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Video Denoising Based on a Spatiotemporal
Gaussian Scale Mixture Model

Gijesh Varghese and Zhou Wang, Member, IEEE

Abstract—We propose a video denoising algorithm based on
a spatiotemporal Gaussian scale mixture model in the wavelet
transform domain. This model simultaneously captures the local
correlations between the wavelet coefficients of natural video
sequences across both space and time. Such correlations are
further strengthened with a motion compensation process, for
which a Fourier domain noise-robust cross correlation algorithm
is proposed for motion estimation. Bayesian least square estima-
tion is used to recover the original video signal from the noisy
observation. Experimental results show that the performance of
the proposed approach is competitive when compared with state-
of-the-art video denoising algorithms based on both peak signal-
to-noise-ratio and structural similarity evaluations.

Index Terms—Bayesian estimation, cross correlation (CC),
Gaussian scale mixture (GSM), image restoration, motion es-
timation, statistical image modeling, video denoising.

I. Introduction

V IDEO SIGNALS are often contaminated by noise during
acquisition and transmission. Removing/reducing noise

in video signals (or video denoising) is highly desirable, as
it can enhance perceived image quality, increase compression
effectiveness, facilitate transmission bandwidth reduction, and
improve the accuracy of the possible subsequent processes
such as feature extraction, object detection, motion tracking
and pattern classification.

Video denoising algorithms may be roughly classified based
on two different criteria: whether they are implemented in
the spatial domain or transform domain and whether motion
information is directly incorporated. Spatial domain denoising
is usually done with weighted averaging within local 2-D
or 3-D windows, where the weights can be either fixed or
adapted based on the local image content. A review of spatial
domain filtering methods can be found in [1]. Transform
domain methods first decorrelate the noisy signal using a
linear transform (e.g., a wavelet transform), and then attempt
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to recover the transform coefficients of the original signal
(e.g., by soft/hard thresholding [2] or Bayesian estimation [3]),
followed by an inverse transform that brings the signal back
to the spatial domain.

The high degree of correlation between adjacent frames is a
“blessing in disguise” for signal restoration. On the one hand,
since additional information is available from nearby frames, a
better estimate of the original signal is expected. On the other
hand, the process is complicated by the presence of motion
between frames. Motion estimation itself is a complex problem
and it is further complicated by the presence of noise. In [1],
performance of spatial domain motion compensated filters was
evaluated. A multiresolution motion estimation scheme was
proposed in [4] when the signal is corrupted with noise. In [5],
a recursive filter is applied on wavelet transform coefficients
along an estimated motion trajectory, where the filter taps are
adaptively chosen based on the “reliability” of the motion
vectors. Motion information or temporal correlations may
also be incorporated by employing an advanced or adapted
transform [6], [7] or by using an advanced statistical model
that reflects the joint distributions of wavelet coefficients over
space and time [8]–[10]. Some wavelet domain algorithms [5],
[11] used robust motion indices that represent motion in an
indirect way. Recently, a series of successful nonlocal patch-
based methods emerged [12]–[17], where motion information
is incorporated implicitly by adaptively clustering similar 2-D
or 3-D patches. It was also shown that imposing sparseness
prior models would further improve the performance of these
algorithms [16], [17].

In recent years, there has been a growing interest in studying
statistical models of natural images, which provide useful
prior knowledge about natural images and play important roles
in the design of Bayesian signal denoising algorithms [18].
While great effort has been made to study statistical models
of static natural images [19], [20], much less has been done
for natural video signals. In [21], the spatiotemporal Fourier
power spectra of natural image sequences were investigated.
In [22], independent component analysis was applied to local
3-D blocks extracted from natural image sequences and the
components optimized for independence are filters localized in
space and time, spatially oriented, and directionally selective.
Similar shapes of linear components were also obtained by
optimizing sparseness via a matching pursuit algorithm [23].
In [24], it was observed that natural video sequences exhibit
strong statistical prior of temporal motion smoothness, which
can be captured by temporal local phase correlations in the
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complex wavelet transform domain. The application of statis-
tical models for signal denoising has also been extended from
2-D to 3-D. In [8], a video denoising algorithm was proposed
by extending the hiddern Markov tree model [25], [26] from
2-D to 3-D, which provides a simple but effective way to
describe the inter-scale statistical correlations of wavelet
coefficients. In [9], a statistical model for wavelet coefficients
of video signals was proposed, based on which maximum
a posteriori estimation and temporal filtering were used for
video denoising.

