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Abstract— Subjective and objective measurement of the
perceptual quality of depth information in symmetrically and
asymmetrically distorted stereoscopic images is a fundamentally
important issue in stereoscopic 3D imaging that has not been
deeply investigated. Here, we first carry out a subjective test
following the traditional absolute category rating protocol
widely used in general image quality assessment research. We
find this approach problematic, because monocular cues and
the spatial quality of images have strong impact on the depth
quality scores given by subjects, making it difficult to single out
the actual contributions of stereoscopic cues in depth perception.
To overcome this problem, we carry out a novel subjective study
where depth effect is synthesized at different depth levels before
various types and levels of symmetric and asymmetric distortions
are applied. Instead of following the traditional approach, we ask
subjects to identify and label depth polarizations, and a depth
perception difficulty index (DPDI) is developed based on the
percentage of correct and incorrect subject judgements. We find
this approach highly effective at quantifying depth perception
induced by stereo cues and observe a number of interesting effects
regarding image content dependency, distortion-type dependence,
and the impact of symmetric versus asymmetric distortions.
Furthermore, we propose a novel computational model for DPDI
prediction. Our results show that the proposed model, without
explicitly identifying image distortion types, leads to highly
promising DPDI prediction performance. We believe that these
are useful steps toward building a comprehensive understanding
on 3D quality-of-experience of stereoscopic images.

Index Terms— Depth perception, depth quality, stereoscopic
image, 3D image, image quality assessment, quality-of-experience,
asymmetric distortion, depth polarization.

I. INTRODUCTION

AUTOMATICALLY assessing the quality of 3D visual
experience is a challenging problem [1]–[3], especially

due to the sophistication and interaction between multiple
3D visual cues including image quality, depth quality and
visual comfort [4]–[6]. Recent progress on subjective and
objective studies of 3D image quality assessment (IQA) is
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promising [7]–[9] but the understanding of 3D depth quality
remains limited. Depth quality is no doubt an essential
aspect of human quality-of-experience (QoE) when viewing
stereoscopic 3D images.

Existing studies on the topic appear to be unconclusive,
limited, and sometimes conflicting. In [10], it was reported that
the perceived depth performance cannot always be predicted
from displaying image geometry alone, while other system
factors, such as software drivers, electronic interfaces, and
individual participant differences, may also play significant
roles. Similarly, in [11], it was pointed out that an appropriate
choice of camera and display system setup can eliminate some
stereoscopic distortions that affect the perceived depth. In [4],
subjective studies showed that the perceived depth increases
when increasing the camera-base distance. This has been
further explored in [12], where it was found that the perceived
depth quantity always increases but the perceived depth quality
may decrease with the increasing level of binocular depth.
In [4] and [13], it was suggested that the perceived depth may
need to be considered independently from the perceived 3D
image quality. The results in [4] showed that increasing the
level of JPEG compression has no clear effect on the perceived
depth however a negative effect on image quality, which is
generally consistent with the results given in [13] for different
levels of blurring. On the other hand, in [12], subjective studies
suggested that 3D image quality is not sensitive to variations
in the degree of the binocular depth, which is agreed by [14],
where the perceived image quality exhibits less correlation
with the perceived depth.

Other studies pointed out the perceptual depth as an impor-
tant component in the holistic 3D QoE. In [15], a blurring
filter, where the level of blur depends on the depth of the area
where it is applied, is used to enhance the viewing experience.
In [16], subjective studies revealed that humans tend to prefer
DCT compressed stereopairs over the monoscopic single-
views even though the blocking artifacts are annoying, which
has been partially verified in [17], where it was found that the
strength of this preference depends on the quality range being
investigated and there also exists a content dependency that
this preference could be flipped. In [18], the depth range of
color-plus-depth has been optimized to increase visual comfort
for stereoscopic 3D displays. In [19], depth naturalness was
shown to be a useful ingredient in the assessment of 3D video
QoE. Similarly, in [20], the added value of depth naturalness
has been verified for pristine and blurred stereoscopic images.
In [21], stimuli with various stereo depth and image quality
were evaluated subjectively in terms of naturalness, viewing
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experience, image quality, and depth perception, and the
experimental results suggested that the overall 3D QoE is
approximately 75% determined by image quality and 25% by
the perceived depth. In [22], Chen et al. showed that subjective
evaluation of depth quality has a low correlation with that of
3D image quality and verified that the overall 3D QoE can be
predicted using a single linear model from 3D image quality
and depth quality.

Several objective models have been proposed to automati-
cally predict the perceived depth quality and subsequently to
predict 3D quality by combining depth quality and 2D image
quality. In [23], peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) [24], and video quality metric (VQM) [25]
were employed to predict the perceived depth quality, and
PSNR and SSIM appear to have slightly better performance.
In [26] and [27], disparity maps between left- and right-views
were estimated, followed by 2D quality assessment of disparity
quality using SSIM and C4 [28], which was subsequently
combined with 2D image quality to produce an overall 3D
image quality score. The results suggested that C4 outper-
forms SSIM on evaluating stereoscopic image pairs and dis-
parity maps on IRCCyN/IVC 3D Image Database [26] and
also showed that the 3D-IQA performance of SSIM can be
improved when adding depth quality. You et al. [29] evaluated
stereopairs as well as disparity maps with respect to ten
well-known 2D-IQA models, i.e., PSNR, SSIM, multi-scale
SSIM (MS-SSIM) [30], universal quality index (UQI) [31],
visual information fidelity (VIF) [32], visual signal-to-noise
ratio (VSNR) [33], etc. The results suggested that an improved
performance can be achieved when stereo image quality
and depth quality are combined appropriately. Similarly,
Yang et al. [34], [35] proposed a 3D-IQA algorithm based
on the average PSNR of left- and right-views and the
absolute difference with respect to the disparity map. In [36],
Zhu et al. proposed a 3D video quality assessment (VQA)
model by considering depth perception, and the experimental
results showed that the proposed human vision system (HVS)
based model performs better than PSNR.

