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Abstract—With the increasing demand of compressing and
streaming 3D point clouds under constrained bandwidth, it
has become ever more important to accurately and efficiently
determine the quality of compressed point clouds, so as to assess
and optimize the quality-of-experience (QoE) of end users. Here
we make one of the first attempts developing a bitstream-based
no-reference (NR) model for perceptual quality assessment of
point clouds without resorting to full decoding of the compressed
data stream. Specifically, we first establish a relationship between
texture complexity and the bitrate and texture quantization
parameters based on an empirical rate-distortion model. We
then construct a texture distortion assessment model upon
texture complexity and quantization parameters. By combining
this texture distortion model with a geometric distortion model
derived from Trisoup geometry encoding parameters, we obtain
an overall bitstream-based NR point cloud quality model named
streamPCQ. Experimental results show that the proposed stream-
PCQ model demonstrates highly competitive performance when
compared with existing classic full-reference (FR) and reduced-
reference (RR) point cloud quality assessment methods with a
fraction of computational cost.

Index Terms—Image quality assessment, Point cloud,
Bitstream-based, No reference, G-PCC.

I. INTRODUCTION

A 3D point cloud (PC) is a collection of points representing
a 3D shape, object or environment. Each point has its

own geometric coordinates and other associated attributes.
With the fast development of immersive media communi-
cation (IMC), there has been a growing number of 3D PC
applications, including immersive telephone, smart shopping,
digital museum, distance education, and smart city, among
many others. Nevertheless, the gigantic data volume of 3D PCs
demands heavy compression to transmit PC data under strict
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bandwidth constraints, which subsequently leads to major
quality control challenges. Therefore, there has been an urgent
need of effective and efficient PC quality assessment (PCQA)
methods [1], which may not only be used to assess and
compare the performance of PC processing algorithms, but
also generate valuable feedback that greatly help the design,
optimization and parameter tuning of novel PC processing
systems.

Human beings are the ultimate receivers in immersive media
applications, thus subjective quality assessment is thought as
the most reliable method of PCQA. But it is time-consuming,
cumbersome, and sometimes infeasible. It is therefore crucial
to establish objective PCQA models. Like image/video quality
assessment problems, objective PCQA approaches can be
classified into full-reference (FR), reduced-reference (RR) and
no-reference (NR) methods, according to whether a pristine
reference PC is fully available, partially available, or not avail-
able. NR-PCQA metrics can be further divided into media-
based (MB) and bitstream-based (BB) models − the former
looks at points of fully decoded PCs, while the latter is based
on compressed bitstreams without full decoding. BB models
provide a low complexity solution and are highly desirable in
time-critical applications.

A general representation of a typical IMC transmission
system is depicted in Fig. 1, where a PCQA metric may
be deployed at different points for quality monitoring along
the data transmission workflow. At node A, the original and
compressed PCs are accessible before and after the encoder,
and thus FR, RR, and NR methods are all applicable, and
may be used to optimize PC compression (PCC). By contrast,
at nodes B, C and D, since the reference PC is generally
not accessible, an NR-PCQA metric is better suited. More
specifically, MB NR-PCQA methods may be used at point D
where the PC has been fully decoded, while BB NR-PCQA
would be a better choice at points B and C for real-time
quality monitoring [2], for which the decoding complexity
may be too costly. There are generally two sources of quality
degradations: compression distortions and transmission errors.
Compression distortion assessment is fundamental in PCQA,
because it can be used to assess the PC quality in absence of
transmission channel errors. When channel errors are present,
compression distortion assessment still serves as a critical part
for the overall PCQA.

In this work, we make one of the first attempts to develop
a BB NR-PCQA method, namely streamPCQ, without fully
decoding compressed PC bitstreams. The diagram of the
streamPCQ model is shown in Fig. 2, where encoding param-
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Fig. 1. Diagram of PC transmission system and potential quality monitoring points at nodes A, B, C and D.