In this paper, we propose a new video denoising method
based on a spatiotemporal model of motion compensated
wavelet coefficients. Our paper was motivated by the success
of the Gaussian scale mixture (GSM) model in static image
denoising [18]. GSM was originally proposed in the statistics
literature [27] and has been applied to the modeling of static
natural images [28]. It was found to be a convenient and
effective model to account for the nonGaussian marginal
distributions of wavelet coefficients, as well as the variance-
dependencies between neighboring wavelet coefficients. Since
there exist strong correlations between wavelet coefficients
across adjacent video frames, it is expected that grouping
wavelet coefficients along temporal directions based on the
GSM framework would help strengthen the statistical regular-
ities of the coefficients and thus, improve the performance
of Bayesian signal denoising algorithms. It is also impor-
tant to be aware that video signals are more than simple
3-D extensions of 2-D static image signals, where the ma-
jor distinction is the capability of representing motion in-
formation [29]. If the motion between frames is properly
compensated, then the temporal correlations between wavelet
coefficients can be enhanced. Effective motion compensa-
tion relies on reliable motion estimation. In the literature,
a large number of local motion estimation methods have
been proposed, which are mostly based on block matching
(e.g., [30]), optical flow [31], [32] or phase disparity [33]
evaluations. To avoid local nonlinear motion compensation
processes that affect the validity of the Gaussian noise model
assumed in GSM denoising, we opt to use global motion
estimation methods based on cross correlation (CC) [34]–
[37]. The challenge here is that the motion information must
be estimated from noisy video signals rather than the noise-
free original signals. To address this issue, another important
aspect of our paper was the development and incorporation
of a novel noise-robust motion estimation algorithm, which
has not been carefully examined in previous video denoising
algorithms.

II. Background of GSM Image Denoising

A random vector x is a GSM if it can be expressed as the
product of two independent components

x =
√

zu (1)

where u is a zero-mean Gaussian vector with covariance
matrix Cu, and z is called a mixing multiplier. The density

of x is then given by

px(x) =
∫

1

[2π]N/2|zCu|1/2
exp

(
−xT (zCu)−1x

2

)
pz(z)dz

(2)

where N is the size of the vector x and pz(z) is the mixing
density. When applying it for image modeling, x is typically
composed of a center wavelet coefficient, xc, together with a
set of coefficients located near xc in the same wavelet subband
or nearby subbands across scale and/or orientation. Among
various choices of the prior density distribution pz(z), the one
that was found to give superior image denoising performance
is the noninformative Jeffrey’s prior [18], [38] given by

pz(z) ∝ 1

z
. (3)

The key feature of this prior is its amplitude scale invariance,
which means that the inference procedure is invariant with
respect to changes in the measurement units (or the scale of
amplitude) [38], [39].

Assume that the original image is contaminated by additive,
independent white Gaussian noise, then in the wavelet trans-
form domain, a noisy neighborhood coefficient vector y can
be modeled as

y = x + w =
√

zu + w (4)

where w is a noise coefficient vector with covariance matrix
Cw. The group of neighboring coefficients constitutes a sliding
window that moves across the wavelet subband. At each step,
only the center coefficient, xc, of the window is estimated
(i.e., denoised). Consequently, the objective here is converted
to estimating xc of x, given the noisy observation y.

