithms
In this experiment, the proposed scheme is compared with

state-of-the-art RDO algorithms, including Huang et al.’s
SSIM-based RDO algorithm [34], Yang et al.’s SSIM-based
RDO algorithm [32], the CALM selection scheme [21],
and the RD-optimized quantization (RDOQ) scheme [4].
For this experiment, both IPP and IBP GoP structures are
employed and CAVLC entropy coding method is used. We

use two different sets of QP values in the experiments:
QP1 = {16, 20, 24, 28} and QP2 = {24, 28, 32, 36}, where QP1

indicates a high bit rate coding configuration. For each
scheme, the improvement of the SSIM index as well as the
rate reduction compared to the conventional RDO coding
schemes are tabulated in Tables VIII and IX.

From Tables VIII and IX, it can be observed that over a
wide range of bit rates, for most of the cases our scheme
achieves better performance than state-of-the-art SSIM-based
RDO methods. Specifically, when compared to Huang et
al.’s method, on average the proposed scheme achieves better
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rate reduction of 12.39% versus 9.79% for QP1 and 16.28%
versus 11.58% for QP2 while maintaining the same SSIM
values for IPP GoP structure. For IBP GoP structure, the
performance gain is 6.66% versus 4.85% for QP1 and 7.74%
versus 3.85% for QP2. We believe that there are three main
factors that are responsible for the performance improvement.
First, the proposed scheme uses more accurate statistical
SSIM and rate models which are derived from the inherent
properties of SSIM index and the video signals. Second, in
this scheme, the Lagrange multiplier is derived adaptively
for each frame. Finally, in the mode selection process, the
surrounding pixels are employed to accurately obtain the
SSIM index for each mode. The performances of the MSE-
based RDO coding schemes are also given in Tables VIII
and IX. Since their optimization objective is MSE rather than
SSIM, there is no significant change of SSIM values in these
schemes.

VII. Conclusion

We proposed an SSIM-motivated perceptual RDO scheme
for H.264/AVC video coding with the aim of selecting the
best coding mode and achieving the best rate–SSIM perfor-
mance. The novelty of our approaches lies in the adaptive
Lagrange multiplier selection methods at both frame and MB
levels, where we incorporated a new RR-SSIM estimation
algorithm and information theoretical methods that take mo-
tion information and perceptual uncertainty of visual speed
perception into account. The superior performance of the pro-
posed scheme was demonstrated using the reference software
JM, which offered significant rate reduction, while keeping
the same level of SSIM values. Visual quality improvement
was also observed when compared with conventional RDO
scheme.
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