Nevertheless, in [37]–[39], comparative studies showed that
none of these 3D-IQA/VQA models, with depth information
involved, perform better than or in most cases, even as good as,
direct averaging 2D-IQA measures of both views. In particular,
in [37], it was shown that averaging PSNR, SSIM, MS-SSIM,
UQI, and VIF measurements of left- and right-views performs
equally well or better than the advanced 3D-IQA models
[26], [29], [34], [36] on LIVE 3D Image Quality Database
Phase I. Similar results were also observed in [38], where
averaging SSIM and MS-SSIM measurements of both views
outperformed advanced 3D-IQA models [26], [29] on LIVE
3D Image Quality Database Phase II. In [39], it was reported
that directly averaging MS-SSIM outperformed 3D-IQA
models [26], [29] on Ningbo University 3D Image Quality
Assessment Database. All these observations suggest that the
progress on how to automatically predict depth quality and
how to combine 3D image quality and depth quality remains
limited. This lack of successful objective QoE methods for
3D visual experience has limited their applications in the
development of 3D imaging applications and services.

TABLE I

DESCRIPTION OF VISUAL EXPERIENCE CRITERIA

In this work, we carry out two subjective experiments on
depth quality. The first one adopts a traditional absolute cate-
gory rating (ACR) [40] protocol widely used in general IQA
research. We find this approach problematic in this scenario
because monocular cues and the spatial quality of images have
strong impact on the depth quality scores given by subjects,
making it difficult to single out the actual contributions of
stereoscopic cues in depth perception. To overcome this prob-
lem, we conduct the second subjective study where depth
effect is synthesized at different depth levels before various
types and levels of symmetric and asymmetric distortions are
applied. Instead of following the traditional approach, we ask
subjects to identify and label depth polarizations, and a Depth
Perception Difficulty Index (DPDI) is developed based on
the percentage of correct and incorrect subject judgements.
We find the second approach highly effective at quantifying
depth perception induced by stereo cues. We then carry out a
series of analysis to investigate the impact of image content,
distortion type, and distortion symmetricity on perceived depth
quality. Furthermore, we propose a novel computational model
for DPDI prediction. Our results show that the proposed
model, without explicitly identifying image distortion types,
leads to highly promising DPDI prediction performance.

II. SUBJECTIVE STUDY I

A. Image Database

The WATERLOO-IVC 3D Image Quality Database
Phase I [41], [42] was created from 6 pristine stereoscopic
image pairs and their corresponding single-view images as
shown in Fig. 1. Each single-view image was altered by
three types of distortions: additive white Gaussian noise con-
tamination, Gaussian blur, and JPEG compression, and each
distortion type had four distortion levels. The single-view
images are employed to generate distorted stereopairs, either
symmetrically or asymmetrically. There are totally 78 single-
view images and 330 stereoscopic images in the database.
Following previous works [4], [12], [22], the subjects were
asked to evaluate four aspects of their 3D viewing experience,
including the perception of 3D image quality (3DIQ), depth
quality (DQ), visual comfort (VC), and overall 3D quality of
experience (3DQoE). The detailed descriptions of each aspects
of visual experience including 2D image quality (2DIQ) are
elaborated in Table I. More comprehensive descriptions are in
[41] and [42]. In this paper, we focus on depth quality only,
which refers to the amount, naturalness and clearness of depth
perception experience.



1204 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 3, MARCH 2017

Fig. 1. The pristine images in Waterloo-IVC 3D Image Database Phase I.
Only the right-views are shown here. (a) Art. (b) Books. (c) Dolls.
(d) Moebius. (e) Laundry. (f) Reindeer.

TABLE II

VIEWING CONDITIONS OF THE SUBJECTIVE TEST

B. Subjective Test

The subjective test was conducted in the Lab for Image
and Vision Computing at University of Waterloo. The test
environment has no reflecting ceiling walls and floor, and was
not insulated by any external audible and visual pollution.
An ASUS 27" VG278H 3D LED monitor with NVIDIA
3D Vision™2 active shutter glasses is used for the test.
The default viewing distance was 3.5 times of the screen
height. In the actual experiment, two subjects (both male)
preferred a larger viewing distance of about 4 times of the
screen height and were allowed to make such adjustment
before the test. The details of viewing conditions are given in
Table II. Twenty-four naïve subjects, 14 males and 10 females
aged from 22 to 45, participated in the study. A 3D vision
test (Random dot stereo test) was conducted first to verify
their ability to view stereoscopic 3D content. Three of them
(1 male, 2 females) failed the vision test and did not continue
with the subsequent experiment. As a result, a total of
twenty-one subjects proceeded to the formal test.

One-pass experiment (where a subject gives 3DIQ, DQ, VC,
and 3DQoE scores to each stereoscopic image in one trial) may
cause significant visual fatigue of the human subjects within a
short period of time. To avoid this problem, we resorted to a
multi-pass approach [12] in the formal test, where within each
pass, the subject gives one of the four scores. In addition, there
is a 2DIQ sub-test for single-view images. Fig. 2 shows the
detailed procedure of our formal subjective test. We followed
the ACR protocol and the subjects were asked to rate the
2D or 3D visual experience criteria of each image between
0 and 10 pts.

For both 2DIQ and 3DIQ sub-tests, we use three types
of images in the training phase: pristine images, moderately

Fig. 2. The procedure of the subjective test in Subjective Study I.

Fig. 3. Means and standard deviations of depth preference scores in the
depth comparison test.

distorted images, and highly-distorted images. The subjects
were told to give scores at the high end (close to 10 pts) to the
pristine images, at the mid-range to the moderately distorted
images, and at the low end (close to 0 pts) to the highly-
distorted images.

For DQ sub-test, a self-training process was employed to
help the subjects establishing their own rating strategies with
the help of the depth comparison test (stimuli with the same
source image similar to what are used in the formal test
but different depth levels were presented to help the subjects
establish the concept on the amount of depth), and subjects
were introduced to build their own rating strategies.