It is not difficult to show that the Bayes least square
(BLS) estimator (which minimizes the expected value of the
squared estimation error given the noisy observation y) is the
conditional mean, which can be computed by [18]

E{xc|y} =
∫ ∞

0
E{xc|y, z}p(z|y)dz . (5)

The right hand side of (5) is a 1-D integral over z, where two
components, E{xc|y, z} and p(z|y), need to be computed for
each given z. The first component E{xc|y, z} is linear based
on the facts that w is Gaussian and x is also Gaussian when
conditioned on z. In particular, we have

E{x|y, z} = zCu(zCu + Cw)−1y (6)

where Cu can be estimated from the observed noisy covariance
matrix by Cu = Cy − Cw. Equation (6) gives a full estimate
of the original coefficient vector x for any given z. For our
purpose here, only the center coefficient xc is of our interest,
which leads to significant simplifications of the computation
[18]. The second component in the integral in (5), i.e., the
posterior density p(z|y), can also be estimated by Bayes’ rule:
p(z|y) ∝ p(y|z)pz(z), where pz(z) can be calculated using
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Fig. 1. Diagram of the proposed ST-GSM video denoising algorithm.

(3). Given (4) and the facts that both u and w are zero-mean
Gaussian, it is straightforward to derive that p(y|z) can be
computed as a Gaussian function of zero-mean and covariance
Cy = zCu + Cw [18].

III. Spatiotemporal GSM Video Denoising

Fig. 1 illustrates the diagram of the proposed video denois-
ing system. The denoising of the current frame involves not
only the frame itself, but also a set of adjacent past and future
frames. Motion estimation is performed between the current
frame and the past/future frames. Details on the motion estima-
tion algorithm will be given in Section IV. The estimation re-
sults are used for global motion compensation. Wavelet trans-
form is then applied to the current frame as well as the motion
compensated past and future frames. The wavelet transform is
a linear multiresolution analysis tool that decomposes an im-
age signal into multiple subbands, each with a different char-
acteristic scale and orientation. An excellent description can
be found in [40]. Next, wavelet coefficient vectors are formed
from a spatiotemporal neighborhood, and an spatiotemporal
Gaussian scale mixture (ST-GSM) denoising method similar to
the BLS estimator discussed in Section II is employed. Finally,
an inverse wavelet transform is applied to the denoised wavelet
coefficients to create a denoised current frame.

At the core of the proposed video denoising system shown
in Fig. 1 is the ST-GSM denoising algorithm, where the key is
to include temporal neighborhoods in the wavelet coefficient
vector. This is illustrated in Fig. 2, where a coefficient vector
of length N1 × N2 × Nf is formed by a set of spatial
neighboring wavelet coefficients from the same scale and

Fig. 2. Formation of 3×3×3 wavelet coefficient neighborhood over three
video frames.

Fig. 3. RMS error comparison of phase correlation, cross correlation and
noise-robust cross correlation-based motion estimation algorithms as a func-
tion of noise level (normalized noise standard deviation in decibel).

the same orientation but across a number of past and future
frames. Here, N1 and N2 denote the spatial dimensions and
Nf is the total number of frames involved (including past,
current and future frames). In the illustration given in Fig. 2,
N1 = N2 = Nf = 3, but our experiments show that a larger
number of Nf often leads to better denoising results, and we
empirically set Nf = 9 in all of our denoising experiments.

There are a number of practical issues in our implementation
of the proposed ST-GSM denoising algorithm.

1) We choose an 8-orientation, 4-scale steerable pyramid
[41] for wavelet decomposition. The steerable pyramid is
an overcomplete wavelet transform that avoids aliasing
in subbands.

2) After global motion compensation, blank regions are
created at the image boundaries. We fill them by mirror
replication of the shifted frame.

3) The BLS denoising of coefficient xc in (5) involves
a 1D integration over z. We implement this (using
default parameters as in [18]) by sampling z in logarithm
domain by 13 points in the range of −20.5 to 3.5.

