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Abstract— Objective quality assessment of distorted stereo-
scopic images is a challenging problem, especially when the
distortions in the left and right views are asymmetric. Existing
studies suggest that simply averaging the quality of the left and
right views well predicts the quality of symmetrically distorted
stereoscopic images, but generates substantial prediction bias
when applied to asymmetrically distorted stereoscopic images.
In this paper, we first build a database that contains both
single-view and symmetrically and asymmetrically distorted
stereoscopic images. We then carry out a subjective test, where
we find that the quality prediction bias of the asymmetrically
distorted images could lean toward opposite directions (overes-
timate or underestimate), depending on the distortion types and
levels. Our subjective test also suggests that eye dominance effect
does not have strong impact on the visual quality decisions of
stereoscopic images. Furthermore, we develop an information
content and divisive normalization-based pooling scheme that
improves upon structural similarity in estimating the quality
of single-view images. Finally, we propose a binocular rivalry-
inspired multi-scale model to predict the quality of stereoscopic
images from that of the single-view images. Our results show that
the proposed model, without explicitly identifying image distor-
tion types, successfully eliminates the prediction bias, leading
to significantly improved quality prediction of the stereoscopic
images.

Index Terms—Image quality assessment, stereoscopic image,
3D image, asymmetric distortion, SSIM, divisive normalization,
contrast sensitivity function.

I. INTRODUCTION
VER the past years, we have observed an exponential
increase in the demand for 3D image and video
services. High-quality 3D movies can now be seen in
thousands of new generation 3D theaters all around the world.
Meanwhile, 3D TV has become technologically mature and
won an increasing market share in the consumption market
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since 2011, where non-cinematic 3D contents could be from
Blu-ray 3D or 3D broadcasting [1]. It is expected that mobile
phones will be the largest 3D display application on a unit
shipment basis in 2018, when 71 million units will have
3D capability [2]. Nevertheless, automatically assessing the
quality of 3D visual experience is a challenging problem
due to the complex and non-intuitive interactions between
multiple 3D visual cues including image quality, depth quality
and visual comfort [3], [4]. As a result, recent progress on
3D image quality assessment (IQA) remains limited. This lack
of successful objective IQA methods for 3D visual experience
has limited the development of 3D imaging applications and
services.

In this work, we focus on how to predict the quality of a
stereoscopic 3D image from that of the 2D single-view images.
First, we carry out a subjective quality assessment experiment
on a database that contains both single-view images and
stereoscopic images with symmetric and asymmetric distor-
tion types and levels. This database allows us to directly
study the quality prediction performance from single-view
images to stereoscopic images, for which we observe that
simply averaging the quality of both views creates substantial
bias on asymmetrically distorted stereoscopic images, and
interestingly, the bias could lean towards opposite directions,
largely depending on the distortion types. We then develop an
information content and divisive normalization based pooling
scheme that improves upon SSIM in estimating the quality
of single-view images. Furthermore, by incorporating spatial
frequency tuned mechanisms of human visual system (HVS),
we propose a binocular rivalry inspired model to account for
the bias, which not only results in better quality prediction
of stereoscopic images with asymmetric distortion levels, but
also well generalizes to the case of asymmetric distortions with
mixed distortion types.

II. REVIEW OF PREVIOUS 3D-IQA STUDIES
A. Previous Subjective 3D-1QA Studies

To the best of our knowledge, there are currently 8 subject-
rated image databases that are commonly recognized in the
3D-IQA research community. Table I lists these databases with
detailed descriptions. Among them LIVE 3D Image Quality
Database Phase I, LIVE 3D Image Quality Database Phase II,
IRCCyN/IVC 3D Images Database, and MMSPG 3D Image
Quality Assessment Database are publicly available.

Subjective data is essential in understanding the impact of
various distortions on the perceptual quality of stereoscopic
images. Ideally, we would need a complete set of subjective
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TABLE I
SUMMARY OF EXISTING 3D IMAGE QUALITY DATABASES

Database # of subjects Protocol Display | # of images | Image Sizes Distortions

LIVE 3D Image Quality Database Phase 32 SSCQS Passive 385 640 x 360 JPEG2000, JPEG, white noise,
1[5] gaussian blur, fast fading

LIVE 3D Image Quality Database Phase 33 SSCQS Active 368 640 x 360 JPEG2000, JPEG, white noise,
1I [6] gaussian blur, fast fading
IRCCyN/IVC 3D Images Database [7] 17 SAMVIQ Active 96 512 x 448 JPEG2000, JPEG, gaussian blur
MICT 3D Image Quality Evaluation 24 SSCQS Auto 500 640 x 480 JPEG

Database [8]

Ningbo University 3D Image Quality 20 DSCQS Passive 410 1252 x 1110 to | JPEG2000, JPEG, white noise,
Assessment Database Phase 1 [9] 1390 x 1110 gaussian blur

Ningbo University 3D Image Quality 26 DSCQS Passive 324 480 x 270 to | JPEG2000, JPEG, white noise,
Assessment Database Phase II [10] 1024 x 768 gaussian blur, H.264 compression
Tianjin University 3D Image Quality As- N/A DSCQS Auto 300 320 x 240 to | JPEG2000, JPEG, white noise
sessment Database [11] 1024 x 768

MMSPG 3D Image Quality Assessment 17 SSCQS Passive 100 1920 x 1080 Different camera distances
Database [12]

test on an image database that contains both 2D (single-view)
and stereoscopic 3D images, both symmetrically and
asymmetrically distorted images at different distortion levels,
as well as both single- and mixed-distortion images. The
above-mentioned existing 3D image quality databases
are highly valuable but limited in one aspect or another.
Specifically, IRCCyN/IVC 3D Images Database, Tianjin
University Database, Ningbo University Database Phase II,
and LIVE 3D Image Quality Database Phase I only
include symmetrically distorted stereoscopic images. Ningbo
University Database Phase I only includes asymmetrically
distorted stereoscopic images. MICT 3D Image Quality
Evaluation Database contains both cases but only for JPEG
compressed images. The most recent LIVE 3D Image Quality
Database Phase II includes both symmetric and asymmetric
cases as well as five distortion types. Unfortunately, 2D-IQA
of single-view images are missing, making it difficult to
directly examine the relationship between the perceptual
quality of single-views and stereoscopic images. In addition,
asymmetric distortions with mixed distortion types are
missing in all existing databases, making it hard to validate
the generalization capability of 3D quality prediction models.

B. Previous Objective 3D-IQA Studies

Existing objective 3D-IQA or 3D video quality
assessment (3D-VQA) models may be grouped into two
categories. The first type of approaches are built directly upon
successful 2D-IQA methods. These approaches can be further
divided into two subcategories, depending on the use of depth
or disparity information. Methods in the first subcategory do
not explicitly use depth information. In [13] and [14],
2D-IQA measures, including peak-signal-to-noise
ratio (PSNR), structural similarity (SSIM) [15] and video
quality metric (VQM) [16], were applied to the left- and
right-view images of 3D videos separately and then combined
to a 3D quality score. Both experimental results showed that
VQM performs better than PSNR and SSIM possibly due
to the temporal considerations in VQM. In [17], PSNR and
VSSIM [18], which is a version of SSIM adapted for video,
were compared to measure the perceptual 3D quality and the

VSSIM was found to be closer to the subjective evaluation
results. In [19], four 2D-IQA metrics, namely SSIM,
universal quality index (UQI) [20], C4 [21] and RRIQA [22]
as well as three approaches, called average approach, main
eye approach, and visual acuity approach, were tested for
measuring the perceptual quality of stereoscopic images. The
experimental results show that C4 outperforms the other three
metrics on IRCCyN/IVC 3D Images Database. The second
subcategory of methods incorporates depth information
with 2D-IQA. In [7] and [23], disparity maps between left-
and right-views were estimated, followed by 2D quality
assessment of disparity quality using SSIM and C4, which
was subsequently combined with 2D image quality to produce
an overall 3D image quality score. The results claimed that
C4 outperforms SSIM on both evaluating stereoscopic
image pairs and disparity maps on IRCCyN/IVC 3D Images
Database and also suggested that the 3D-IQA performance
of SSIM can be improved when adding depth quality.
You et al. [24] investigated the capabilities of evaluating
stereopairs as well as disparity maps with respect to ten well-
known 2D-IQA metrics, i.e., PSNR, SSIM, multi-scale
SSIM  (MS-SSIM) [25], UQI, visual information
fidelity (VIF) [26], etc. Their results suggested that an
improved performance can be achieved when stereo image
quality and depth quality are combined appropriately.
Similarly, Yang et al [11], [27] proposed a 3D-IQA
algorithm based on the average PSNR of left- and right-views
and the absolute difference with respect to disparity map.
However, none of these more sophisticated 3D-IQA models
perform better than or in most cases, even as good as, direct
averaging 2D-IQA measures of both views [6].

The second type of 3D-IQA or 3D-VQA approaches focus
on building 3D quality models directly without relying on
existing 2D-IQA algorithms. In [28], Gorley and Holliman
computed quality scores on matched feature points delivered
by SIFT [29] and RANSAC [30]. The experimental results
showed that the stereo band limited contrast model performs
better than PSNR. In [31], an estimation of stereo image
quality was proposed based on a multiple channel HVS model.
In [32], Zhu amd Wang proposed a 3D-VQA model by
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considering depth perception and their experimental results
showed that it performs better than MSE and PSNR. In [33],
Jin et al. proposed a 3D-VQA model based on 3D-DCT
transform. Similar blocks from left- and right-views are found
by block-matching, grouped into 3D stack and then analyzed
by 3D-DCT. The experimental results showed that the model
outperforms PSNR, SSIM, MS-SSIM and UQI on 3D video
database [34].