Fig. 2. Diagram of the proposed streamPCQ model.

eters, including Trisoup node size (TNS), texture quantization
parameter (Qp), and texture bitrate (Rp), are extracted by
a bitstream analyzer, followed by texture complexity (σTC)
estimation, texture distortion assessment, geometric distortion
modeling, before an overall streamPCQ quality prediction is
reached. When tested on the Waterloo Point Cloud (WPC)
database [3], the proposed streamPCQ model demonstrates
state-of-the-art quality prediction performance with very low
computational complexity.

The remainder of this paper is outlined as follows. In
Section II, we discuss related work, including existing PCQA
models, the relevant technical details of Trisoup and Region
Adaptive Hierarchical Transform (RAHT) in Geometry-based
PCC (G-PCC), and the standardization of bitstream-based
visual quality assessment. In Section III, we establish the
relationship between Qp and the perceptual quality of geo-
metric lossless PCs, derive a TC estimator by rate-distortion
theory, and construct the streamPCQ model by incorporating
the influence of texture and geometric distortions on perceptual
quality. We report our experimental results in Section IV and
draw conclusions in Section V.

II. RELATED WORK

A. PCQA Models

Objective PCQA aims to create accurate mathematical
models to estimate PC quality. Just like image/video quality
assessment, objective PCQA models can be categorized into
FR, RR and NR PCQA models.

1) FR-PCQA Models: FR-PCQA models can be broadly
classified into point-based, projection-based and feature-based
models. More specifically, point-to-point metrics [4]–[7] as-
sess geometric distortions by Euclidean distances, and point-
to-plane methods [5] assess geometric distortions by projected
errors along normal vector directions. The plane-to-plane
metric predict the geometric distortions by calculating the

similarity of local surface approximations [8]. In [9], [10],
point-to-distribution quality metrics are proposed by exploiting
the correspondence between a point and a distribution of points
from a small PC region.

Projection-based models [3], [11]–[19] use the projected im-
age of PC information to evaluate the PC quality. Specifically,
in [11], both reference and test PCs are projected onto six
planes of their bounding boxes. Then, the average scores of
the projected images are computed by state-of-the-art image
quality metrics. In [12], projection-based objective quality
assessment is extended by assigning weights to perspectives
based on user interactivity data. Yang et al. [14] propose a
projection-based method via perspective projection onto six
planes and extracted global and local features of depth and
color images obtained by projection. Wu et al. [16] propose
two projection-based objective quality evaluation methods: a
weighted view projection-based model and a patch projection-
based model. He et al. [15] propose a PCQA method that
combines colored texture and curvature projection. He et
al. [17] also propose a PCQA method based on texture and
geometry projection. Wang et al. [19] use the saliency maps
to facilitate quality prediction.

Feature-based models extract features from both reference
and distorted PCs to evaluate objective scores. Similarity
measures [20] proven to be effective in general image quality
assessment are extended to PCQA [21]–[28]. In these methods,
geometry-based, normal-based, curvature-based color-based
and graph-based features are extracted from both reference
and distorted PCs, then these feature similarities are evaluated
and combined to overall objective scores. Zhang et al. [29]
proposed a metric based on graph signal and color features.
Statistics of a variant of the Local Binary Pattern (LBP) [30],
[31], perceptual color distance patterns (PCDP) [32] and local
luminance patterns (LLP) [33] descriptors are introduced to
PCQA. Besides, Diniz et al. [34] propose a PCQA metric,
named BitDance, which uses color and geometry texture
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descriptors. Alexiou et al. [35] propose a metric that compares
local shape and appearance measurements between a reference
and a distorted PC. Considering the visual masking effect of
PC’s geometric information and the color perception of human
eyes, the CPC-GSCT metric [36] uses geometric segmentation
and color transformation respectively to construct geometric
and color features and then to predict the PC quality. In [37],
color histograms and correlograms are employed to evaluate
the impairment of a distorted PC with respect to its reference.
Color-only and geometry-only approaches are then combined
to obtain a rendering-independent objective PCQA metric.
Yang et al. [38] proposed mult-iscale potential energy dis-
crepancy (MPED), a distortion quantification to measure point
cloud geometry and color difference. The proposed MPED
is able to capture both geometrical and color impairments
by quantifying the total distortion between reference and
distorted samples. It’s interesting that Chetouani et al. [39],
[40] and Tliba et al. [41] propose deep learning-based FR-
PCQA methods that efficiently predict the quality of distorted
PCs with reference.