The motivation of introducing a depth comparison test is to
help human subjects understand the amount of depth percep-
tion for each pristine stereopairs from their own preference and
thus let them focus on evaluating the depth quality degraded
by different distortions in the following depth quality test.
The six pristine stereopairs from WATERLOO-IVC 3D image
database were utilized in this test. For each pristine stereopair,
a single-view image (view 1) was firstly displayed to help the
subjects get familiar with image content and then five different
stereopairs with an increasing amount of depth were presented,
which are S1 (view 1 and view 3), S2 (view 1 and view 4),
S3 (view 1 and view 5), S4 (view 1 and view 6), and
S5 (view 1 and view 7). Subjects were allowed to compare
these six stereopairs back and forth and then to rank them
based on their own preference for depth perception. Some
subjects favored S5 with the largest amount of depth while
others preferred the mid-level S3 as they felt the 3D objects
presented in S5 come too close to their faces. The depth
preference score is assigned from 1 to 5 pts, for which
1 represents the least preferred and 5 the most preferred. The
means and standard deviations of depth preference scores are
shown in Fig. 3, where we observe high variations between
subject scores, suggesting diverse subject opinions in depth
preference.
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Previous works reported that the perception of depth quality
are both highly content and texture dependent [43] and subject
dependent [12], [22]. Therefore, it is not desirable to over-
educate the subjects to use the same given rating strategy. Thus
after the depth comparison test, the 3D pristine stereopairs
were first presented and the subjects were instructed to give
high scores (close to 10 pts) to such images, and the 2D pris-
tine images (with no depth from stereo cues) were presented
and the subjects were instructed to give low scores (close to
0 pts). Next, stereopairs of different types/levels of distortions
were presented and the subjects were asked to practice by
giving their ratings on depth quality between 0 and 10 pts.
During this process, the instructor also repeated the definition
of depth quality and emphasized that there is not necessarily
any correlation between depth quality and the type/level of
distortions.

Most stimuli were shown once in each sub-test. However,
there were 6 repetitions for single-view images and 12 rep-
etitions for stereopairs, which means that for each subject,
her/his first 6 single-view images and first 12 stereopairs were
shown twice. The order of stimuli was randomized and the
consecutive testing single-view images or stereopairs were
from different source images. The 2DIQ sub-test, including
84 testing single-view images with 6 repetitions, was finished
under 10 minutes. For 3DIQ , DQ , VC, and 3DQoE sub-tests,
342 testing stereopairs with 12 repetitions were partitioned
into two sessions and each single session (171 stereopairs)
was finished in 15 to 20 minutes. Sufficient relaxation periods
(5 minutes or more) were given between sessions. Moreover,
we found that repeatedly switching between viewing
3D images and grading on a piece of paper or a computer
screen is a tiring experience. To overcome this problem, we
asked the subject to speak out a score, and a customized graph-
ical user interface on another computer screen was used by the
instructor to record the score. All these efforts were intended
to reduce visual fatigue and discomfort of the subjects.

C. Observations and Discussions

Following the previous work [24], the raw 2DIQ, 3DIQ,
and DQ scores given by each subject were converted to
Z-scores [44], respectively. Then the entire data sets were
rescaled to fill the range from 1 to 100 and the mean opinion
scores (MOS) for 2DIQ, 3DIQ, and DQ, i.e., MOS 2DIQ,
MOS 3DIQ, and MOS DQ, were computed. The detailed
observations and analysis of the relationship between MOS
2DIQ and MOS 3DIQ and how to predict the image content
quality of a stereoscopic 3D image from that of the 2D
single-view images can be found in [8] and [42]. Here we
focus on the depth quality part, i.e., individual DQ scores
and MOS DQ.

For each stereopair, the standard deviation of Z-scores
represents the degree of variation and the means of these
standard deviations are 12.00 for 3DIQ scores and 20.01
for DQ scores, respectively, indicating large variations in
DQ scores. Table III reports Pearson’s linear correlation
coefficient (PLCC), Spearman’s rank-order correlation coef-
ficient (SRCC), and Kendall’s rank-order correlation coef-
ficient (KRCC) between individual 3DIQ/DQ scores and

Fig. 4. Comparison of two subjects’ 3DIQ and DQ scores on the Art
stereopairs. (a) 3D Image Quality. (b) Depth Quality.

TABLE III

MEANS AND STANDARD DEVIATIONS OF CORRELATIONS

BETWEEN INDIVIDUAL SCORES AND MOS

MOS 3DIQ/DQ scores, which reflect the degree of agreement
of 3DIQ/DQ scores among the subjects. PLCC is adopted
to evaluate prediction accuracy [45] and SRCC and KRCC
are employed to assess prediction monotonicity [45]. Higher
PLCC, SRCC, and KRCC indicate better consistency with the
average human opinions of quality. PLCC is usually computed
after a nonlinear mapping between the subjective and objective
scores and the results may be sensitive to the choice of the
mapping function. SRCC and KRCC are nonparametric rank
order-based correlation metrics, independent of any monotonic
nonlinear mapping between subjective and objective scores but
do not explicitly estimate the accuracy of quality prediction.

From Table III, it can be observed that individual DQ scores
show less correlation with MOS compared with individual
3DIQ scores. To further understand this, Fig. 4 shows a
comparison of two subjects’ 3DIQ and DQ scores on the Art
stereopairs. It can be observed that these two subjects exhibit
general agreement on 3DIQ scores but behave drastically
differently in giving DQ scores.

Thus our preliminary analysis shows that there is a large
variation between subjects on depth quality scores as differ-
ent people may have very different perception and/or opin-
ions about perceptual depth quality. The rest of this section
will focus on the relationship between DQ scores and the
3DIQ scores.

Fig. 5 shows the scatter plots of MOS 3DIQ vs. averaging
MOS 2DIQ of left- and right-views and MOS 3DIQ vs.
MOS DQ. Fig. 5 (a) suggests that there exists a strong
distortion type dependent prediction bias when predicting
quality of asymmetrically distorted stereoscopic images from
single-views [41], [42]. Specifically, for noise contamination
and JPEG compression, average prediction overestimates
3DIQ (or 3DIQ is more affected by the poorer quality view),
while for blur, average prediction often underestimates 3DIQ
(or 3DIQ is more affected by the better quality view).

From Fig. 5 (b), it can be observed that human opin-
ions on 3DIQ and 3D DQ are highly correlated. This is
somewhat surprising because 3DIQ and DQ are two different
perceptual attributes and the stimuli were generated to cover
all combinations between picture qualities and stereo depths.
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Fig. 5. Relationships between (MOS 3DIQ and MOS 2DIQ) and
(MOS 3DIQ and MOS DQ) in Subjective Study I. (a) MOS 3DIQ vs. MOS
2DIQ. (b) MOS 3DIQ vs. MOS DQ.