Of particular interests are several models that consider
binocular visual characteristics. The quality metric presented
in [35] is based on binocular energy contained in the left-
and right-views calculated by complex wavelet transform and
Bandelet transform and the results showed that it outperforms
the no-reference 3D-IQA model proposed in [8]. In [36],
a stereo-version of SSIM based on binocular quality perception
was proposed. Three components, luminance, contrast, and
structural similarities, are combined into a quality index
using a binocular quality perception model. The experimental
results showed that the binocular perception model performs
better than PSNR, SSIM as well as 3D-IQA models [7], [27]
on IRCCyN/IVC 3D Images Database. In [37], a quality
assessment algorithm of stereoscopic image compression
based on binocular combination and binocular frequency inte-
gration was proposed. The experimental results showed that
the binocular integration model performs better than 3D-IQA
models [28], and [38], but not good as [7], [24], and [39] on
LIVE 3D Image Quality Database Phase II. In [40], a stereo-
scopic image is separated into different binocular regions, each
evaluated independently by considering their visual properties,
followed by an integration step to produce an overall quality
score. The experimental results showed that the region-based
model outperforms PSNR, MS-SSIM and VIF as well as
3D-IQA models [7], [24] on Ningbo University 3D Image
Quality Assessment Database Phase II. In [39], a “cyclopean”
3D-IQA model accounting for binocular rivalry was proposed
and the experimental results showed that the framework
significantly outperforms conventional 2D-IQA metrics
PSNR, SSIM, MS-SSIM and VIF as well as [7], [24], [28],
and [38] on LIVE 3D Image Quality Database Phase II.

C. Observations

Recent subjective studies suggested that in the case of
symmetric distortion of both views (in terms of both distortion
types and levels), simply averaging state-of-the-art 2D-IQA
measures of both views is sufficient to provide reasonably
accurate image quality predictions of stereoscopic images.
In particular, in [5], it was shown that averaging PSNR,
SSIM, MS-SSIM, UQI and VIF measurements of left- and
right-views performs equally well or better than the advanced
3D-1QA models [7], [11], [24], [27], [28], [31], [32], [38], [41]
on LIVE 3D Image Quality Database Phase I. Similar results
were also observed in [6], where averaging SSIM and
MS-SSIM  measurements of both views outperformed
advanced 3D-IQA models [7], [24], [28], [37], [38], [41]
on LIVE 3D Image Quality Database Phase II. In [40], it
was reported that directly averaging MS-SSIM outperformed
3D-IQA models [7], [24] on Ningbo University 3D Image
Quality Assessment Database Phase II.
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Fig. 1. The 6 pristine images in Waterloo-IVC 3D database Phase 1. Only
the right-views are shown here. (a) Art. (b) Books. (c) Dolls. (d) Moebius.
(e) Laundry. (f) Reindeer.

Compared with the case of symmetric distortions, quality
assessment of asymmetrically distorted stereoscopic images
is a much more challenging problem. In [6], it was reported
that there is a large drop in the performance of both
2D-IQA and 3D-IQA models from quality predictions
of symmetrically to asymmetrically distorted stereoscopic
images on LIVE 3D Image Quality Database Phase II.

It is worth noting that previous studies exhibit somewhat
conflicting observations and opinions regarding the effect
of asymmetric distortions. For image blur, evidence in [42]
shows that the quality of asymmetrically blurred images is
more affected by the higher quality view, which is generally
consistent with the results given in [9]. For image blockiness,
it was reported in [43] that 3D image quality should be
approximated by averaging the quality of high quality and low
quality views but there is a tendency towards the low quality
view and this tendency becomes stronger when compression
levels are high and images contain homogeneous areas. In [42],
an under-weighting when direct averaging the quality of both
views is found for monocular blockiness from MPEG-2 codec.
In [9], it was suggested that the best strategy of asymmetric
quality assessment for JPEG compressed images should be
content and texture dependent.

ITI. SUBJECTIVE STUDY
A. Waterloo-IVC 3D Image Quality Database Phase [

The new Waterloo-IVC 3D Image Quality database Phase
I is created from 6 pristine stereoscopic image pairs (and thus
their corresponding single-view images) shown in Fig. 1, all
collected from the Middlebury Stereo 2005 Datasets [44].
The original resolution of single-view images is 1390 x 1100
or 1342 x 1100. All single-view images and stereopairs were
slightly cropped to fit a display of 1920 x 1080 resolution. Each
single-view image was altered by three types of distortions:
additive white Gaussian noise contamination, Gaussian
blur, and JPEG compression. Each distortion type had four
distortion levels, where the distortion control parameters
were decided to ensure a good perceptual separation between
distortion levels as reported in Table II. More specially,
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TABLE II
VALUE RANGES OF CONTROL PARAMETERS
FOR DISTORTION SIMULATION

Distortion Control Parameter Range
Noise Variance of Gaussian | [0.10 0.53]
Blur Variance of Gaussian [2 20]
JPEG Quality Parameter [3 10]

TABLE III
CATEGORIES OF TEST IMAGES ON WATERLOO-IVC DATABASE PHASE I

Group | # of images | Description

2D.0 6 x 1 Pristine single-view images

2D.1 6 x 12 Distorted single-view images

3D.0 6 x 1 Pristine stereopairs

3D.1 6 x 12 Symmetrically distorted stereopairs with the
same distortion type and distortion level

3D.2 6 x 12 Asymmetrically distorted stereopairs with dis-
tortion on one view only

3D.3 6 x 18 Asymmetrically distorted stereopairs with the
same distortion type but different levels

3D.4 6 x 12 Asymmetrically distorted stereopairs with
mixed distortion types and levels

additive white Gaussian noise was applied equally across
the R, G and B color channels. Similarly, Gaussian blur was
simulated by applying a Gaussian low-pass filter to each of the
color channels. For both noise and blur, the control parameter
was the variance of the Gaussian. JPEG Compression
was simulated using MATLAB®’s JPEG compression
utility imwrite (Write True Color Image to JPEG). The
single-view images were employed to generate distorted stere-
opairs, either symmetrically or asymmetrically. Altogether,
there are totally 78 single-view images and 330 stereoscopic
images. Table III categorizes these images into seven groups
with detailed descriptions. Group 3D.1, Group 3D.2 and
Group 3D.3 cover all combinations while Group 3D.4
includes a random subset from all possible fusions.

To the best of our knowledge, there are two unique
features of the current database when compared with existing
publicly known 3D-IQA databases. First, this is the only
database that allows us to perform subjective test on both
2D and 3D images. The inclusion of 2D images allows us
to directly examine the relationship between the perceptual
quality of stereoscopic images and that of its single-view
images. This is advantageous against previous studies which
do not have ground truth of 2D image quality but have to rely
on objective 2D-IQA measures to provide estimates. Second,
this is the only database that contains mixed distortion types in
asymmetrically distorted images.

The motivation of including different asymmetrical
distortion levels and various mixed distortion types is
threefold. First, purely for scientific curiosity, we are inter-
ested in knowing how the HVS behaves in the cases of
asymmetrical/mixed distortions. Second, asymmetrical/mixed
distortions are realistic in practice. For example, in the case
of multi-exposure stereo images [45], because of the different
exposure levels being used on different views, the amount of
noise coming into the left- and right-view image sensors is
different. For another example, asymmetric blur distortions
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TABLE IV
VIEWING CONDITIONS OF THE SUBJECTIVE TEST
Parameter Value Parameter Value
Subjects Per Monitor 1 Screen Resolution | 1920 x 1080
Screen Diameter 27.00” | Viewing Distance 45.00”
Screen Width 23.53” Viewing Angle 29.3°
Screen Height 13.24” | Pixels Per Degree 65.5 pixels

and asymmetric blocking artifacts can be found in the case
of mixed-resolution coding and asymmetric transform-domain
quantization coding, and such distortions could have mixed
types when postprocessing techniques (deblocking or blurring)
are employed. Moreover, many 3D images are captured by
a texture image view plus a depth map, where the texture
image, which could contain noise, is used as one view, and
the other view can be synthesized by combining the texture
image with the depth map. Such a stereoscopic image contains
both noise and mixed types of distortions. Third, the inclusion
of these images provides the potential of a much stronger test
on 3D-IQA models on their generalizability. Such test has been
largely lacking in previous studies where the development of
objective 3D-IQA models only took into account asymmetric
distortions of specific and very limited distortion types such
as compression only.

B. Subjective Test

The subjective test was conducted in the Lab for Image
and Vision Computing at University of Waterloo. The test
environment has no reflecting ceiling walls and floor, and was
not insulated by any external audible and visual pollution.
An ASUS 277 VG278H 3D LED monitor with NVIDIA
3D Vision™?2 active shutter glasses is used for the test. The
default viewing distance was 3.5 times the screen height. In the
actual experiment, some subjects did not feel comfortable
with the default viewing distance and were allowed to adjust
the actual viewing distance around it. The details of viewing
conditions are given in Table IV.