4) For convenience, the first frames in a video sequence
are denoised using the available past frames only. For
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Fig. 4. PSNR and SSIM comparisons of ST-GSM denoising with and without motion estimation/motion compensation. (a) PSNR plot of denoised Garden
sequence corrupted by noise with σ = 30, (b) SSIM plot of denoised Garden sequence corrupted by noise with σ = 30.

TABLE I

PSNR and SSIM [47] Comparisons of Video Denoising Algorithms for 6 Video Sequences at 5 Noise Levels

Video Sequence Foreman Salesman Miss America
Noise std (σ) 10 15 20 50 100 10 15 20 50 100 10 15 20 50 100

PSNR Results (dB)
Wiener2D 33.14 30.46 28.55 23.09 16.39 31.97 29.51 27.80 21.31 13.09 34.51 31.64 29.56 21.76 12.84
Wiener3D 29.54 29.26 28.87 25.35 15.28 29.59 29.30 28.88 22.92 13.50 36.95 35.60 34.06 23.39 13.27
WRSTF [5] 35.48 33.37 31.82 NA NA 35.54 33.56 32.00 NA NA 37.82 36.17 34.79 NA NA
SEQWT [10] NA NA NA NA NA 32.86 30.59 29.02 NA NA NA NA NA NA NA
3DWTF [6] NA NA NA NA NA 34.96 33.33 32.03 NA NA NA NA NA NA NA
IFSM [9] 34.13 31.98 30.50 25.74 20.98 34.22 31.85 30.22 25.40 20.78 37.52 35.41 33.86 29.79 22.49
3DSWDCT [7] 36.17 34.46 33.07 27.33 21.46 36.98 35.12 33.75 28.82 22.30 38.87 37.72 36.74 32.88 23.43
VBM3D [14] 37.17 35.57 34.36 28.95 21.36 38.33 36.60 35.12 28.49 21.39 40.29 39.30 38.54 33.39 22.81
2DGSM [18] 35.05 33.10 31.70 26.41 20.65 33.80 31.73 30.28 24.95 20.32 38.52 37.14 36.14 30.49 22.16
ST-GSM 36.74 34.98 33.72 27.80 21.54 38.04 36.03 34.62 26.87 20.87 40.58 39.40 38.50 31.62 22.55

SSIM Results
Wiener2D 0.860 0.774 0.694 0.425 0.164 0.859 0.778 0.704 0.340 0.074 0.818 0.704 0.602 0.214 0.044
Wiener3D 0.865 0.839 0.808 0.582 0.103 0.839 0.818 0.785 0.425 0.066 0.908 0.868 0.808 0.286 0.040
WRSTF [5] 0.914 0.877 0.841 NA NA 0.932 0.901 0.868 NA NA 0.908 0.877 0.846 NA NA
SEQWT [10] NA NA NA NA NA 0.900 0.846 0.796 NA NA NA NA NA NA NA
3DWTF [6] NA NA NA NA NA 0.923 0.903 0.882 NA NA NA NA NA NA NA
IFSM [9] 0.886 0.836 0.793 0.667 0.666 0.904 0.851 0.801 0.609 0.488 0.904 0.857 0.812 0.780 0.804
3DSWDCT [7] 0.932 0.907 0.884 0.769 0.708 0.955 0.930 0.905 0.772 0.611 0.946 0.928 0.909 0.850 0.829
VBM3D [14] 0.935 0.917 0.903 0.837 0.699 0.960 0.945 0.925 0.771 0.538 0.947 0.939 0.933 0.905 0.789
2DGSM [18] 0.916 0.889 0.867 0.780 0.672 0.909 0.865 0.825 0.611 0.464 0.936 0.922 0.913 0.874 0.809
ST-GSM 0.937 0.917 0.901 0.820 0.715 0.960 0.941 0.923 0.727 0.496 0.952 0.943 0.936 0.892 0.823
Video Sequence Tennis Garden Football
Noise std (σ) 10 15 20 50 100 10 15 20 50 100 10 15 20 50 100