Although these methods demonstrate promising results, they
are FR models and require full decoding, which is time-
consuming and is unsuitable for real-time quality monitoring
at network nodes in practical PC transmission systems.

2) RR-PCQA Models: RR-PCQA models only require par-
tial information of the reference PCs [42], [43]. In [42], an
RR-PCQA metric is developed that extracts geometry-based,
luminance-based and normal-based features from the reference
PC. Such features are then transmitted alongside the content,
and are employed at the receiver side (e.g. point D in Fig. 1)
and compared with the distorted PC. The best combination
of the features is obtained through a linear optimization
algorithm. In [43], two color features are proposed to estimate
three content-dependent parameters, and then a RR-PCQA
model is established. The reason is that the content has a
masking effect on the coding distortion that is consistent with
the characteristics of the human visual system. That is to say,
the parameters are highly content dependent.

3) NR-PCQA Models: NR-PCQA models require no infor-
mation of the reference PCs [40], [44]–[58]. Van et al. [57]
present a cluster-based objective NR QoE assessment model
for point cloud video. Tao et al. [45] propose a point cloud
projection and multi-scale feature fusion network to assess
the PC quality. The proposed method includes three modules,
that is, joint color-geometric feature extractor, two-stage multi-
scale feature fusion, and spatial pooling module. Considering
the visual masking effect of PC’s geometric information and
the color perception of human eyes, the BQE-CVP metric [46]
uses geometric feature, color feature and joint feature to
develop a blind quality evaluator. Liu et al. [47] propose
a deep learning-based no reference point cloud quality as-
sessment method, namely PQA-Net. Specifically, the PQA-
Net consists of a multi-view-based joint feature extraction
and fusion (MVFEF) module, a distortion type identifica-
tion (DTI) module, and a quality vector prediction (QVP)
module. By using the distortion type labels, the DTI and
the MVFEF modules are first pre-trained to initialize the
network parameters, based on which the whole network is

Fig. 3. Framework of G-PCC encoder in this work.

Fig. 4. Modeling geometry within each block: Trisoup.

then jointly trained to finally evaluate the point cloud quality.
Zhang et al. [48] propose a metric for colored 3D models
represented by both PC and mesh. Zhou et al. [49] propose an
PC quality index with Structure Guided Resampling (SGR)
to automatically evaluate the perceptually visual quality of
3D dense PCs. Yang et al. [50] present a metric, the image
transferred point cloud quality assessment (IT-PCQA), for 3D
PCs. Cao et al. [44] define PC quality as a function of the
bitrate and observation distance. Nevertheless, bitrate alone
cannot accurately estimate PC quality, and the observation
distance, a parameter often used in the rendering algorithm, is
often not available in practical systems. Liu et al. [58] propose
a bitstream-layer model to evaluate V-PCC compressed PCs.
Bitrate and quantization parameters are used in this model to
evaluate PC quality without fully decoding compressed PCs.
This gives us inspiration to develop the model in this paper.

B. MPEG G-PCC

In 2017, MPEG initiated PCC standardization [59], [60].
Subsequently, two technologies were chosen as test models:
G-PCC for static content and dynamically capturing, and
Video-based PC Compression (V-PCC) for dynamic content,
respectively. In G-PCC, there are two geometry encoding
modes (Octree and Trisoup) and three attribute encoding
modes (Predicting, Lifting and RAHT), respectively. Here we
focus on static PCs and therefore we choose Trisoup with
RAHT for G-PCC encoder, as shown in Fig. 3.