Through more careful observations of the data and discussions
with the subjects who did the experiment, we found two
explanations. First, psychologically humans have the tendency
to give high DQ scores whenever the 3DIQ is good and vice
versa, and the strength of such a tendency varies between
subjects. Second, humans interpret depth information using
many physiological and psychological cues [46], including not
only binocular cues such as stereopsis, but also monocular
cues such as retinal image size, linear perspective, texture
gradient, overlapping, aerial perspective, and shadowing and
shading [47], [48]. In the real world, humans automatically
use all available depth cues to determine distances between
objects but most often rely on psychological monocular cues.
Therefore, the DQ scores obtained in the current study are
a combined result from many monocular and binocular cues,
and it becomes difficult to gauge the role of stereopsis.

However, what we are interested in the current study is to
measure how much stereo information can help with depth
perception. Based on the explanations above, in traditional
ways of subjective testing like the current one, many depth
cues are mixed together and the results are further altered by
the spatial quality of the image, making it difficult to quantify
the real contributions of using stereoscopic images in depth
perception. This inspires us to design a novel depth perception
test, which will be presented in the next section.

III. SUBJECTIVE STUDY II

A. Image Database

We created a new Waterloo-IVC 3D Depth Database from
6 pristine texture images (Bark, Brick, Flowers, Food, Grass,
and Water) as shown in Fig. 6. All images were collected
from the VisTex Database at MIT Media Laboratory [49].
A stereogram can be build by duplicating the image, selecting
a region in one image, and shifting this region horizontally by
a small amount in the other one. The region seems to virtually
fly in front of the screen, or be behind the screen if the two
views are swapped. In our experiment, this horizontal shifting
is controlled by six different levels of Gaussian surfaces with
different heights and different widths, which were obtained
by translating and scaling Gaussian profiles. Depth 1 and
Depth 6 denote the lowest and highest depths, respectively,
and were selected to ensure a good perceptual separation. Thus
each texture image was used to generate 6 stereopairs with

Fig. 6. The texture images used in Subjective Study II. (a) Bark. (b) Flower.
(c) Food. (d) Grass. (e) Water.

TABLE IV

VALUE RANGES OF CONTROL PARAMETERS TO

GENERATE IMAGE DISTORTIONS

different depth levels. By switching left- and right-views, the
hidden depth could be perceived towards inside or outside and
we denote them as inner stereopairs and outer stereopairs,
respectively. As such, for each texture image, we have 12
pristine stereopairs with different depth polarizations and depth
levels. In addition, one flat stereopair without any hidden depth
information is also included.

Each pristine stereopair (inner, outer, and flat) was altered by
three types of distortions: additive white Gaussian noise con-
tamination, Gaussian blur, and JPEG compression. Each dis-
tortion type had four distortion levels as reported in Table IV,
where the distortion control parameters were decided to ensure
a good perceptual separation. The distortions were simulated
either symmetrically or asymmetrically. Symmetrically dis-
torted stereopairs have the same distortion type and level
on both views while asymmetrically distorted ones have the
distortion on one view only. Altogether, there are 72 pristine
stereoscopic images and 1728 distorted stereoscopic images
(864 symmetrical and 864 asymmetrical distortions) in the
database. In terms of the depth polarity, there are 684 inner
stereopairs, 684 outer stereopairs, and 432 flat stereopairs.
An example of the procedure of generating a symmetrically
blurred stereopair is shown in Fig. 7.

For each image, we provide the subjects with four available
choices to respond, i.e., inner, outer, flat, and unable to decide.
The motivation of introducing the last choice is that for some
distorted stereopairs, the subjects can perceive the existence
of depth information but feel difficult to make confident
judgements on depth polarity.

There are three important features of the current database
that distinguish it from others. First, the depth information
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Fig. 7. Procedure of generating a symmetrically blurred stereoscopic image
in Subjective Study II.

embedded in each stereopair is independent of its 2D scene
contents, such that subjects can only make use of stereo
cues to identify depth change and judge the polarity of
depth. Second, the database contains distorted stereopairs from
various distortion types, allowing us to compare the impacts
of different distortions on depth perception. Third, the cur-
rent database contains both symmetrically and asymmetrically
distorted stereopairs, which allows us to directly examine the
impact of asymmetric distortions on depth perception. This
may also help us better understand what are the key factors
that affect depth quality in stereoscopic images.

B. Subjective Test

The subjective test was conducted in the Lab for Image
and Vision Computing at University of Waterloo with the
same test environment, the same 3D display system, and the
same viewing conditions as described in Section II. Thus here
we only describe some important differences from Subjective
Study I. Twenty-two naive subjects, 11 males and 11 females
aged from 21 to 34, participated in the study and no one
failed the vision test. As a result, a total of twenty-two
subjects proceeded to the formal test. The training process is
fairly straightforward. Twelve stereopairs with different depth
configurations including polarities and levels were presented to
the subjects. Subjects were asked to speak out their judgements
for these training stereopairs as an exercise. Then a multi-
stimulus method was adopted to obtain subjective judgements
for all test stereopairs. Each stimulus contains six stereopairs

TABLE V

AVERAGE DPDI VALUES OF DIFFERENT DEPTH LEVELS

with the same depth level and the same image content
but different depth polarity or image distortion. All stimuli
were shown once and the order of stimuli was randomized.
75 stimuli were evaluated in one session and each session
was controlled to be within 20 minutes. Similarly, subjects
only needed to speak out their judgements and an instructor
was responsible for recording subjective results.

We observe a significant variation between subjects’ behav-
iors, i.e., they exhibit different levels of ability to identify
depth polarizations and show different preferences for inner
or outer images, which is expected as humans exhibit a wide
variety of stereo-acuity and stereo-sense [50]. The rest of this
section focuses on the impact of depth level, depth polarity,
image content and image distortion. More detailed analysis
of the other aspects of the subjective data will be reported in
future publications.

C. Depth Perception Difficulty Index (DPDI)

For each test image, there are 3 possible ground-truth polar-
ity answers - inner, outer, and flat. Meanwhile, pooling the
subjective judgements on the image leads us to four percentage
values, denoted by {Pin, Pout, Pflat, Punable}, corresponding to
the percentages of subject judgements of inner, outer, flat,
and unable to decide, respectively, and Pin + Pout + Pflat +
Punable = 1. Given these values, we define a novel measure
named Depth Perception Difficulty Index (DPDI), which indi-
cates how difficult it is for an average subject to correctly
perceive the depth information in the image. Specially, if the
ground-truth is an inner image, we define

DPDI = 1 − max{0, Pin − Pout}
= min{1, Pflat + Punable + 2Pout}. (1)

Similarly, for an outer image

DPDI = 1 − max{0, Pout − Pin}
= min{1, Pflat + Punable + 2Pin}. (2)

This DPDI is bounded between 0 and 1. The values of
DPDI in some extreme cases are as follows: when we have
{1, 0, 0, 0} for inner images or {0, 1, 0, 0} for outer images,
DPDI equals 0; when we have {0.25, 0.25, 0.25, 0.25}, which
is equivalent to the case of random guess, DPDI equals 1.