PSNR Results (dB)
Wiener2D 31.07 28.55 26.78 20.65 15.46 29.73 26.77 24.80 18.09 14.17 25.07 24.76 24.37 21.19 15.23
Wiener3D 22.88 22.81 22.71 21.50 15.14 18.36 18.33 18.30 17.82 13.49 21.97 21.91 21.84 20.82 14.73
WRSTF [5] 33.68 31.35 29.71 NA NA 30.59 27.95 26.13 NA NA NA NA NA NA NA
SEQWT [10] 31.19 29.14 27.59 NA NA 29.30 26.43 24.38 NA NA NA NA NA NA NA
3DWTF [6] 31.96 29.91 28.56 NA NA 30.25 27.70 25.95 NA NA NA NA NA NA NA
IFSM [9] 32.41 30.10 28.56 23.81 20.76 30.05 27.25 25.40 20.23 16.50 31.23 28.78 27.15 22.62 19.79
3DSWDCT [7] 33.83 31.79 30.50 26.16 22.00 31.80 29.40 27.70 21.50 16.95 32.32 29.97 28.47 23.78 19.99
VBM3D [14] 34.89 32.88 31.49 27.21 21.06 32.54 30.30 28.74 22.52 16.51 33.09 30.90 29.36 24.58 20.04
2DGSM [18] 31.82 29.87 28.65 24.36 20.10 30.40 27.65 25.76 19.98 16.04 31.33 29.14 27.74 23.30 19.31
ST-GSM 34.05 31.97 30.59 25.85 20.40 31.48 29.08 27.49 22.23 16.78 32.11 29.87 28.36 23.58 19.66

SSIM Results
Wiener2D 0.813 0.712 0.625 0.288 0.092 0.916 0.853 0.792 0.413 0.165 0.703 0.676 0.643 0.434 0.157
Wiener3D 0.577 0.560 0.539 0.363 0.045 0.510 0.500 0.488 0.391 0.041 0.590 0.581 0.568 0.437 0.071
WRSTF [5] 0.897 0.839 0.790 NA NA 0.953 0.922 0.889 NA NA NA NA NA NA NA
SEQWT [10] 0.842 0.772 0.716 NA NA 0.941 0.893 0.842 NA NA NA NA NA NA NA
3DWTF [6] 0.856 0.793 0.740 NA NA 0.909 0.872 0.840 NA NA NA NA NA NA NA
IFSM [9] 0.855 0.776 0.709 0.485 0.458 0.927 0.882 0.837 0.623 0.344 0.884 0.813 0.749 0.510 0.370
3DSWDCT [7] 0.894 0.834 0.790 0.620 0.513 0.959 0.931 0.900 0.688 0.396 0.911 0.851 0.801 0.595 0.398
VBM3D [14] 0.901 0.847 0.800 0.640 0.478 0.962 0.940 0.916 0.738 0.336 0.923 0.874 0.822 0.601 0.398
2DGSM [18] 0.831 0.758 0.711 0.577 0.456 0.939 0.899 0.857 0.611 0.296 0.871 0.798 0.744 0.552 0.346
ST-GSM 0.894 0.841 0.797 0.642 0.464 0.950 0.925 0.900 0.747 0.363 0.913 0.865 0.820 0.597 0.364
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example, when denoising the third frame, only 2 past
frames and 4 future frames are involved. Similar strategy
is employed in denoising the last frames.

IV. Noise-Robust Motion Estimation

One of the challenges in the implementation of the above
algorithm is to estimate motion in the presence of noise. Here,
we propose a simple but reliable noise-robust CC method
for global motion estimation at integer pixel precision. The
limitation of using global motion estimation is that it cannot
account for rotation, zooming and local motion. However,
local motion compensation processes (such as those based
on block matching and optical flow) are spatially adaptive
nonlinear operators, which significantly change noise statistics
and affect the adequacy of the Gaussain noise model assumed
in GSM denoising. As a result, the BLS-GSM denoising
estimator becomes invalid. Therefore, we restrict our motion
estimation to be global in our current implementation of
ST-GSM.