1) Trisoup geometry encoding: As illustrated in Fig. 4,
Trisoup encoding is a geometry coding option that repre-
sents the object surface as a series of triangle mesh. TNS
defines the size of the triangle nodes in unit of voxel. The
octree encoding and decoding stop at leaf level L, in which
case the leaf nodes of the octree represent cubes of width
W = 2max NodeSizeLog2−L, or blocks, where the octree is
pruned.

If TNS is larger than 0, then the blocks are 2×2×2 or larger,
and it is necessary to represent the collection of voxels within
the block by some model. Geometry is represented within each
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Fig. 5. Diagram of RAHT attribute encoding.

block as a surface that intersects each edge of the block at most
once. Since there are 12 edges of a block, there can be at most
12 such intersections within a block. Each intersection creates
a vertex. A vertex along an edge is detected if and only if there
is at least one occupied voxel adjacent to the edge among all
blocks that share the edge. The position of a detected vertex
along an edge is the average position along the edge of all
such voxels adjacent to the edge among all blocks that share
the edge. This triangle mesh is encoded and used to obtain
the positions of the reconstructed (or decoded) points. When
it comes to decoding, the decoder generates PC from the mesh
surface in the specified voxel granularity so that it assures the
density of the reconstructed PC.

2) RAHT: RAHT is an attribute encoding option based on
the geometric position of a known PC. The main idea behind
RAHT is to use the attribute values in a lower octree level to
predict the values in the upper level. After sorting nodes by
Morton code [61], the lowest bits of Morton codes are deleted
and then RAHT is applied to nodes with the same Morton
code. It starts from the leaves of the octree (highest level) and
proceeds backwards until it reaches its root (lowest level). At
each decomposition, instead of grouping eight voxels at a time,
the transform is applied to each node and is performed in three
steps, one in each x, y, z, directions, as illustrated in Fig. 5. A
brief description is as below and interested readers may refer
to [62] for more details.

Attribute values of nodes are processed along x direction in
the first step as shown in Fig. 5. Since the purple block has no
adjacent nodes in the x direction, its attribute value, the DC
coefficient, will be directly assigned to the next step. Both
orange and blue nodes have adjacent nodes in the x direction,
and at every grouping of two voxels with their weights, the
following transform is applied:

[
CDC

CAC

]
= Tw1,w2

[
V1
V2

]
, (1)

where V1, V2 are values of two adjacent voxels, and

Tw1,w2
=

1√
w1 + w2

[ √
w1

√
w2

−√w2
√
w1

]
, (2)

where w1, w2 are the weights of V1 and V2, respectively. The
transform matrix changes at all times, adapting to the weight
values. As a result, CDC and CAC are assigned to two new
orange nodes as the DC and AC coefficients, respectively. The
same transform is also applied to two blue nodes. Then, the
orange and blue nodes are adjacent along y direction, and their
values are transformed into a new DC and AC coefficient,
respectively. Finally, the last two DC coefficients are adjacent
along z direction, thus they are send to the same transform
again. Consequently, the last AC coefficient and the final DC
coefficient are obtained. Eventually, a series of AC coefficients
and the final DC coefficient are obtained.

C. Bitstream-based Visual Quality Assessment

Bitstream-based visual quality assessment is designed to use
the information extracted from packet headers or payload for
real-time and non-intrusive quality monitoring. It is most ap-
propriate and sometimes the only choice for networked video
services, when complete video decoding or reconstruction is
not preferred. In fact, bitstream-based approaches have a spe-
cial advantage over pure pixel-based schemes since additional
information can be obtained from the bitstream, such as the
bitrate, frame rate, frame type, quantization parameter, motion
vectors, and detailed information about data corruption rising
from packet loss [2].