D. Analysis and Key Observations

Table V shows the mean DPDI values for different depth
levels for the cases of all images, inner images, and outer
images. Unsurprisingly, DPDI drops with increasing depth in
each test group. A much more interesting observation here is
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TABLE VI

AVERAGE DPDI VALUES OF DIFFERENT IMAGE CONTENTS

TABLE VII

AVERAGE DPDI VALUES OF DIFFERENT DISTORTION TYPES AND LEVELS

that with a given level of depth, inner images generally have
lower DPDI values and the difference in mean DPDI values
between inner and outer images increase with the level of
depth. This indicates that it is easier for humans to perceive
depth information when objects appear to be behind the screen
than in the opposite case.

Table VI reports the mean DPDI values for different
background image contents. First, it appears that DPDI is
highly image content dependent as it varies significantly
across content. In general, DPDI decreases with the increase
of high-frequency details, which is consistent with the
previous vision research [51] that stereo gain is higher for the
high spatial-frequency system than the low spatial-frequency
system. Second, although inner images always have higher
DPDI values, the gap between inner and outer images is
image content dependent.

Table VII shows the mean DPDI values of different dis-
tortion types and levels. First, across distortion types, noise
contamination has more impact on depth perception than JPEG
compression and Gaussian blur. Second, more interestingly,
although the cases of symmetric distortions double the total
amount of distortions than asymmetric distortions (because
the same level of distortions is added to both views), the
DPDI gap between asymmetric and symmetric distortions is
distortion type dependent. The gaps in the case of noise
contamination is much higher than those of Gaussian blur
and JPEG compression. The point worth noting is that adding
blur or JPEG compression to one view of stereopair results in
similar difficulty in depth perception as adding the same level
of distortion to both views. This is quite different from the
distortion type dependency in 3D image quality perception,
as shown in Fig. 5 (a). It is interesting to note that some
of our new observations are somehow implicitly consistent
with previous vision studies [52], [53]. For example, in [53],
Hess et al. found that stereoacuity was reduced when one view
was severely blurred by filtering off high spatial frequencies
and loss of acuity was much less severe when both views are
blurred.

E. Impact of Eye Dominance

Eye dominance is a common visual phenomenon, referring
to the tendency to prefer the input from one eye to the other,
depending on the human subject [54]. When studying visual
quality of asymmetrically distorted images, it is important
to understand if eye dominance plays a significant role in
the subjective test results. For this purpose, we carried out a
separate analysis on the impact of eye dominance in the depth
perception of asymmetrically distorted stereoscopic images.
The side of the dominant eye under static conditions was
checked first by Rosenbach’s test [55]. This test examines
which eye determines the position of a finger when the subject
is asked to point to an object. Among twenty subjects who
finished the formal test Subjective Study II, ten subjects
(6 males, 4 females) had a dominant left eye, and the others
(5 males, 7 females) are right-eye dominant.

The DPDI for each image in Waterloo-IVC 3D Depth
Database were computed for left-eye dominant subjects and
right-eye dominant subjects, denoted as DPDIL and DPDIR,
respectively. We employed the one-sample t-test to obtain
a test decision for the null hypothesis that the difference
between DPDIL and DPDIR, i.e., DPDID = DPDIL − DPDIR,
comes from a normal distribution of zero-mean and unknown
variance. The alternative hypothesis is that the population
distribution does not have a mean equaling zero. The result h
is 1 if the test rejects the null hypothesis at the 5% significance
level, and 0 otherwise. The returned p-values for symmetric
and asymmetric images are 0.3448 and 0.3048, respectively,
thus the null hypothesis cannot be rejected at the 5% signifi-
cance level, which indicates that the impact of eye dominance
in the perception of depth quality of asymmetrically distorted
stereoscopic images is not significant.

It is worth noting that in [8] we found that the eye
dominance effect does not have strong impact on the perceived
image content quality of stereoscopic images. Our two obser-
vations are consistent with the “stimulus” view of rivalry that
is widely accepted in the field of visual neuroscience [56].
A comprehensive review and discussion on “stimulus” rivalry
versus “eye” rivalry can be found in [56] and [57].

IV. OBJECTIVE STUDY: PREDICTION OF DEPTH

PERCEPTION DIFFICULTY INDEX

A. DPDI Prediction Model

We opt to use a multiple-stage approach in the design of
an objective DPDI predictor. The first stage aims to predict
the DPDI for different depth levels H(L)evel and image con-
tents H(C)ontent , while in the second stage, a patch-structure
representation is developed to predict the DPDI for different
distortion types and levels H(D)istort ion. Finally, these compo-
nents are combined to yield an overall DPDI prediction model.

In Section III-D, DPDI is found to decrease with the depth
level monotonically. Here we look for an efficient approach to
predict DPDI values of different levels using stereo matching,
which is an active research area in computer vision over the
last few decades [58]. Specially, given a stereopair of xl and xr

for the left-view and right-view reference images, respectively,
we first estimate the disparity map Dlr , which is simply done



WANG et al.: PERCEPTUAL DEPTH QUALITY IN DISTORTED STEREOSCOPIC IMAGES 1209

TABLE VIII

DPDI, HL VALUES, AND μDlr OF DIFFERENT DEPTH LEVELS

TABLE IX

DPDI, HC VALUES, AND ENERGIES OF DIFFERENT IMAGE CONTENTS

by using MATLAB®’s utility disparityMap [59]. Our
experiment shows that the estimations are highly accurate,
allowing us to design a simple approach to predict how DPDI
changes with depth levels. We denote μDlr as the mean of
disparity values and apply a nonlinear mapping on μDlr to
predict the DPDI values of different depth levels

HL = α

(μDlr )
β + γ

, (3)

where the best parameters are found to be α = 0.4, β = 1 and
γ = 0.47 and HL values of different depth levels are reported
in Table VIII.