Let f1(v) and f2(v) represent two image frames, where v is a
spatial integer index vector for the underlying 2-D rectangular
image lattice. A classical approach to estimating a global
motion vector between the two frames is the cross correlation
method [34]–[37], which is based on the observation that
when f2(v) is a shifted version of f1(v), the position of the
peak in the CC function between f1(v) and f2(u) corresponds
to the motion vector. Despite the simplicity of the idea, the
computation of the CC function is often costly. An equivalent
but more efficient approach is to use the Fourier transform
method: Let F (ω) = F {f (v)} represents the 2-D Fourier
transform of an image frame, where F denotes the Fourier
transform operator. Then, the CC function can be computed
as

kcc(v) = F −1 {Y (ω)} (7)

where Y (ω) = F1(ω)F ∗
2 (ω). The estimated motion vector is

given by

vopt = argmax
v

kcc(v) . (8)

An interesting variation of this approach is the phase corre-
lation (PC) method [42]–[44], where the Fourier spectrum is
normalized in the frequency domain to have unit energy across
all frequencies. The phase correlation function is given by

kpc(v) = F −1

{
Y (ω)

|Y (ω)|
}

. (9)

To have a close look, let us assume that f2(v) is simply a
shifted version of f1(v), i.e., f2(v) = f1(v−�v). Based on the
shifting property of the Fourier transform, we have F2(ω) =
F1(ω) exp{−jωT �v} and Y (ω) = |F1(ω)|2 exp{jωT �v}, and
thus

kpc(v) = F −1
{

exp{jωT �u}} = δ(v + �v) (10)

TABLE II

Average PSNR and SSIM [47] Performance of Video Denoising

Algorithms at 5 Noise Levels

Noise std (σ) 10 15 20 50 100
PSNR Results (dB)

Wiener2D 30.92 28.62 26.98 21.02 14.53
Wiener3D 26.55 26.20 25.78 21.97 14.24
IFSM [9] 33.26 30.90 29.28 24.60 20.22
3DSWDCT [7] 35.00 33.08 31.71 26.75 21.02
VBM3D [14] 36.05 34.26 32.94 27.52 20.53
2DGSM [18] 33.49 31.44 30.05 24.92 19.76
ST-GSM 35.50 33.56 32.21 26.33 20.30

SSIM Results
Wiener2D 0.828 0.750 0.677 0.352 0.116
Wiener3D 0.715 0.694 0.666 0.414 0.061
IFSM [9] 0.893 0.836 0.784 0.612 0.522
3DSWDCT [7] 0.933 0.897 0.865 0.716 0.576
VBM3D [14] 0.938 0.910 0.883 0.749 0.540
2DGSM [18] 0.900 0.855 0.820 0.668 0.507
ST-GSM 0.934 0.905 0.880 0.738 0.538

which creates an impulse at the true motion vector position
and is zero everywhere else.

Both CC and PC methods were designed with the assump-
tion that there is no noise in the images. With the presence
of noise, their performance degrades. Our noise-robust cross
correlation (NRCC) function is defined as

knrcc(v) = F −1

{
Y (ω)

(
1 − |N(ω)|2

|Y (ω)|
)}

(11)

where |N(ω)|2 is the noise power spectrum (in the case of
white noise, |N(ω)|2 is a constant). To better understand this,
it is useful to formulate the three approaches (PC, CC, and
NRCC) using a unified framework. In particular, each method
can be viewed a specific weighting scheme in the Fourier
domain

k(v) = F −1
{
W(ω) exp{jωT �v}} (12)

where the differences lie in the definition of the weighting
function W(ω)