For bitstream-based techniques, the performance signifi-
cantly depends on the level of access to the bitstream. In
general, the more information can be utilized, the better the
performance will be. However, extracting more information
from the bitstream is usually accompanied by increasing
computational complexity. Three broad categories of models
are identifiable in the state-of-the-art techniques and standards
recommendations for bitstream-based quality assessment for
networked video, depending on the level of access to the
bitstream.

Specifically, a parametric model predicts perceptual video
quality based on the general parameters obtained through
statistical analysis of the bitstream, such as bitrate, frame rate,
packet loss rate, and so on. Originally designed for service
planning, the parametric planning model has been densely
deployed in industry for quality monitoring of individual
services. ITU-T G.1070 model [63], ITU-T G.1071 model [64]
and Mode 0 of ITU-T P.1203 and P.1204 model belong to
parametric models.

A packet layer model allows the use of packet header
information to predict the video quality without resorting to
any media-related payload information. Similar to the case
of the parametric model, the packet layer model initially
aims at estimating the average service quality. Along with its
development, however, much expectation has been raised to
monitor the QoE of individual video streams as the packet
header information provides some insight into the content
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characteristics. ITU-T P.1201 model [65], Mode 1 of ITU-
T P.1203 [66] and P.1204 [67] model belong to packet layer
models.

A bitstream layer model utilizes further information about
the encoded bitstream (e.g., frame type, quantization param-
eter, motion vector, temporal complexity, spatial complexity,
pixel values, the actual position of packet loss, the number of
lost packet, etc.), in addition to the packet layer information.
This model is dedicated to in-service non-intrusive monitoring,
with more weight placed on the accuracy issue. The bitstream
layer model can be further divided into two modes: parsing
mode and full decoding mode. The former does not completely
decode the payload. Any kind of analysis of the bitstream,
without using the pixel information, can be applied. Mode 1
of ITU-T P.1202 model [68] and Mode 2 of ITU-T P.1203
and P.1204 model belong to the parsing mode. While the
model in the latter mode can decode parts or all of the video
sequence, and the pixel information can be used for quality
estimation. Apparently, when full decoding is employed, this
mode is similar to the hybrid model, which needs the input of
the bitstream and the reconstructed video. Mode 2 of ITU-T
P.1202 model and Mode 3 of ITU-T P.1203 and P.1204 model
belong to the full decoding mode.

In a word, the bitstream-based model initially aims at quality
assessment of networked video services. Along with its devel-
opment, however, much expectation has been raised to monitor
the quality of immersive media services (e.g., PC). It is clear
that bitstream-based PCQA should follow the methodology of
bitstream-based visual quality assessment, however, it presents
new characteristics for the new media format. First, there is no
geometric information in the video signal, however, geometric
distortion has a great impact on the PC quality. Second, the
PC is sparse in 3D space, while the video frame is regular
in 2D space. Third, the subjective test of PC and video is
very different, which will lead to the difference in objective
algorithm design. The detailed design of proposed bitstream-
based PCQA model is shown in Section III.

III. PROPOSED STREAMPCQ MODEL

A. Perceptual Quality and Texture Quantization Parameter

We first establish a perceptual quality assessment model of
geometric lossless PCs, called texture distortion assessment
model. Similar to conventional image and video compression,
blocking artifacts are often the main encoding distortion in
reconstructed PCs due to RAHT. The blocking artifact here
appears as virtual boundary discontinuities of virtual surfaces
in a PC. It is caused by the independent quantization of RAHT
coefficients across adjacent virtual surfaces. Texture quanti-
zation is the main source of texture distortion and therefore
perceptual texture distortion is closely tied to the texture quan-
tization step or its corresponding Qp. To investigate the under-
lying relationship, 10 standardized PCs with both geometric
and texture diversities (Biscuits, House, Litchi, Mushroom,
Pen container, Pineapple, Puer tea, Pumpkin, Ship, Toolbox)
from the WPC database were selected as the Training Set and
encoded with constant Qps. The relationship between the mean
opinion score (MOS) and Qp is shown in Fig. 6 and can be
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Fig. 6. Relationship between MOS and Qp.