Twenty-four ndive subjects, 14 males and 10 females aged
from 22 to 45, participated in the study. A 3D vision test
was conducted first to verify their ability to view stereoscopic
3D content. Three of them (1 male, 2 females) failed the vision
test and did not continue with the subsequent experiment.
As a result, a total of twenty-one naive subjects proceeded to
the formal test.2 Following previous works [3], [4], and [46],
the subjects were asked to evaluate four aspects of their
3D viewing experience, including the perception of 3D image
quality (3DIQ), depth quality (DQ), visual comfort (VC)
and overall 3D quality of experience (3DQoE). The detailed
descriptions of each aspects of visual experience including
2D image quality are elaborated in Table V. Since to visualize
every 3D stereoscopic image, the subjects need to readjust
their eyes so as to adapt to the content of the scene and
establish 3D perception, using a double stimulus approach
leads to interruptions of the viewing experience. Therefore, to

2While a visual acuity test was not performed in this study, a verbal
confirmation was obtained prior to the experiment and subjects were asked to
use their eyeglasses or contact lenses to correct their visual acuities.
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TABLE V
DESCRIPTION OF VISUAL EXPERIENCE CRITERIA

Criterion | Description
2DIQ The image content quality
3DIQ The image content quality without considering 3D viewing
experience
DQ The amount, naturalness and clearness of depth perception
experience
vC The comfortness when viewing stereoscopic images
3DQoE The overall 3D viewing experience

reduce this effect, we choose to use the single stimulus proce-
dure using an 11-grade numerical categorical scale (SSNCS)
protocol.

Our pilot tests showed that one-pass experiment (where
a subject gives 3DIQ, DQ, VC, and 3DQoE scores to each
stereoscopic image in one trial) may cause significant visual
fatigue of the human subjects within a short period of time.
To avoid this problem, we resorted to a multi-pass approach [4]
in the formal test, where within each pass, the subject gives
one of the four scores. We also found that the 2D perceptual
quality of left- and right-views are so close to each other at
the same distortion types and levels, so that the difference in
their mean opinion scores (MOS) is negligible. Thus in order
to control the scale of this subjective experiment, only one of
the views were tested (randomly picked) in Group 2D.0 and
Group 2D.1 in the formal test.

The test was scheduled on two consecutive days for each
subject. Day 1 (2 hours) was dedicated to 2DIQ, VC and
3DIQ tests, and Day 2 (2 hours) to DQ and 3DQoE tests.
First, a general introduction was given after the 3D vision
test. All 3D visual experience criteria (3DIQ, DQ, VC and
3DQoE) were introduced and their definitions were given to
subjects in both written and oral forms. After this general
introduction, a preliminary understanding of four 3D visual
experience criteria was expected for the subjects. Second,
specific instructions and training sessions were given before
each sub-test (2DIQ, 3DIQ, DQ, VC and 3DQoE). In each
sub-test, the corresponding rating strategy was first introduced
and the subjects were then required to practice by giving scores
to training images until they fully understood the criteria
and built their own scoring strategies. Note that the training
processes were different depending on the characteristic of
each criterion:

For both 2DIQ and 3DIQ sub-tests, we use three types
of images in the training phase: pristine images, moderately
distorted images, and highly-distorted images. The subjects
were told to give scores at the high end (close to 10 pts) to the
pristine images, at the mid-range to the moderately distorted
images, and at the low end (close to O pts) to the highly-
distorted images. For both DQ and VC sub-tests, self-training
processes were employed to help the subjects establishing their
own strategies. Previous works reported that the perception
of DQ and VC are both highly content and texture depen-
dent [43] and subject dependent [4], [46]. We agree with these
observations and believe that it is not desirable to educate the
subjects to use the same given rating strategy. For the overall
3DQOoE sub-test, there is no training session. The subjects were
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asked to rate each stereopair based on their overall impression.
They were asked to consider the previously introduced visual
experience criteria 3DIQ, DQ and VC and were encouraged
to use their own strategies to use these criteria.

All stimuli were shown once in each sub-test. However,
there were 6 repetitions for single-view images and
12 repetitions for stereopairs, which means that for
each subject, her/his first 6 single-view images and first
12 stereopairs were shown twice. The order of stimuli was
randomized and the consecutive testing single-view images
or stereopairs were from different source images. The 2DIQ
sub-test, including 84 testing single-view images with 6 repeti-
tions, was finished under 10 minutes. For 3DIQ , DQ , VC and
3DQOoE sub-tests, 342 testing stereopairs with 12 repetitions
were partitioned into two sessions and each single session
(171 stereopairs) was finished in 15 to 20 minutes. Sufficient
relaxation periods (5 minutes or more) were given between
sessions.

Moreover, we found that repeatedly switching between
viewing 3D images and grading on a piece of paper or a
computer screen is a tiring experience. To overcome this
problem, we asked the subject to speak out a score between
0 and 10, and a customized graphical user interface on another
computer screen was used by the instructor to record the
score. All these efforts were intended to reduce visual fatigue
and discomfort of the subjects and to reduce the interference
between different visual experience criteria.

The rest of the paper focuses on the relationship between
the single-view 2D image quality (2DIQ scores) and the
3D image quality (3DIQ scores). More detailed descriptions
of our database and analysis of the other aspects of the
subjective experiments will be reported in future publications.

C. Waterloo-1VC 3D Image Quality Database Phase I1

The new Waterloo-IVC 3D Image Quality database Phase II
with more diverse image content is created from 10 pristine
stereoscopic image pairs (and thus their corresponding
single-view images) shown in Fig. 2. All images were
collected from previous subjective 3D quality studies [47], [48]
and the resolution of all images is 1920 x 1080. Each
single-view image was altered by the same three types of
distortions and each distortion type had the same four distor-
tion levels. The single-view images were employed to generate
distorted stereopairs, either symmetrically or asymmetrically.
Altogether, there are totally 130 single-view images and
460 stereoscopic images.

The subjective test was conducted with the same test settings
and viewing conditions as described in Section III-B. Here
we only describe some important differences. Twenty-two
nidive subjects, 11 males and 11 females aged from 21 to 34,
participated in the study and no one failed the vision test.
As a result, all twenty-two subjects proceeded to the formal
test. There were 20 repetitions for single-view images and
20 repetitions for stereopairs. All single-view images or around
160 stereopairs were evaluated in one session. Currently, only
2DIQ and 3DIQ sub-tests were conducted on Waterloo-IVC
Phase II.
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Fig. 2. The 10 pristine images in Waterloo-IVC 3D database Phase II. Only the right-views are shown here. (a) Barrier. (b) Hall. (c) Laboratory. (d) Persons.

(e) Soccer. (f) Tree. (g) Umbrella. (h) CraftLoom. (i) OldTownCar. (j) Dancer.

TABLE VI
PERFORMANCE COMPARISON OF 2D-TO-3D QUALITY PREDICTION MODELS ON WATERLOO-IVC 3D DATABASE

PLCC SRCC KRCC
Dataset Method Direct Average  Proposed Weighting Direct Average  Proposed Weighting Direct Average  Proposed Weighting

All 3D 0.8835 0.9561 0.8765 0.9522 0.7161 0.8162

Group 3D.1 0.9801 0.9801 0.9657 0.9657 0.8482 0.8482

Waterloo-IVC Phase 1 Group 3D.2 0.6247 0.9177 0.5433 0.9160 0.4406 0.7556
Group 3D.3 0.9667 0.9719 0.9164 0.9307 0.7597 0.7789

Group 3D.4 0.9224 0.9672 0.8271 0.9357 0.6390 0.7822

All 3D 0.8769 0.9571 0.8820 0.9477 0.7145 0.8080

Group 3D.1 0.9802 0.9802 0.9696 0.9696 0.8557 0.8557

Waterloo-IVC Phase II | Group 3D.2 0.6123 0.9486 0.5874 0.9497 0.4524 0.8070
Group 3D.3 0.9485 0.9657 0.8898 0.9318 0.7176 0.7745

Group 3D.4 0.9261 0.9550 0.8798 0.9320 0.7047 0.7803

D. Analysis and Key Observations

The raw 2DIQ and 3DIQ scores given by each subject
were converted to Z-scores, respectively. Then the entire
data sets were rescaled to fill the range from 1 to 100 and
the MOS scores for each 2D and 3D image was computed
after removing outliers. Given the subjective data, the main
question we would like to ask in the current paper is how the
single-view 2D image quality predicts the 3D image quality
(3DIQ scores in the subjective test), especially for the case of
asymmetric distortions. The most straightforward 2D-to-3D
quality prediction method is to average the MOSs of the left-
and right-view images. The first column of Fig. 3 shows the
corresponding scatter plots for Waterloo-IVC database Phase 1
while the third column of Fig. 3 shows the scatter plots for
Waterloo-IVC database Phase II. Table VI reports Pearson’s
linear correlation coefficient (PLCC), Spearman’s rank-order
correlation coefficient (SRCC) and Kendall’s rank-order
correlation coefficient (KRCC) between 3DIQ-MOS scores
and the average 2DIQ-MOS scores, including the results for all
stereoscopic images and for each test image group. PLCC are
adopted to evaluate prediction accuracy [49] and SRCC and
KRCC are employed to assess prediction monotonicity [49].
Higher PLCC, SRCC and KRCC indicate better consistency
with human opinions of quality. PLCC is usually computed
after a nonlinear mapping between the subjective and objective
scores and the results may be sensitive to the choice of the
mapping function. SRCC and KRCC are nonparametric rank
order-based correlation metrics, independent of any monotonic
nonlinear mapping between subjective and objective scores
but do not explicitly estimate the accuracy of quality
prediction.