Wpc(ω) ≡ 1

Wcc(ω) = |F1(ω)|2
Wnrcc(ω) = |F1(ω)|2 − |N(ω)|2. (13)

The PC method assigns uniform weights to all frequencies,
the CC method assigns the weights based on the total signal
power (which is the sum of signal and noise power), while the
NRCC method assigns the weights proportional to the signal
power only (by removing the noise power part). It converges
to the CC method when the images are noise-free. We tested
the PC, CC, and NRCC methods at different noise levels and
use root mean squared (RMS) error between the true shift and
estimated shift to evaluate their performance. Fig. 3 shows
our test results by estimating the shift between a 1-D signal
(extracted from one row of the “Einstein” image) and a shifted
version of it using the three methods. It appears that the CC
and NRCC methods perform much better at all noise levels,
and NRCC leads to the best performance.
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TABLE III

PSNR Comparisons With Latest Video Denoising Algorithms

Sequence Size Input PSNR STA [15] K-SVD [16] 3-D-Patch [17] ST-GSM
Salesman 176 × 144 × 449 28 35.13 37.91 39.26 37.93

24 32.60 35.59 36.35 35.17
Miss America 176 × 144 × 108 28 39.39 40.49 42.23 41.43
Suzie 176 × 144 × 150 28 37.07 37.96 38.40 38.36

24 35.11 35.95 36.32 36.21
Trevor 176 × 144 × 90 28 36.68 38.10 38.31 37.17

24 34.79 35.97 35.81 34.68
Foreman 176 × 144 × 300 28 34.94 37.86 36.88 36.85

24 32.90 35.86 34.55 34.37

Fig. 5. Denoising results of Frame 80 in Miss America sequence corrupted with noise standard deviation σ = 20. (a1)–(a6) Image frames in the original,
noisy, and 2DGSM [18], IFSM [9], VBM3D [14], and ST-GSM denoised sequences. (b2)–(b6) Corresponding SSIM quality maps (brighter indicates larger
SSIM value) with mean SSIM values.
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V. Validation

The video denoising algorithms were tested using publicly
available video sequences [45] contaminated with additive
white Gaussian noise. All video sequences are in YCrCb 4:2:0
format, but only the denoising results of the luma channel are
reported here for algorithm validation. Two objective criteria,
namely the PSNR and the SSIM [46]–[48], were employed
to provide quantitative quality evaluations of the denoising
results. Specifically, PSNR is defined as

PSNR = 10 log10

(
L2

MSE

)
(14)

where L is the dynamic range of the image (for 8 bits/pixel
images, L = 255) and MSE is the mean squared error between
the original and distorted images. SSIM is first calculated
within local windows using

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(15)

where x and y are the image patches extracted from the local
window from the original and distorted images, respectively.
µx, σ2

x , and σxy are the mean, variance, and cross-correlation
computed within the local window, respectively. The overall
SSIM score of a video frame is computed as the average local
SSIM scores. PSNR is the mostly widely used quality measure
in the literature, but has been criticized for not correlating
well with human visual perception [49]. SSIM is believed to
be a better indicator of perceived image quality [49]. It also
supplies a quality map that indicates the variations of images
quality over space. The final PSNR and SSIM results for a
denoised video sequence are computed as the frame average
of the full sequence, after clipping the denoised pixels to the
range of 0–255.

Three experiments were carried out to validate various
aspects of the proposed ST-GSM algorithm. In the first
experiment, we verify the usefulness of including temporal
wavelet neighbors in forming the coefficient vector in GSM
denoising. In particular, we compare the proposed algorithm
against GSM denoising applied to each individual video frame
independently (abbreviated as 2DGSM [18]). The results are
shown in Table I, where ST-GSM performs consistently better
for all test sequences at all noise levels.