(a) Pen container, MOS = 56.30 (b) Tool box, MOS = 29.32

Fig. 7. Texture masking effects at QP = 52.

roughly depicted as a sigmoid curve for any specific PC, but
the shapes vary for different PCs. Specifically, as shown in
Fig. 7, the PCs richer in texture, such as Pen container, have
a comparatively higher MOS at certain Qp levels, while the
PCs with less texture information such as Tool box have lower
MOS. This can be explained by the texture masking effects
of the Human Visual System (HVS), which suggests HVS
characteristics and content-dependency, in particular σTC , play
important roles in PCQA. σTC evaluation is the main focus
of Section III-B.

B. Texture Complexity Estimation

When the attribute values of the original reference PC
is available, a direct measurement of σTC is the averaged
standard deviation of the attribute values in local blocks [69].
However, in NR-PCQA, the original attribute values are not
available. To overcome the problem, we estimate σTC using
information extracted from bitstreams of compressed PCs,
such as the texture bitrate Rp and the Qp. We derive a rate-
distortion (RD) model to represent the relationship between
σTC , Rp, and Qp. Assuming the PC signal has been decom-
posed into sub-bands, and the RAHT coefficients X within a
given sub-band are independent and identically distributed and
have a Laplacian distribution with parameter b [62]:

p(x) =
1

2b
e−
|x|
b , (3)
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(a) Qp = 22 (b) Qp = 28

(c) Qp = 34 (d) Qp = 40

(e) Qp = 46 (f) Qp = 52

(g) Qp = 58

Fig. 8. Relation between σTC and RP .

where the variance may be computed by σ2 = 2b2. The RD
function of a Laplacian source in terms of the magnitude error
criterion is given by [70]:

R(D) =

{
ln( b

D ) 0 < D < b

0 D ≥ b
. (4)

A Taylor series expansion of (4) leads to:

R(D) = lnλ+ λ−1(
b

D
− λ) +R′(D) ≈ (lnλ− 1) +

b

λ
D−1,

(5)
where λ > 1 satisfies the condition for convergence. Since the
magnitude error criterion is used as the distortion measure in
(5), D can be expressed as [71]

D = Qs/4, (6)

where Qs is the texture quantization step, and

Qs = 2
Qp−4

6 . (7)

Substituting (6) into (5) and neglecting the higher-order
terms, a rate-quantization model is formulated:

Rm = α+ βbmQ
−1
s for m = 1, 2, ...,M, (8)

where Rm is the average number of bits for the RAHT
coefficients in the mth sub-band, bm is the parameter of
Laplace distribution in the mth sub-band, α and β are the
corresponding coefficients, and M is the number of sub-band.
For a Laplacian distributed source, the standard deviation
σ =
√
2b. Accordingly, (8) becomes

Rm = γ + δσmQ
−1
s for m = 1, 2, ...,M, (9)

where γ and δ are the corresponding coefficients and σ2
m

is the variance of the Laplacian distribution for the RAHT
coefficient in the mth sub-band. In practical applications,
given a RAHT coefficient, it is very difficult to determine the
standard deviation. Nevertheless, previous research suggests
that the distribution of the RAHT coefficients can also be
modeled by the Laplacian distribution [62], and thus the
variance of the RAHT coefficients can be estimated by:

σ2
m = θmσ

2
TC , (10)

where θm is a parameter related to the mth sub-band and
σTC is the standard deviation of the attribute values before
the RAHT transform. Therefore, the texture bitrate (bits per
point, bpp), Rp, in a transform block is given by

Rp =
1

M

M∑
m=1

Rm

=
1

M

M∑
m=1

(γ + δσmQ
−1
s )