In Section III-D, we find that DPDI is highly image content
dependent as it varies significantly across content. In general,
DPDI decreases with the increase of high-frequency details or
energy. We measure the energy by computing the local vari-
ances at each spatial location, i.e., the variances of local image
patches extracted around each spatial location, for which an
11 × 11 circular-symmetric Gaussian weighting function w =
{wi |i = 1, 2, · · · , N} with standard deviation of 1.5 samples,
normalized to unit sum (

∑N
i=1 wi = 1), is employed. The

mean of local variances is used to measure the energy E .
Empirically, we observe that E shows a high dependency
with DPDI for different image contents at different levels of
complexity. The relationship can be well accounted for by the
following nonlinear mapping

HC = τ

log(Eλ)
, (4)

where the best parameters are found to be τ = 21.9 and λ = 6
and HC values of different depth image contents are reported
in Table IX.

Any image patch can be represented in a unique and
adaptive way by three conceptually independent components:
mean intensity, signal strength, and signal structure [60]. This
novel representation has been found to be useful in IQA
of multi-exposure image fusion [61] and contrast changed
images [62]. In this work, we show that this representation
can well explain the distortion type dependency observations
we described in Section III-D.

TABLE X

MEAN VALUES OF �θ FOR DIFFERENT DISTORTION TYPES AND LEVELS

Given a
√

N × √
N local image patch x that is represented

as an N-dimensional vector, we decompose it by

x = μx + ||x − μx|| · x − μx

||x − μx||
= cx

1 · vx
1 + cx

2 · vx
2, (5)

where || · || denotes the l2 norm of a vector, μx is the
mean intensity of the patch. x is now represented as a linear
combination of two unit-length vectors,

vx
1 = 1√

N
· 1 and vx

2 = x − μx

||x − μx|| , (6)

each associated with a coefficient

cx
1 = √

Nμx and cx
2 = ||x − μx||. (7)

Here 1 denotes a column vector with all entries equaling 1.
Since vx

1 is fixed, each source patch x can be uniquely
represented by three components cx

1, cx
2 and the unit-length

vector vx
2, which denote the mean intensity, signal strength and

signal structure, respectively. The representation or decom-
position is adaptive, where the basis vx

2 points to a specific
direction in the signal space and is adapted to the input signal.

Now assume x and y are the co-located patches in the ref-
erence and distorted images, respectively. Then from Eq. (5),
we have vx

2 and vy
2, which represent the signal structures of

the reference and distorted images, respectively. We denote the
angle between vx

2 and the structural distortion vector (vy
2 −vx

2)
as �θ . Then cos �θ can be computed as

cos �θ = |vx
2 · (vy

2 − vx
2)|

||vx
2||||vy

2 − vx
2||

, (8)

and �θ can be subsequently obtained through an arc-cosine
function. Note that �θ is the angle between two orientations
and thus has a dynamic range between 0 and π

2 . Table X
reports the mean values of �θ for each distortion type and
level. Interestingly, the results show a strong distortion type
dependency of �θ . In particular, for noise contaminated
image, �θ is close to π

2 (90◦); for blurred image, �θ is below
π
6 (30◦); and for JPEG compressed image, �θ typically lies
between π

4 (45◦) and π
3 (60◦).

Some qualitative explanations of this phenomenon are as
follows. When left- and right-views are both noise contam-
inated, the distortion vectors vy

2 − vx
2 are orthogonal to the

original vectors vx
2, thus the original necessary information

used to establish stereoscopic cues is affected by independent
noise only. In this case, the impact of distortion on the depth
quality is additive. As such, the gap of DPDI between noise
added to one-view and two-views is much higher than those of
Gaussian blur and JPEG compression because twice amount of
noise is added. On the other hand, when left- and right-views
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are either blurred or JPEG compressed, the distortion vectors
vy

2 − vx
2 can be decomposed into two orthogonal components,

one of which aligns with and the other is orthogonal to the
original vector. The original necessary information used to
establish stereoscopic cues is affected by not only the relative
strength of these two components, but also the consistency
of such relative strengths on the left- and right-views. When
deterministic distortions such as blur or JPEG compression are
applied equally to both views, high consistency is expected.
In this case, the impact of blurriness or compression artifacts
on the depth quality is more dependent on the lower quality
view with more structural distortions. As such, the gap of
DPDI between one-view and two-views is reduced.

The above analysis shows that this patch-structure represen-
tation provides useful cues to account for the distortion type
dependency we observed in Section III-D. This inspires us to
develop an objective model to automatically predict DPDI for
different distortion types and levels.

Let (xl , yl) and (xr , yr ) be the co-located patches in the ref-
erence and distorted left- and right-views images, respectively.
Let dl and dr denote the local distortion measures for (xl , yl )
and (xr , yr ), respectively. We characterize the local measure
of DPDI by

HD = (|dl |p + |dr |p) 1
p , (9)

where p ≥ 0 is an exponent parameter. With various choices
of the value of p, this general formulation leads to a family
of combination rules with different physical meanings. The
larger the p value, the more emphasis is put on the patches
that have relatively larger distortion between left- and right-
view. Specifically, p = 1 corresponds to length-weighted
averaging; p = 2 corresponds to energy-weighted averaging;
and p = ∞ corresponds to picking the patch that has the larger
distortion.

It remains to determine the value of p. Instead of fixing p to
be a constant for each distortion types and levels, here we pro-
pose an automatic approach that chooses p at each spatial loca-
tion adaptively. From Eq. (5), we have (vxl

2 , vyl
2 ) and (vxr

2 , vyr
2 )

for left-view and right-view, respectively. We denote �θl as
the angle between vxl

2 and vyl
2 − vxl

2 and �θr as the angle
between vxr

2 and vyr
2 − vxr

2 . cos �θl and cos �θr are computed
using Eq. (8), then p is determined by

p = (1 + cos �θl + cos �θr )
2. (10)

In particular, when both views are noise contaminated, �θl

and �θr are close to π
2 , cos �θl and cos �θr are close to 0,

and thus p is close to 1, then we have

HD � (|dl | + |dr |) ; (11)

when only one view (e.g. left-view) is noise contaminated and
the other one (e.g. right-view) is pristine, �θr is 0 and cos �θr

is 1, p goes relatively larger, then we have

HD � max {|dl |, |dr |} . (12)

When both views are blurred or JPEG compressed, �θl and
�θr are close to 0 or around π

4 , cos �θl and cos �θr are close
to 1 (for higher JPEG compression levels), thus p is relatively
large; when only one view (e.g. left-view) is blurred or JPEG

compressed and the other one (e.g. right-view) is pristine,
�θr is 0 and cos �θr is 1, and thus p is also a larger number.
In both cases, we have

HD � max {|dl |, |dr |} . (13)

As such, the value of p is automatically determined, without
recognizing the distortion types explicitly.