From Table VI and the first and the third columns
of Fig. 3, it can be observed that the best prediction occurs
in Group 3D.1, which is the category for symmetrically
distorted 3D images (consistent with the literature [5], [6]).
By contrast, the PLCC, SRCC and KRCC values drop
significantly in other test groups (corresponding to
asymmetrical distortions) as well as in the all-image
group. The drops of correlation coefficient values are also
reflected in the scatter plots shown in Fig. 3, where this
simple averaging prediction model generates substantial bias
of many stereopairs. Most interestingly, this bias leans towards
opposite directions, largely depending on the distortion types.
In particular, for noise contamination and JPEG compression,
average prediction overestimates 3D quality of many images
(or 3D image quality is more affected by the poorer quality
view), while for blur, average prediction often underestimates
3D image quality (or 3D image quality is more affected by
the better quality view). Furthermore, Table VI suggests that
the worst performance occurs in Group 3D.2, where only
one view image is distorted and thus the quality difference
between two views is maximized.

It is interesting to compare our observations regarding
distortion type dependency with those published in the
literature. For image blur, it was reported in [9] and [42]
that 3D image quality is less affected by the view with
lower quality, which is consistent with our result. For image
blockiness from JPEG compression, in [43], it is claimed
that 3D image quality is approximately the average of the
higher quality and the lower quality but there is a tendency
towards the lower quality view, which is consistent with our
observations especially when one of view is highly compressed
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Fig. 3. 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views. First column, predictions by averaging the 2DIQ-MOS scores of
both views on Waterloo-IVC Phase I; Second column, predictions by weighting the 2DIQ-MOS scores of both views on Waterloo-IVC Phase I; Third
column, predictions by averaging 2DIQ-MOS scores of both views on Waterloo-IVC Phase II; Fourth column, predictions by weighting 2DIQ-MOS scores
of both views on Waterloo-IVC Phase II. (a) All Images, Average 2DIQ-MOS. (b) All Images, Weighted 2DIQ-MOS. (c) All Images, Average 2DIQ-MOS.
(d) All Images, Weighted 2DIQ-MOS. (e) Noisy Images, Average 2DIQ-MOS. (f) Noisy Images, Weighted 2DIQ-MOS. (g) Noisy Images, Average 2DIQ-MOS.
(h) Noisy Images, Weighted 2DIQ-MOS. (i) Blurred Images, Average 2DIQ-MOS. (j) Blurred Images, Weighted 2DIQ-MOS. (k) Blurred Images, Average
2DIQ-MOS. (1) Blurred Images, Weighted 2DIQ-MOS. (m) JPEG Images, Average 2DIQ-MOS. (n) JPEG Images, Weighted 2DIQ-MOS. (o) JPEG Images,
Average 2DIQ-MOS. (p) JPEG Images, Weighted 2DIQ-MOS. (q) Mixed Distortion, Average 2DIQ-MOS. (r) Mixed Distortion, Weighted 2DIQ-MOS.
(s) Mixed Distortion, Average 2DIQ-MOS. (t) Mixed Distortion, Weighted 2DIQ-MOS.

40 60 40 60 8 40 60
Average 2DIQ-MOS Weighted 2DIQ-MOS Average 2DIQ-MOS

and the other keeps uncompressed. Meanwhile, in [9], no bias  are well explained by the scatter plots shown in Fig. 3 and the
was discovered when lower levels of asymmetric JPEG com- 2D-line plot shown in Fig. 4, which shows 3DIQ-MOS versus
pression were evaluated. These seemingly controversial results — average 2DIQ-MOS minus 3DIQ-MOS for the case of strong
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Fig. 4. 3DIQ-MOS versus average 2DIQ-MOS - 3DIQ-MOS for Group 3D.2
on Waterloo-IVC Phase I and Phase II.

asymmetric compressions (Group 3D.2) on Waterloo-IVC
Phase I and Phase II. From these figures, it can be observed
that the bias of the averaging prediction model increases with
the level of distortions, and thus the strength of the bias is
pronounced depending on the quality range being investigated.

E. Impact of Eye Dominance

Eye dominance is a common visual phenomenon, referring
to the tendency to prefer the input from one eye to the other,
depending on the human subject [50]. When studying visual
quality of asymmetrically distorted images, it is important
to understand if eye dominance plays a significant role in
the subjective test results. For this purpose, we carried out
a separate study on the impact of eye dominance in the
perception of asymmetrically distorted stereoscopic images.

Twenty subjects (12 males and 8 females) participated in
the experiment. The side of the dominant eye under static
conditions was checked first by Rosenbach’s test [51]. This
test examines which eye determines the position of a finger
when the subject is asked to point to an object. Ten subjects
(7 males, 3 females) had a dominant left eye, and the others
(5 males, 5 females) are right-eye dominant. A subjective
test was conducted with the same test settings and viewing
conditions as described in Section III-B. All test images are
selected from Waterloo-IVC 3D database Phase I, which are
the case of strong asymmetric distortions (Group 3D.2) and
mixed distortions (Group 3D.4). Each asymmetric image
creates two test cases, with the left- and right-views
exchanged. Altogether, there are totally 78 symmetric stereo-
scopic images and 144 pairs (288 singles) of asymmetrically
distorted stereoscopic images.

The MOS scores for each image were computed for
left-eye dominant subjects and right-eye dominant subjects,
denoted as MOS;, and MOSR, respectively. We employed
the one-sample z-test to obtain a test decision for the null
hypothesis that the difference between MOS|, and MOSg, i.e.,
MOSp = MOS;, — MOSR, comes from a normal distribution
with of zero-mean and unknown variance. The alternative
hypothesis is that the population distribution does not have
a mean equaling zero. The result % is 1 if the test rejects the
null hypothesis at the 5% significance level, and 0 otherwise.
The returned p-values for symmetric and asymmetric
images are 0.3801 and 0.1322, respectively, thus the null
hypothesis cannot be rejected at the 5% significance level,
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which indicates that the impact of eye dominance in the
perception of asymmetrically distorted stereoscopic images
is not considered significant. This is consistent with the
“stimulus” view of rivalry that is widely accepted in the field
of visual neuroscience [52]. A comprehensive review and
discussion on the question of “stimulus” rivalry versus “eye”
rivalry can also be found in [52] and [53].

IV. OBIECTIVE STUDY: 2D-T0-3D QUALITY PREDICTION

We opt to use a two-stage approach in the design of an
objective 3DIQ predictor. The first stage aims to evaluate
the perceptual quality of single-view images, while in the
second stage, a binocular rivalry inspired multi-scale model
is developed to combine 2D image quality of both views into
a quality estimation of 3D image quality.

A. Objective 2D Quality Assessment

In the literature, the SSIM index [15] as well as its
derivatives MS-SSIM [25] and information content weighted
SSIM  (IW-SSIM) [54] have demonstrated competitive
performance in 2D objective IQA tests [54]. An advantage
of the SSIM approach is that it provides a quality map that
indicates the variations of image quality over space [15].
It was shown that spatial pooling built upon the quality
map based on information content weighting or distortion
weighting further improves the performance [54]. Here
we build our 2D-IQA model upon SSIM, but improve it
further by incorporating an information content and divisive
normalization based pooling scheme.

A general form of spatially weighted pooling is given by

N .

where ¢; and w; are the local quality value (e.g., local SSIM
value) and the weight assigned to the i-th spatial location
(i-th pixel), respectively. The assumption behind information
content weighted pooling is that the spatial locations that
contain more information are more likely to attract visual
attention, and thus should be given larger weights. Let
x; and y; be the local image patches extracted around the i-th
spatial location from the reference and the distorted images,
respectively. Following the information content evaluation
method in [55], we compute the weighting factor by

| o2 o2
Wi = log [(1 + ?)(1 + 7)} @

where oy, and oy, are the standard deviations of x; and y;,
respectively, and C is the noisy visual channel power.
Another useful pooling strategy is distortion weighted
pooling, which is based on the intuitive idea that the spatial
locations that contain more distortions are more likely to
attract visual attention, and thus should be given more weights.
Since the local quality has been gauged by ¢; (e.g., the SSIM
value at location i), it is straightforward to convert it to a local
distortion measure, for example, let d; = 1 — SSIM,;. Divisive
normalization has been recognized as a perceptually and
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Fig. 5. Diagram of the proposed 2D-to-3D quality prediction model.
TABLE VII

PERFORMANCE COMPARISON OF 2D-IQA MODELS ON WATERLOO-IVC
3D DATABASE (SINGLE-VIEW IMAGES)

‘Waterloo-IVC Phase I ‘Waterloo-IVC Phase 11

2D-1QA PLCC  SRCC  KRCC | PLCC _ SRCC _ KRCC
PSNR 0.7878 04800 03552 | 0.7238 03885 _ 0.2832

SSIM 08775 0.7726 05715 | 0.7824  0.6232 _ 0.4441
MS-SSIM | 0.8440 0.6402 04821 | 0.7455  0.5049 _ 0.3590
IW-SSIM | 0.8790  0.7696 _ 0.5909 | 0.7960  0.6310 _ 0.4640
IDW-SSIM | 0.9634 09430  0.7865 | 0.9540 09341  0.7780

statistically motivated non-linear transformation [56].

We apply divisive normalization to the local distortion map
and define a normalized distortion based weighting factor by

d di

i >
VXZjenidj + Do

where A; denotes the set of neighboring pixels surrounding
the i-th spatial location, and Dy is a stability constant.

The final weighting factor is obtained by combining
information content and divisive normalization-based distor-
tion weighting factors

o =1 01

where the max operation is based on the strategy to choose
either w'® or w?, depending on which one is more significant.

Applying this weighted pooling approach to the SSIM
map, we obtain an information content and distortion
weighted SSIM (IDW-SSIM) measure. This has led to
significant performance improvement when tested using
the single-view images in our new Waterloo-IVC database
Phase I and Phase II. Quantitative measures of PLCC, SRCC
and KRCC can be found in Table VII.