Second, the effectiveness of motion estimation/motion com-
pensation in the proposed algorithm is tested. Fig. 4 shows
the results of a straightforward comparison, where the same
ST-GSM algorithm was applied to denoise the same video
sequence, but with and without the involvement of the mo-
tion estimation/motion compensation stages. The PSNR and
SSIM results computed on a frame-by-frame basis show that
motion estimation/compensation leads to markable improve-
ment. Similar results were observed when denoising other
video sequences, especially those video segments that involve
significant amount of global motion.

In the third experiment, we compare ST-GSM against other
video denoising algorithms, including both baseline and state-
of-the-art schemes. These include: 1) Wiener2D—MATLAB’s

Wiener2 function (a spatially adaptive Wiener filter) applied
on a frame-by-frame basis; 2) Wiener3D—our implementation
of a simple extension of Wiener2 to three dimensions, with a
window size of 3 × 3 × 3; 3) WRSTF [5]—wavelet-domain
reliability-based spatio-temporal filtering; 4) SEQWT [10]—
sequential wavelet domain temporal filtering; 5) 3DWTF
[6]—3-D dual tree wavelet transform denoising; 6) IFSM
[9]—inter-frame statistical modeling; 7) 3DSWDCT [7]—3-D
sliding window discrete cosine transform; 8) VBM3D [14]—
block matching and 3-D filtering; 9) 2DGSM [18]—as in
the first experiment described above; 10) STA [15]—space-
time adaptive patch-based filtering; 11) K-SVD [16]—video
denoising based on sparse and redundant representation; and
12) 3-D-patch [17] —Bayesian variational 3-D patch-based
method. The results for WRSTF, SEQWT and 3DWTF were
obtained from the processed video sequences available at [50].
The PSNR results of STA, K-SVD and 3-D-patch denoising
are directed cited from the corresponding publications [15]–
[17]. We performed the denoising experiments for the rest of
the methods.

Table I compares PSNR and SSIM results of 10 denois-
ing algorithms for six video sequences at five noise levels.
Table II shows PSNR and SSIM performance averaged over
sequences. Table III presents PSNR comparisons with STA,
K-SVD, and 3-D-patch methods. It can be observed that
the proposed ST-GSM algorithm demonstrates competitive
performance when compared with the state-of-the-art. Finally,
Fig. 5 demonstrates the visual effects of different denoising
algorithms. Specifically, we show a frame extracted from the
Miss America sequence, together with a noisy version of the
same frame, and the denoised frames obtained by four video
denoising algorithms. It can be seen that ST-GSM is quite ef-
fective at suppressing background noise while maintaining the
edge and texture details and thus, the structural information of
the objects in the scene. This is further verified by examining
the SSIM quality maps of the corresponding frames.

VI. Conclusion

We proposed a wavelet-domain ST-GSM model for natural
video signals and applied it to the restoration of video signals
corrupted by additive white Gaussian noise. We found that
applying motion estimation/motion compensation is effective
in enhancing the correlations between temporal neighboring
wavelet coefficients and thus, improving the performance of
ST-GSM denoising. We proposed a Fourier domain NRCC
scheme to provide reliable motion estimation in the presence
of noise. Our experimental comparisons with state-of-the-art
algorithms showed that ST-GSM is competitive in terms of
both subjective and objective (PSNR and SSIM) evaluations.

There are a number of potential improvements and ex-
tensions that may be done in the future. First, the current
implementation of ST-GSM denoising is rather slow. A rough
estimate for the computational complexity can be inferred
from the observation that our un-optimized MATLAB code
took 120 s per CIF frame on an Intel 2.4 GHz workstation.
Both algorithmic and software optimizations are needed to
accelerate the algorithm. Second, the current algorithm is
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applied to each color channel independently. Denoising all
color channels jointly by including color wavelet coefficient
neighbors in GSM modeling may further improve the algo-
rithm. Finally, there are advanced models in describing the
statistical motion properties of natural video signals (e.g.,
[24]) that may be employed to impose stronger statistical prior
in a Bayesian framework and in turn improve the denoising
performance.
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