Once the value of p is determined at each spatial loca-
tion, the local HD measure is computed using Eq. (9). The
global HD measure is the average of the local HD across all
spatial locations. Finally, the three components, HL , HC and
HD are combined to yield an overall DPDI prediction

H = HL · HC · HD. (14)

B. Validation

We use the new Waterloo-IVC 3D Depth database to test
the proposed DPDI prediction model. First, DPDI predic-
tions from HD only are computed for each depth level and
each image content. PLCC, SRCC, and KRCC between the
observed and the predicted DPDI values are reported in
Table XI, where the results are summarized as the average per-
formance for each image content. The direct averaging (Ave.)
method corresponds to the case of p = 1 in Eq. (9), while
in the adaptive-p (Adpt.) method the value of p is adaptively
determined using Eq. (10) to Eq. (13). PSNR, SSIM, MS-
SSIM, information content weighted SSIM (IW-SSIM) [63],
Feature SIMilarity (FSIM) [64], and VIF are employed to
create the base single-view distortion measurements d , where
we let d = 50 − PSNR and d = 1 − SSIM, MS-SSIM,
IW-SSIM, FSIM or VIF. For fairness, a global approach to
compute HD is adopted, i.e., an average spatial pooling on
cos �θl and cos �θr is applied to the left- and right-view,
respectively, and thus p is determined globally. From Table XI,
it can be observed that the adaptive-p model outperforms
the direct averaging method in almost all cases. In addition,
MS-SSIM, IW-SSIM, and VIF achieve larger improvements
than PSNR, SSIM, and FSIM. Considering the performance
and computational complexity, MS-SSIM is chosen as the
distortion measurement method in the subsequent tests.

Table XII shows PLCC, SRCC, and KRCC results for DPDI
predictions from all individuals and combinations of HL , HC ,
and HD for all stereopairs and each distortion type. Note that
HL and HC are pre-determined using Eqs. (3) and (4) in
Section IV-A, but are completely independent of the following
tests with HD and their combinations. It can be seen that DPDI
prediction performance from HL only and HC only are similar,
which indicates that depth level and image content are about
equally important to DPDI estimation, and their combination,
not surprisingly, provides a relatively better DPDI prediction
performance. It can also be observed that DPDI predictions
from HD only are not as good as those from HL only or
HC only, even though the adaptive- p method reduces the
prediction bias. When HL , HC , and their combination are
combined with HD, significant improvements are obtained,
but in the case of using the adaptive-p method only and not
in the case of direct averaging.



WANG et al.: PERCEPTUAL DEPTH QUALITY IN DISTORTED STEREOSCOPIC IMAGES 1211

TABLE XI

PERFORMANCE COMPARISON OF DPDI ESTIMATIONS USING DIFFERENT BASE 2D DISTORTION MEASURES.
AVE.: DIRECT AVERAGING; ADPT.: PROPOSED ADAPTIVE- p MODEL

TABLE XII

PERFORMANCE COMPARISON OF DPDI ESTIMATIONS USING DIFFERENT COMBINATIONS OF PREDICTION COMPONENTS

TABLE XIII

PERFORMANCE COMPARISON OF DPDI ESTIMATIONS FOR DIFFERENT DEPTH LEVELS

The best prediction happens in the case that all DPDI
prediction components are included. For all images and each
distortion type, the proposed method, when combined with
MS-SSIM as the base 2D distortion measure, without attempt-
ing to recognize the distortion types or giving any specific
treatment for any specific distortion type, leads to highly
promising DPDI prediction performance.

Moreover, Tables XIII and XIV report PLCC, SRCC, and
KRCC values of the overall DPDI predictions for differ-
ent depth levels and different image contents, respectively.
Interestingly, it can be observed that improvements are most
pronounced at the middle depth levels (Level 2 and Level 3)
or at the textural contents of middle complexity (Bark and
Flower), which indicates that the impact of symmetric and

asymmetric distortions on the perception of depth is more
significant in these “middle” cases.

V. DISCUSSIONS

A. Comparison Between Subjective Studies I and II

A main issue with the traditional subjective testing
approaches such as that used in our Subjective Study I
(Section II) is the difficulty in singling out the contribution
of stereo cues in depth perception, and the subjective scores
collected through such experiments show strong correlations
between 3D image quality and depth quality scores, even
though they are substantially different perceptual attributes.
The second subjective testing method introduced in our
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TABLE XIV

PERFORMANCE COMPARISON OF DPDI ESTIMATIONS FOR DIFFERENT IMAGE CONTENTS

TABLE XV

CORRELATIONS BETWEEN 3DIQ AND DPDI PREDICTIONS

Subjective Study II (Section III) is an attempt to overcome
this problem. To observe it more closely, for each stereopair
on the new Waterloo-IVC 3D Depth Database, we estimate its
3DIQ using the binocular rivalry-inspired weighting method
presented in [8] and its DPDI using the proposed DPDI
prediction model, respectively. Table XV shows the PLCC,
SRCC and KRCC values between the predicted 3DIQ and
DPDI. It is important to note that the correlations between
3DIQ and DPDI predictions are relatively low, which is quite
different from the observations in the first subjective test we
discussed in Section II-C. This result suggests that our new
subjective testing approach is able to provide more indepen-
dent information on the depth perception aspect of 3D visual
perception. A comprehensive comparison between Subjective
Study I and Subjective Study II is provided in Table XVI.