3)

“)

B. 2D-to-3D Quality Prediction Model

The competition between binocular fusion and binocular
rivalry [57] provides a potential theory to develop

2D-to-3D quality prediction models. When the left- and
right-view images are consistent, they are fused in the visual
system to a single percept of the scene, known as binocular
fusion. On the other hand, when the images of the two
views are inconsistent, instead of the two images being seen
superimposed, one of them may dominate or two images may
be seen alternately, known as binocular rivalry [57]. Although
there is a rich literature on binocular fusion and rivalry in
biological vision science [57], [58] (where simple and ideal
visual stimuli are often used), how to apply the principle to
3D-IQA remains an active research topic. Since in 3D-IQA
we need to work on complicated scenes and distortions,
simplifications are essential to create practical solutions.

Our work is motivated by existing vision studies on
binocular rivalry [59]-[62], where it was found that for simple
ideal stimuli, an increasing contrast increases the predom-
inance of one view against the other. Also note that in
complicated scenes the contrast of a signal increases with
its signal strength measured using energy. This inspires us to
hypothesize that the strength of view dominance in binocular
rivalry of stereoscopic images is related to the relative energy
of the two views.

The diagram of the proposed method is shown in Fig. 5. Let
(Ir1, Ir,r) and (14,1, 14,r) be the left- and right-view image pairs
of the reference and distorted stereoscopic images, respec-
tively. We first create their local energy maps by computing
the local variances at each spatial location, i.e., the variances
of local image patches extracted around each spatial location
from the reference or the distorted images are computed,
for which an 11 x 11 circular-symmetric Gaussian weighting
function w = {w;|i = 1,2,---, N} with standard deviation
of 1.5 samples, normalized to unit sum (Z:f-v:1 w; 1),
is employed. The resulting energy maps are denoted as
E.i;, E.,, Eq; and Eg4,, respectively. Examples are given
in Fig. 6 and Fig. 7, where the reference or distorted images
are used as the background, and the pixels with local energy
larger than 50 are highlighted as black.
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(b)

Fig. 6. Binocular Rivalry Example 1: The left-view is original and
the right-view is blurred. The structural consistency between two-views is
affected. The left-view may dominate the right-view at any time instance.
(a) Left-view: Reference. (b) Right-view: Blur.

(b)

Fig. 7. Binocular Rivalry Example 2: The left-view is original and the right-
view is JPEG compressed. The structural consistency between two-views is
affected. The right-view may dominate the left-view at any time instance.
(a) Left-view: Reference. (b) Right-view: JPEG.

Assume that the reference stereopair has perfect quality with
strong 3D effect, where binocular fusion prevails. When at
least one of the single-view images is distorted at some spatial
locations, the distortion may affect the consistency between
the image structures from the two views, and thus binocular
rivalry prevails. As a result, one view may dominate the other
at any time instance. Based on our hypothesis, we compute
the local energy ratio maps in both views:

Eq, _ Eq,
EVJ Er,r

The energy ratio maps provide useful local binocular rivalry
information, which may be combined with the qualities of
single-view images to predict 3D image quality. A pooling
stage is necessary for this purpose. High-energy image regions
are likely to contain more information. If the ultimate goal of
visual perception is to efficiently extract useful information
from the visual scene, then the high-energy regions are
more likely to attract visual attention, and thus should be
given more importance. To emphasize on the importance of
high-energy image regions in binocular rivalry, we adopt an
energy weighted pooling method given by

> EaqiR > EarR;
g =%5—— and g =0
> Eaqy > Eqy

where the summations are over the full energy and ratio maps.
Here g; and g, are estimations of the level of dominance of
the left- and right-views, respectively.

Meanwhile, the study presented in [61] suggests that the
dominance of one view over the other in binocular rivalry

R = and R, (5)

(6)
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depends on the spatial frequency content of the stimuli used.
Psychophysical experiments have shown that the spatial
frequency sensitivity of human stereopsis behaves similar
to the visual contrast sensitivity function (CSF) [63], which
accounts for the visual contrast sensitivity as a function of
spatial frequency [64]. We take advantage of this similarity
and treat different spatial frequency subbands based on CSF.
Specifically, we divide an image into multiple scales, by
employing an iterative low-pass filtering and downsampling
procedure, and subsequently calculate the level of view
dominance for every subband of the left- and right-view
images. We then combine the scale level dominance values
of the left- and right-view images and the overall levels of
dominance g; and g, are given by:

Ny

Ny
gr= aigiy and g =D ¢igir, (M
i=1

i=1

where g;; and g; . denote the levels of dominance of the i th
scale of the left- and right-view images, respectively. Ny is the
number of scales and a; denotes the perceptual importance of
the i’ scale determined using the CSF formula given by [64]:

5200¢(—0-0016u*(1+100/L)"%)

Su) = ' ®
144 2) (3. 4 1
\/(1 +x+ 0.64u ) (L0.83 W)

where u, L, and X g denote spatial frequency in cycles/degree,
luminance in cd/m? and angular object area in square
degrees, respectively. a; values are calculated using

ai = S(f). ©)

where f denotes the center spatial frequency of the it scale.
Given the values of g; and g,, the weights assigned to the
left- and right-view images are given by

2 2
W= and  w= S, (10)
8 t&r 8 t&r
respectively.

Finally, the overall prediction of 3D image quality is
calculated by a weighted average of the left- and right-view
image quality:

0% = w 01" +w, Q7°, (1)

where Q7P and Q2P denote the 2D image quality of the
left- and right-views, respectively.

In our previous work, preliminary results on simplified
single-scale model of the proposed approach that ignores

the variation of visual sensitivity across scales were reported
in [65] and [66].

V. VALIDATION

We use two 3D image quality databases to test the proposed
algorithm, which are the new Waterloo-IVC 3D Image Quality
database (Phase I and Phase II) and the LIVE 3D database
Phase II [6]. The latter is a recent database that contains
both symmetrically and asymmetrically distorted images.
Note that the parameters of the proposed 2D-to-3D quality
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TABLE VIII
PERFORMANCE COMPARISON OF 2D-T0O-3D PREDICTION MODELS
PLCC SRCC KRCC
Database 2D-IQA Method Direct Average  Proposed Weighting Direct Average  Proposed Weighting Direct Average  Proposed Weighting
2D-MOS 0.8835 0.9561 0.8765 0.9522 0.7161 0.8162
Waterloo IVC Phase I PSNR 0.6926 0.7419 0.5209 0.5192 0.3775 0.3830
SSIM 0.7105 0.8134 0.5963 0.6712 0.4354 0.5047
IDW-SSIM 0.7943 0.9300 0.7695 0.9177 0.5902 0.7537
2D-MOS 0.8769 0.9571 0.8820 0.9477 0.7145 0.8080
PSNR 0.6391 0.7187 0.4964 0.4948 0.3521 0.3605
Waterloo IVC Phase II SSIM 0.5498 0.7278 0.4684 0.5640 0.3316 0.4000
IDW-SSIM 0.7818 0.8918 0.7740 0.8687 0.5900 0.6901
PSNR 0.7546 0.7764 0.7303 0.7528 0.5372 0.5531
LIVE Phase II SSIM 0.8024 0.8433 0.7925 0.8408 0.6016 0.6444
IDW-SSIM 0.8165 0.9159 0.7973 0.9188 0.6184 0.7441

prediction method are selected empirically when working
with Waterloo-IVC database Phase I, but are completely
independent of the Waterloo-IVC database Phase II and the
LIVE database.

We test the proposed 2D-to-3D quality prediction model on
all 3D images in Waterloo-IVC database Phase I and Phase II
by applying it to the ground truth 2DIQ-MOS scores. The
PLCC, SRCC and KRCC values between 3DIQ-MOS and the
predicted Q3P value for all stereoscopic images and for each
test image group are given in Table VI. The corresponding
scatter plots are shown in the second and the fourth columns
of Fig 3. From Table VI and Fig 3, it can be observed that
the proposed model outperforms the direct averaging method
in almost all cases, and the improvement is most pronounced
in the case of strong asymmetric distortions (Group 3D.2) or
when all test images are put together (All 3D image case).
By comparing different columns of Fig. 3, we observe how
the proposed 2D-to-3D prediction model affects each image
distortion type. For different distortion types, although the
direct averaging method produces different levels of quality
prediction biases towards different directions, the proposed
method, which does not attempt to recognize the distortion
types or give any specific treatment for any specific distortion
type, removes or significantly reduces the prediction biases for
all distortion types. Moreover, as mentioned earlier, the mixed
distortion case provides the strongest test on the generalization
ability of the model, for which the proposed method maintains
consistent performance.

We also test the proposed 2D-to-3D quality prediction
model by applying it to different base 2D-IQA approaches on
both databases. Note that exactly the same 2D-to-3D quality
prediction model obtained from 2DIQ-MOS and 3DIQ-MOS
scores with Waterloo-IVC database Phase I is used and thus
the model is completely independent of any tested objective
2D-IQA approaches including PSNR, SSIM and IDW-SSIM.
The comparison results with the direct averaging method are
shown in Table VIII, where it can be seen that the proposed
method significantly improves most base 2D-IQA methods.
The only exception is PSNR, which might be due to its poor
performance in 2D image quality assessment, and thus merely
changing 2D to 3D prediction method would not lead to any
meaningful result. The scatter plots of 3DIQ-MOS scores
versus predictions by averaging IDW-SSIM and weighting
IDW-SSIM are shown in Fig 8, the first and second columns
are the corresponding scatter plots for Waterloo-IVC database

Phase I while the third and fourth columns are the scatter
plots for Waterloo-IVC database Phase II. From Table VIII
and Fig 8, it can be observed that the proposed 2D-to-3D
model produces the most significant performance improvement
from symmetric to asymmetric distortions in the case of using
IDW-SSIM as the base 2D-IQA approach.

We have also compared the proposed method with
state-of-the-art 3D-IQA approaches [6], [7], [11], [24], [39]
using both databases, and the results are shown
in Tables IX and X, respectively. The proposed method
achieves the best performance in both databases among all
objective IQA methods. The highly competitive performance
in the Waterloo-IVC database Phase II and LIVE database
Phase II is a more convincing result because no parameter
has been determined using the Waterloo-IVC Phase II and the
LIVE database. Another important observation is that there
is a large performance drop in all other objective methods
from symmetric to asymmetric distortions, whereas the drop
is much smaller in the proposed method.

VI. DISCUSSION ON MIXED-DISTORTION
STEREOSCOPIC VIDEO CODING

Studying the impact of asymmetric distortions on the quality
of stereoscopic images not only has scientific values in
understanding the HVS, but is also desirable in the practice
of 3D video compression and transmission. The distortions
involved in 3D video coding/communication are not only
compression artifacts. The practical encoder/decoder also
needs to decide on whether deblocking filters need to be
turned on, and whether mixed-resolutions of the left/right-
views should be used. Mixed-resolution coding, asymmetric
transform-domain quantization coding, and postprocessing
techniques (deblocking or blurring) can be employed
individually or collectively. Previously in [67]-[69], the extent
of the downsampling ratio that can be applied to a low quality
view without a noticeable degradation on the 3D quality
has been investigated. In [69], symmetric stereoscopic video
coding, asymmetric quantization coding and mixed-resolution
coding have been compared and the results suggested that
mixed-resolution coding achieves the best coding efficiency.

In this work, our key observations provide some useful
implication on stereoscopic image/video coding. For JPEG
compression, 3D image quality is more affected by the poorer
quality view, thus the poorer quality view deserves a higher
weight; while for blur, 3D image quality is more affected by
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Fig. 8. 3DIQ-MOS versus predictions from IDW-SSIM of 2D left- and right-views. First column, predictions by averaging the IDW-SSIM estimations of
both views on Waterloo-IVC Phase I; Second column, predictions by weighting the IDW-SSIM estimations of both views on Waterloo-IVC Phase I; Third
column, predictions by averaging IDW-SSIM estimations of both views on Waterloo-IVC Phase II; Fourth column, predictions by weighting IDW-SSIM
estimations of both views on Waterloo-IVC Phase II. (a) All Images, Average IDW-SSIM. (b) All Images, Weighted IDW-SSIM. (c) All Images, Average
IDW-SSIM. (d) All Images, Weighted IDW-SSIM. (e) Noisy Images, Average IDW-SSIM. (f) Noisy Images, Weighted IDW-SSIM. (g) Noisy Images, Average
IDW-SSIM. (h) Noisy Images, Weighted IDW-SSIM. (i) Blurred Images, Average IDW-SSIM. (j) Blurred Images, Weighted IDW-SSIM. (k) Blurred Images,
Average IDW-SSIM. (1) Blurred Images, Weighted IDW-SSIM. (m) JPEG Images, Average IDW-SSIM. (n) JPEG Images, Weighted IDW-SSIM. (o) JPEG
Images, Average IDW-SSIM. (p) JPEG Images, Weighted IDW-SSIM. (q) Mixed Distortion, Average IDW-SSIM. (r) Mixed Distortion, Weighted IDW-SSIM.
(s) Mixed Distortion, Average IDW-SSIM. (t) Mixed Distortion, Weighted IDW-SSIM.

the better quality view, thus the better quality view gains a  distortion types, when one view is JPEG compressed and
higher weight. Such unbalanced weighting is more pronounced the other is blurred, the JPEG compressed view always
for strong asymmetric distortions. Moreover, for mixed obtains a higher weight regardless of their distortion levels.
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TABLE IX

PERFORMANCE COMPARISON OF 2D-TO-3D QUALITY PREDICTION MODELS ON WATERLOO-IVC 3D DATABASE

‘Waterloo-IVC 3D Phase I
PLCC SRCC KRCC
3D-IQA Method All images ~ Symmetric ~ Asymmetric | All images  Symmetric =~ Asymmetric | All images  Symmetric ~ Asymmetric
2D-MOS with Direct Average 0.8835 0.9801 0.8641 0.8765 0.9657 0.8471 0.7161 0.8482 0.6780
2D-MOS with Proposed Weighting 0.9561 0.9801 0.9523 0.9522 0.9657 0.9452 0.8162 0.8482 0.8026
IDW-SSIM with Direct Average 0.7943 0.9638 0.7607 0.7695 0.9480 0.7214 0.5902 0.7979 0.5426
IDW-SSIM with Proposed Weighting 0.9300 0.9638 0.9286 0.9177 0.9481 0.9097 0.7537 0.7989 0.7416
You [24] 0.7125 0.8681 0.7089 0.5968 0.7517 0.5706 0.4351 0.5615 0.4175
Benoit [7] 0.6797 0.8503 0.6970 0.5852 0.7275 0.5766 0.4212 0.5488 0.4135
Yang [11] 0.7061 0.8359 0.7150 0.6106 0.6668 0.6108 0.4428 0.4821 0.4436
Chen [39] 0.7337 0.9553 0.7324 0.6815 0.9241 0.6428 0.5212 0.7551 0.4854
Waterloo-IVC 3D Phase 1T
PLCC SRCC KRCC
3D-IQA Method All images ~ Symmetric ~ Asymmetric | All images ~ Symmetric ~ Asymmetric | All images  Symmetric ~ Asymmetric
2D-MOS with Direct Average 0.8769 0.9802 0.8422 0.8820 0.9696 0.8501 0.7145 0.8557 0.6693
2D-MOS with Proposed Weighting 0.9571 0.9802 0.9517 0.9477 0.9696 0.9424 0.8080 0.8557 0.7977
IDW-SSIM with Direct Average 0.7818 0.9377 0.7509 0.7740 0.9056 0.7454 0.5900 0.7309 0.5548
IDW-SSIM with Proposed Weighting 0.8918 0.9377 0.8799 0.8687 0.9052 0.8482 0.6901 0.7319 0.6655
You [24] 0.6817 0.7634 0.6857 0.5873 0.5602 0.5997 0.4181 0.4006 0.4225
Benoit [7] 0.5507 0.7549 0.5548 0.4595 0.5713 0.4539 0.3209 0.4006 0.3170
Yang [11] 0.6388 0.7920 0.6413 0.5875 0.6627 0.5946 0.4136 0.4848 0.4154
Chen [39] 0.6130 0.8371 0.6330 0.5781 0.7581 0.5627 0.4165 0.5635 0.4055
TABLE X
PERFORMANCE COMPARISON OF 2D-T0O-3D QUALITY PREDICTION MODELS ON LIVE 3D DATABASE PHASE II
PLCC SRCC KRCC
3D-IQA Method All images ~ Symmetric ~ Asymmetric All images ~ Symmetric ~ Asymmetric | All images  Symmetric ~ Asymmetric
IDW-SSIM with Direct Average 0.8165 0.9368 0.7365 0.7973 0.9229 0.6874 0.6184 0.7548 0.5200
IDW-SSIM with Proposed Weighting 0.9159 0.9372 0.8981 0.9188 0.9234 0.9019 0.7441 0.7562 0.7237
You [24] 0.8015 0.8245 0.7832 0.7924 0.8030 0.7721 0.6015 0.6210 0.5784
Benoit [7] 0.7624 0.7339 0.7701 0.7436 0.6959 0.7474 0.5684 0.5434 0.5639
Yang [11] 0.7346 0.7752 0.7088 0.7210 0.7608 0.6960 0.5327 0.5746 0.5080
Chen [39] 0.9073 0.9384 0.8753 0.9013 0.9252 0.8538 0.7307 0.7599 0.6783
Chen [6] 0.8950 N/A N/A 0.8800 0.9180 0.8340 N/A N/A N/A

These observations reject the hypothesis that only one of
the two views need to be coded at high rate, and thus
significant bandwidth can be saved by coding the other view
with low rate. This also suggests that a significant coding
gain may be achieved by mixed-resolution coding, followed
by postprocessing techniques such as deblocking filtering.

We are currently building our WATERLOO-IVC 3D Video
Quality Database [70] including various stereoscopic
3D videos obtained from mixed-resolution coding, asymmetric
transform-domain quantization coding, their combinations,
and multiple choices of postprocessing techniques, aiming
to move further along the direction, which would allow
us to investigate how to quantitatively predict the potential
coding gain of asymmetric video compression, and to
provide new insights on the development of high efficiency
3D video coding schemes to maintain a good tradeoff between
perceptual 3D image quality, depth quality and/or visual
discomfort.

VII. CONCLUSION

The major contributions of the current paper are as follows:
First, we create a new subjective 3D-IQA database that
has two unique features — the inclusion of both 2D and
3D images, and the inclusion of mixed distortion types.
Second, we observe strong distortion type dependent bias
when using the direct average of 2D image quality of both
views to predict 3D image quality. Third, we observe that
eye dominance does not have strong impact on visual quality
evaluations of asymmetrically distorted stereoscopic images.

Fourth, we develop an information content and divisive
normalization based pooling scheme that improves upon
SSIM in estimating the quality of single-view images. Fifth,
we propose a binocular rivalry inspired multi-scale model
to predict the quality of stereoscopic images from that of its
single-view 2D images. Our results show that the proposed
model, without explicitly identifying image distortion types,
successfully eliminates the prediction bias, leading to
significantly improved quality prediction of stereoscopic
3D images. The performance gain is most pronounced in the
case of asymmetric distortions. In the future, we will extend
our study to understand human opinions on depth quality,
visual comfort and the overall 3D QoE, aiming to develop a
complete objective quality assessment models for 3D QoE.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments.