B. Perceptually-Driven Asymmetrical
Stereoscopic Video Coding

In Section II-C, we described that there exists a strong
distortion type dependency with 3D image quality [8]. Then
in Section III-D, a different distortion type dependency in
depth perception has been discovered. The discovery of such
a distortion type dependency in depth perception not only
has scientific values in understanding depth perception in
the HVS, but is also desirable in the practice of 3D video
compression and transmission. The distortions involved in
3D video coding/communication are not only compression
artifacts. The practical encoder/decoder also needs to decide
on whether inloop/out-of-loop deblocking filters need to be
turned on, and whether mixed-resolutions of the left/right-
views should be used. Mixed-resolution coding, asymmet-
ric transform-domain quantization coding, and postprocessing
techniques (deblocking or blurring) can be employed individ-
ually or collectively. Previously in [65]–[67], the extent of
the downsampling ratio that can be applied to a low quality
view without a noticeable degradation on the 3D quality
has been investigated. In [67], symmetric stereoscopic video
coding, asymmetric quantization coding and mixed-resolution
coding have been compared and the results suggested that

mixed-resolution coding achieves the best coding efficiency.
In [68], different levels of Gaussian blurring are applied after
asymmetric quantization and a significant bit rate reduction
has been achieved for this joint asymmetric compression and
postprocessing method. However, here our new observations
indicate that asymmetric compression and asymmetric blurring
will influence the perceived 3D depth quality, i.e., adding
blur or JPEG compression to one view of stereopair has
similar effect in depth perception as adding the same level
of distortion to both views. This is quite different from the
distortion type dependency in 3D image quality perception.
Therefore, the current study suggests that mixed-resolution
coding, asymmetric transform-domain quantization coding,
and postprocessing schemes need to be carefully reexamined
and redesigned to maintain a good tradeoff between perceptual
3D image quality and depth quality. One possible solution
is that a threshold on H may be used as a constraint in
the process of asymmetrical bit allocation, ensuring that the
quality of depth perception will not be severely affected. In
the rest of this section, we will demonstrate how to use our
current findings to guide the asymmetric transform-domain
quantization coding with low-pass postprocessing filtering.

In [68], we found that the prediction of stereoscopic 3D
video quality can be calculated by a weighted average of the
left- and right-view video quality

Q3D = wl Q2D
l + wr Q2D

r , (15)

where wl and wr are determined by the relative energy of the
two views [8].

The fundamental issue in stereoscopic video compression
is to obtain the best tradeoff between the total rate of both
left- and right-views and the perceived distortion. With the
distortion model in Eq. (15), such a rate distortion optimiza-
tion (RDO) problem can be expressed as

max
{
wl Q2D

l + wr Q2D
r

}
subject to Rl + Rr ≤ Rc, (16)

where wl + wr = 1, and Rl and Rr represent the bit rates
of the left- and right-views, respectively. The major difference
between stereoscopic and monoscopic video coding lies in the
bit allocation between the two views for maximal stereoscopic
quality.

Recall the distortion model in Eq. (15), which can be
rewritten as

Q3D = wl Q2D
l + (1 − wl)Q2D

r

= Q2D
l + Q2D

r

2︸ ︷︷ ︸
Qualit y Average

+ (wl − 1

2
)(Q2D

l − Q2D
r )

︸ ︷︷ ︸
Qualit y Divergence

, (17)
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TABLE XVI

COMPARISON BETWEEN SUBJECTIVE STUDY I AND SUBJECTIVE STUDY II

where without loss of generality, left-view is denoted as the
higher quality view.

This suggests that the quality measure is composed of two
terms, which are the quality average and quality divergence
of the two views. If we ignore the quality divergence term by
setting (wl = wr = 0.5) and assume that the two views are
independent of each other, borrowing bits from one view to
the other would not be wise because the performance gain for
the high quality view would not be able to compensate for
the loss in the low quality view. This suggests that the quality
divergence term plays a crucial role in asymmetrical coding.

The underlying principle in the quality measure Eq. (15)
is that the view with higher energy dominates the final 3D
visual quality. Therefore, it becomes natural to allocate more
bits to one view and perform low-pass filtering to the other
when the bit budget cannot support both views to be coded
at the high quality level. As a result, the divergence term in
Eq. (17) is increased at the expense of the quality dropping
on the average quality. Although blurring artifacts already
exist in the compressed video, the low-pass postprocessing
filtering is still necessary as the blocking artifacts are also very
significant in low bit rate coding. After low-pass filtering, the
view with lower quality has smaller energy. Consequently, the
overall quality approaches the high quality view, leading to a
significant improvement on the final stereoscopic quality.

It is worth noting that though the quality divergence term
is maximized when more coding bits are allocated to the high
quality view, the average quality drops. Therefore, optimal
asymmetrical bit allocation does not necessarily mean that all
bits should be allocated to the high quality view. Finding the
best tradeoff is desirable. More importantly, it is recognized
that introducing blur artifacts will lead to degradations on
depth quality, which motivates us to add a threshold on H
to control the maximum allowed DPDI as another constraint.
This can be used to determine the low-pass postprocessing
filtering level.

Given the inherent disparity exhibited in the original stere-
opairs, the relative DPDI change is computed as

H

HL
= HC · HD, (18)

where HC is computed from Eq. (4) and HD is estimated
based on the quality of the left- and right-view Q2D

l and Q2D
r .

For the compression artifacts induced by HEVC and the
blurriness induced by low-pass postprocessing filtering,

based on Eq. (13), we estimate HD by

HD � max
{

1 − Q2D
l , 1 − Q2D

r

}
= 1 − Q2D

r , (19)

where without loss of generality, Q2D
l and Q2D

r is assumed
to be bounded between 0 and 1.

Finally, a threshold �Hth is imposed on the relative depth
variation to ensure that a reasonable depth quality is preserved

H

HL
= HC · HD < �Hth. (20)

It should also be noted that when the overall bit budget is
high enough to support both views coded at high quality, the
postprocessing becomes unnecessary. Consequently, before bit
allocation, the bit budget is examined in terms of bits/pixel to
determine whether the proposed scheme should be performed.

VI. CONCLUSIONS

We have carried out two subjective studies on depth per-
ception of stereoscopic 3D images. The first one follows a
traditional framework where subjects are asked to rate depth
quality directly on distorted stereopairs. The second one uses a
novel approach, where the stimuli are synthesized independent
of the background image content and the subjects are asked
to identify depth changes and label the polarities of depth.
Our analysis shows that the second approach is much more
effective at singling out the contributions of stereo cues in
depth perception, through which we have several interesting
findings regarding distortion type dependency, image content
dependency, and the impact of symmetric and asymmetric dis-
tortions on the perception of depth. Furthermore, we propose
a novel computational model for DPDI prediction. Our results
show that the proposed model, without explicitly identifying
image distortion types, leads to highly promising DPDI pre-
diction performance. We believe these findings provide useful
insights in the future development of comprehensive 3D QoE
models for stereoscopic images, which have great potentials
in real-world applications such as asymmetric compression of
stereoscopic 3D videos.
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