REFERENCES

[1] List of 3D Channels. [Online]. Available:
http://en.wikipedia.org/wiki/3D_television, accessed Jun. 15, 2015.

[2] C. Hsieh. 3D Display Technology and Market Forecast Report. [Online].
Available:  http://www.displaysearch.com/cps/rde/xchg/displaysearch/
hs.xsl/3d_display_technology_market_forecast_report.asp, accessed
May 30, 2014.

[3] P.J. H. Seuntiéns, “Visual experience of 3D TV,” M.S. thesis, Faculty
Technol. Manage., Eindhoven Univ. Technol., Eindhoven, The Nether-
lands, 2006.



WANG et al.: QUALITY PREDICTION OF ASYMMETRICALLY DISTORTED STEREOSCOPIC 3D IMAGES

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

W. Chen, F. Jérome, M. Barkowsky, and P. Le Callet, “Exploration
of quality of experience of stereoscopic images: Binocular depth,” in
Proc. Int. Workshop Video Process. Quality Metrics Consum. Electron.,
Scottsdale, AZ, USA, Jan. 2012, pp. 116-121.

A. K. Moorthy, C.-C. Su, A. Mittal, and A. C. Bovik, “Subjective eval-
uation of stereoscopic image quality,” Signal Process., Image Commun.,
vol. 28, no. 8, pp. 870-883, Sep. 2013.

M.-J. Chen, L. K. Cormack, and A. C. Bovik, “No-reference quality
assessment of natural stereopairs,” IEEE Trans. Image Process., vol. 22,
no. 9, pp. 3379-3391, Sep. 2013.

A. Benoit, P. Le Callet, P. Campisi, and R. Cousseau, “Quality assess-
ment of stereoscopic images,” EURASIP J. Image Video Process.,
vol. 2008, p. 659024, Oct. 2008.

Z. M. P. Sazzad, S. Yamanaka, Y. Kawayokeita, and Y. Horita, “Stereo-
scopic image quality prediction,” in Proc. Workshop Quality Multimedia
Exper., San Diego, CA, USA, Jul. 2009, pp. 180-185.

X. Wang, M. Yu, Y. Yang, and G. Jiang, “Research on subjective stereo-
scopic image quality assessment,” Proc. SPIE, vol. 7255, p. 725509,
Jan. 2009.

J. Zhou et al., “Subjective quality analyses of stereoscopic images in
3DTV system,” in Proc. IEEE Int. Conf. Vis. Commun. Image Process.,
Tainan, Taiwan, Nov. 2011, pp. 1-4.

J. Yang, C. Hou, Y. Zhou, Z. Zhang, and J. Guo, “Objective quality
assessment method of stereo images,” in Proc. 3DTV Conf., True
Vis.-Capture, Transmiss. Display 3D Video, Potsdam, Germany,
May 2009, pp. 1-4.

L. Goldmann, F. De Simone, and T. Ebrahimi, “Impact of acquisition
distortions on the quality of stereoscopic images,” in Proc. Int. Workshop
Video Process. Quality Metrics Consum. Electron., Scottsdale, AZ, USA,
Jan. 2010, pp. 45-50.

C. T. E. R. Hewage, S. T. Worrall, S. Dogan, and A. M. Kondoz,
“Prediction of stereoscopic video quality using objective quality models
of 2D video,” Electron. Lett., vol. 44, no. 16, pp. 963-965, Jul. 2008.
S. L. P. Yasakethu, C. T. E. R. Hewage, W. A. C. Fernando, and
A. M. Kondoz, “Quality analysis for 3D video using 2D video quality
models,” IEEE Trans. Consum. Electron., vol. 54, no. 4, pp. 1969-1976,
Nov. 2008.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” /EEE
Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

M. H. Pinson and S. Wolf, “A new standardized method for objectively
measuring video quality,” IEEE Trans. Broadcast., vol. 50, no. 3,
pp. 312-322, Sep. 2004.

A. Tikanmaki, A. Gotchev, A. Smolic, and K. Miller, “Quality assess-
ment of 3D video in rate allocation experiments,” in Proc. IEEE Int.
Symp. Consum. Electron., Vilamoura, Portugal, Apr. 2008, pp. 1-4.

Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on
structural distortion measurement,” Signal Process., Image Commun.,
vol. 19, no. 2, pp. 121-132, Feb. 2004.

P. Campisi, P. Le Callet, and E. Marini, “Stereoscopic images quality
assessment,” in Proc. Eur. Signal Process. Conf., Poznan, Poland,
Sep. 2007, pp. 2110-2114.

Z. Wang and A. C. Bovik, “A universal image quality index,” /IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81-84, Mar. 2002.

M. Carnec, P. Le Callet, and D. Barba, “An image quality assess-
ment method based on perception of structural information,” in Proc.
IEEE Int. Conf. Image Process., vol. 3. Barcelona, Spain, Sep. 2003,
pp. 1I-185-111-188.

Z. Wang and E. P. Simoncelli, “Reduced-reference image quality assess-
ment using a wavelet-domain natural image statistic model,” Proc. SPIE,
vol. 5666, pp. 149-159, Mar. 2005.

A. Benoit, P. Le Callet, P. Campisi, and R. Cousseau, “Using disparity
for quality assessment of stereoscopic images,” in Proc. IEEE Int. Conf.
Image Process., San Diego, CA, Oct. 2008, pp. 389-392.

J. You, L. Xing, A. Perkis, and X. Wang, “Perceptual quality assessment
for stereoscopic images based on 2D image quality metrics and dispar-
ity analysis,” in Proc. Int. Workshop Video Process. Quality Metrics
Consum. Electron., Scottsdale, AZ, USA, Jan. 2010, pp. 61-66.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. IEEE 37th Asilomar
Conf. Signals, Syst., Comput., Pacific Grove, CA, USA, Nov. 2003,
pp. 1398-1402.

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430-444, Feb. 2006.
J. Yang, C. Hou, R. Xu, and J. Lei, “New metric for stereo image quality
assessment based on HVS,” Int. J. Imag. Syst. Technol., vol. 20, no. 4,
pp- 301-307, Dec. 2010.

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

3413

P. Gorley and N. Holliman, “Stereoscopic image quality metrics and
compression,” Proc. SPIE, vol. 6803, p. 680305, Feb. 2008.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. IEEE Int. Conf. Comput. Vis., vol. 2. Kerkyra, Greece, Sep. 1999,
pp. 1150-1157.

M. A. Fischler and R. C. Bolles, “Random sample consensus: A para-
digm for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381-395, Jun. 1981.
L. Shen, J. Yang, and Z. Zhang, “Stereo picture quality estimation based
on a multiple channel HVS model,” in Proc. IEEE Int. Congr. Image
Signal Process., Tianjin, China, Oct. 2009, pp. 1-4.

Z. Zhu and Y. Wang, “Perceptual distortion metric for stereo video
quality evaluation,” WSEAS Trans. Signal Process., vol. 5, no. 7,
pp. 241-250, Jul. 2009.

L. Jin, A. Boev, A. Gotchev, and K. Egiazarian, “3D-DCT based
perceptual quality assessment of stereo video,” in Proc. 18th IEEE Int.
Conf. Image Process., Brussels, Belgium, Sep. 2011, pp. 2521-2524.
S. Jumisko-Pyykko, T. Haustola, A. Boev, and A. Gotchev, “Subjective
evaluation of mobile 3D video content: Depth range versus compression
artifacts,” Proc. SPIE, vol. 7881, p. 78810C, Jan. 2011.

R. Bensalma and M.-C. Larabi, “Towards a perceptual quality metric
for color stereo images,” in Proc. IEEE Int. Conf. Image Process.,
Hong Kong, Sep. 2010, pp. 4037-4040.

S. Ryu, D. H. Kim, and K. Sohn, “Stereoscopic image quality metric
based on binocular perception model,” in Proc. IEEE Int. Conf. Image
Process., Orlando, FL, USA, Sep./Oct. 2012, pp. 609-612.

Y.-H. Lin and J.-L. Wu, “Quality assessment of stereoscopic 3D image
compression by binocular integration behaviors,” IEEE Trans. Image
Process., vol. 23, no. 4, pp. 1527-1542, Apr. 2014.

C. T. E. R. Hewage and M. G. Martini, “Reduced-reference quality
metric for 3D depth map transmission,” in Proc. 3DTV-Conf., True
Vis.-Capture, Transmiss. Display 3D Video, Tampere, Finland, Jun. 2010,
pp. 1-4.

M.-J. Chen, C.-C. Su, D.-K. Kwon, L. K. Cormack, and A. C. Bovik,
“Full-reference quality assessment of stereopairs accounting for rivalry,”
Signal Process., Image Commun., vol. 28, no. 9, pp. 1143-1155,
Oct. 2013.

F. Shao, W. Lin, S. Gu, G. Jiang, and T. Srikanthan, “Perceptual full-
reference quality assessment of stereoscopic images by considering
binocular visual characteristics,” IEEE Trans. Image Process., vol. 22,
no. 5, pp. 1940-1953, May 2013.

R. Akhter, Z. M. P. Sazzad, Y. Horita, and J. Baltes, “No-reference
stereoscopic image quality assessment,” Proc. SPIE, vol. 7524, p. 75240,
Jan. 2010.

D. V. Meegan, L. B. Stelmach, and W. J. Tam, “Unequal weighting
of monocular inputs in binocular combination: Implications for the
compression of stereoscopic imagery,” J. Experim. Psychol., Appl.,
vol. 7, no. 2, pp. 143-153, Jan. 2001.

P. Seuntiens, L. Meesters, and W. Ijsselsteijn, “Perceived quality of
compressed stereoscopic images: Effects of symmetric and asymmetric
JPEG coding and camera separation,” ACM Trans. Appl. Perception,
vol. 3, no. 2, pp. 95-109, Apr. 2006.

D. Scharstein and C. Pal, “Learning conditional random fields for
stereo,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit.,
Minneapolis, MN, USA, Jun. 2007, pp. 1-8.

N. Sun, H. Mansour, and R. Ward, “HDR image construction from
multi-exposed stereo LDR images,” in Proc. 17th IEEE Int. Conf. Image
Process., Hong Kong, Sep. 2010, pp. 2973-2976.

M.-J. Chen, D.-K. Kwon, and A. C. Bovik, “Study of subject agreement
on stereoscopic video quality,” in Proc. IEEE Southwest Symp. Image
Anal. Interpretation, Santa Fe, NM, USA, Apr. 2012, pp. 173-176.

M. Urvoy et al., “NAMA3DS1-COSPADI1: Subjective video quality
assessment database on coding conditions introducing freely avail-
able high quality 3D stereoscopic sequences,” in Proc. Workshop
Quality Multimedia Exper., Yarra Valley, VIC, Australia, Jul. 2012,
pp- 109-114.

M. Pinson, “The consumer digital video library [best of the Web],” [EEE
Signal Process. Mag., vol. 30, no. 4, pp. 172-174, Jul. 2013.

Final Report From the Video Quality Experts Group on the Validation
of Objective Models of Video Quality Assessment, document VQEG,
Mar. 2000.

A. Z. Khan and J. D. Crawford, “Ocular dominance reverses as
a function of horizontal gaze angle,” Vis. Res., vol. 41, no. 14,
pp. 1743-1748, Jun. 2001.

O. Rosenbach, “On monocular prevalence in binocular vision,” Med
Wochenschrift, vol. 30, pp. 1290-1292, 1903.



3414

[52] R. Blake, “A primer on binocular rivalry, including current controver-
sies,” Brain Mind, vol. 2, no. 1, pp. 5-38, Apr. 2001.

A. P. Mapp, H. Ono, and R. Barbeito, “What does the dominant
eye dominate? A brief and somewhat contentious review,” Perception
Psychophys., vol. 65, no. 2, pp. 310-317, Feb. 2003.

Z. Wang and Q. Li, “Information content weighting for perceptual
image quality assessment,” [EEE Trans. Image Process., vol. 20, no. 5,
pp. 1185-1198, May 2011.

Z. Wang and X. Shang, “Spatial pooling strategies for perceptual image
quality assessment,” in Proc. IEEE Int. Conf. Image Process., Atlanta,
GA, USA, Oct. 2006, pp. 2945-2948.

M. J. Wainwright and E. P. Simoncelli, “Scale mixtures of Gaussians
and the statistics of natural images,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 12. May 2000, pp. 855-861.

L. Kaufman, Sight and Mind: An Introduction to Visual Perception.
London, U.K.: Oxford Univ. Press, 1974.

B. Julesz, Foundations of Cyclopean Perception. Chicago, IL, USA:
Univ. Chicago Press, 1971.

W. J. M. Levelt, “The alternation process in binocular rivalry,” Brit.
J. Psychol., vol. 57, nos. 3—4, pp. 225-238, Nov. 1966.

R. Blake, “Threshold conditions for binocular rivalry,” J. Experim.
Psychol., Human Perception Perform., vol. 3, no. 2, pp. 251-257,
May 1977.

M. Fahle, “Binocular rivalry: Suppression depends on orientation and
spatial frequency,” Vis. Res., vol. 22, no. 7, pp. 787-800, 1982.

J. Ding and G. Sperling, “A gain-control theory of binocular combi-
nation,” Proc. Nat. Acad. Sci. USA, vol. 103, no. 4, pp. 1141-1146,
2006.

Y. Yang and R. Blake, “Spatial frequency tuning of human stereopsis,”
Vis. Res., vol. 31, nos. 7-8, pp. 1176-1189, 1991.

P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,”
Proc. SPIE, vol. 5294, pp. 231-238, Jan. 2004.

J. Wang, K. Zeng, and Z. Wang, “Quality prediction of asymmetrically
distorted stereoscopic images from single views,” in Proc. IEEE Int.
Conf. Multimedia Expo, Chengdu, China, Jul. 2014, pp. 1-6.

J. Wang and Z. Wang, “Perceptual quality of asymmetrically distorted
stereoscopic images: The role of image distortion types,” in Proc. Int.
Workshop Video Process. Quality Metrics Consum. Electron., Chandler,
AZ, USA, Jan. 2014, pp. 1-6.

L. Stelmach, W. J. Tam, D. Meegan, and A. Vincent, “Stereo image
quality: Effects of mixed spatio-temporal resolution,” [EEE Trans.
Circuits Syst. Video Technol., vol. 10, no. 2, pp. 188-193, Mar. 2000.
H. Brust, A. Smolic, K. Mueller, G. Tech, and T. Wiegand, “Mixed
resolution coding of stereoscopic video for mobile devices,” in Proc.
3DTV Conf., True Vis.-Capture, Transmiss. Display 3D Video, Potsdam,
Germany, May 2009, pp. 1-4.

P. Aflaki, M. M. Hannuksela, and M. Gabbouj, “Subjective quality
assessment of asymmetric stereoscopic 3D video,” Signal, Image Video
Process., vol. 9, no. 2, pp. 331-345, Feb. 2015.

J. Wang, S. Wang, and Z. Wang, “Quality prediction of asymmetri-
cally compressed stereoscopic videos,” in Proc. IEEE Int. Conf. Image
Process., Quebec City, QC, Canada, Sep. 2015, pp. 1-5.

[53]

[54]

[55]

[56]

[57]
(58]
[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

Jiheng Wang (S’11) received the M.Math. degree
in statistics-computing from the University of
Waterloo, Waterloo, ON, Canada, in 2011, where he
is currently pursuing the Ph.D. degree in electrical
and computer engineering. He has been a Research
Assistant with the Department of Electrical and
Computer Engineering, University of Waterloo,
since 2011. In 2013, he was with the Video
Compression Research Group, Blackberry, Waterloo.
From 2009 to 2010, he was a Research Assistant
with the Department of Statistics and Actuarial
Science, University of Waterloo. His current research interests include
3D image and video quality assessment, perceptual 2D and 3D video coding,
statistical learning, and dimensionality reduction.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

Abdul Rehman received the Ph.D. degree in
electrical and computer engineering from the
University of Waterloo, Canada, in 2013. He is
currently the President of SSIMWave, a company he
co-founded in 2013. His research interests include
image and video processing, coding and quality
assessment, and multimedia communications.

Kai Zeng received the B.E. and M.A.Sc. degrees
in electrical engineering from Xidian University,
Xi’an, China, in 2006 and 2009, respectively,
and the Ph.D. degree in electrical and computer
engineering from the University of Waterloo,
Waterloo, ON, Canada, where he is currently
a Post-Doctoral Fellow with the Department of
Electrical and Computer Engineering. His research
interests include computational video and image
pattern analysis, multimedia communications, and
image and video processing (coding, denoising,
analysis, and representation), with an emphasis on image and video quality
assessment and corresponding applications. He was a recipient of IEEE
Signal Processing Society Student Travel Grant at the 2010 and 2012 IEEE
International Conference on Image Processing, and the prestigious 2013
Chinese Government Award for Outstanding Students Abroad.

Shiqi Wang (M’15) received the B.S. degree in
computer science from the Harbin Institute of
Technology, in 2008, and the Ph.D. degree in
computer application technology from Peking
University, in 2014. He is currently a Post-Doctoral
Fellow with the Department of Electrical and Com-
puter Engineering, University of Waterloo, Waterloo,
Canada. In 2011, he was with Microsoft Research
Asia, Beijing, as an Intern. He has proposed over
20 technical proposals to ISO/MPEG, ITU-T, and
AVS video coding standards. His current research
interests include video compression and image/video quality assessment.

k

Zhou Wang (S’99-M’02-SM’12-F’14) received
the Ph.D. degree in electrical and computer
engineering from The University of Texas at
t: - Austin, in 2001. He is currently a Professor

Q 28V with the Department of Electrical and Computer

s Engineering, University of Waterloo, Canada. His

research interests include image processing, coding,

and quality assessment, computational vision and

pattern  analysis, multimedia communications,

and biomedical signal processing. He has more

than 100 publications in these fields with over

25000 citations (Google Scholar). He is a member of IEEE Multimedia Signal

Processing Technical Committee (2013-2015). He served as an Associate

Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING (2009-2014),

Pattern Recognition (2006-present), and the IEEE Signal Processing Letters

(2006-2010), and a Guest Editor of the IEEE JOURNAL OF SELECTED

TOPICS IN SIGNAL PROCESSING (2013-2014 and 2007-2009), the EURASIP

Journal of Image and Video Processing (2009-2010), and Signal, Image

and Video Processing (2011-2013). He was a recipient of the 2014

NSERC E.W.R. Steacie Memorial Fellowship Award, the 2013 IEEE Signal

Processing Magazine Best Paper Award, the 2009 IEEE Signal Processing

Society Best Paper Award, the 2009 Ontario Early Researcher Award, and
the ICIP 2008 IBM Best Student Paper Award (as a Senior Author).




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