= η + ωσTCQ
−1
s ,

(11)

where η and ω are the corresponding parameters. Therefore
given a constant Qs, Rp and σTC have approximately a linear
relationship:

σTC = s(Qs)Rp + i(Qs), (12)

where s(Qs) and i(Qs) are the slope and intercept values at
Qs, respectively. Seven examples of the relationship between
σTC and Rp are shown in Fig. 8 for Qp = 22, 28, 34, 40, 46,
52 and 58 (Qs = 8, 16, 32, 64, 128, 256, 512), respectively.
Markers in each sub-figure of Fig. 8 correspond to 10 original
point clouds in the Training Set, and the abscissa and ordinate
represent Rp and σTC , respectively. It is clear that a linear
relationship exists between σTC and Rp for a given constant
Qp, which is consistent with the model presented in (12).

From Figs. 9 and 10, we observe that s(Qs) is roughly a
proportional to Qs, and there is a V-curve relationship between
i(Qs) and Qs, which has a minimum value when Qs is around
32. These can be modeled by

s(Qs) = c1Qs (13)

and
i(Qs) = d1 ln (d2|Qs − d3|) + d4, (14)
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Fig. 10. Relationship between Qs and i(Qs).

where c1, d1, d2, d3 and d4 are parameters obtained by least
square fitting. Submitting (13) and (14) into (12), we obtain
our TC estimator of a distorted PC as

σTC = (c1Qs)Rp + d1 ln (d2|Qs − d3|) + d4. (15)

C. Texture Distortion Assessment

Fig. 6 exhibits a tripartite relationship between MOS and
Qp: The value of MOS decreases slowly at low-Qp or high
quality range, followed by a sharp transition at mid-Qp range,
and then saturates at the high-Qp or low quality region. This
trend may be captured by a logistic function given by

MOST =
f1

1 + e
Qp−f2
f3

+ f4, (16)

where f1, f2, f3 and f4 are empirical parameters, and MOST

represents the MOS of PC of texture distortion only. The
perceptual quality of a distorted PC and subsequently its
parameters in (16) also depends on the content of the PC
characterized by its σTC .

Table I presents the best fitting values of f1, f2, f3 and f4
calculated for each PC in the Training Set. There are several
useful observations form Fig. 6 and Table I. In particular,
f1 + f4 for each PC corresponds to its maximum subjective
score, and f1 stays relatively constant across different PCs.
This is consistent with the subjective test results: when Qp

TABLE I
OPTIMAL FITTING VALUES OF f1 , f2 , f3 AND f4 FOR EACH PC.

PC f1 f2 f3 f4
Biscuits 64.66 50.85 3.436 17.22
House 71.36 51.70 3.218 18.74
Litchi 71.66 51.93 4.102 14.61
Mushroom 66.01 48.79 3.086 22.29
Pen container 64.70 52.43 3.570 21.94
Pineapple 61.06 50.71 3.140 24.99
Puer tea 77.80 48.00 4.487 13.84
Pumpkin 63.60 52.15 2.844 22.60
Ship 61.11 50.84 2.817 23.16
Tool box 71.86 46.92 4.112 11.71

TABLE II
σTC AND RETRAINED f2 AND f4 VALUES FOR EACH PC.

PC σTC f2 f4
Biscuits 10.99 51.16 14.79
House 15.76 51.24 22.55
Litchi 11.82 51.61 17.86
Mushroom 13.25 48.89 21.34
Pen container 15.83 52.82 19.18
Pineapple 15.13 51.35 19.59
Puer tea 12.92 47.64 20.32
Pumpkin 13.37 52.44 19.61
Ship 11.00 51.34 18.14
Tool box 7.273 46.81 14.28

goes to its maximum value, MOS converges to f4, the lower
bound of MOS of the PC content. On the other extreme, if
Qp approaches its minimum value, MOS converges to f1+f4.
Although the best fitting of f3 change for different PCs, the
resulting MOSs are insensitive to f3. Therefore, we set both f1
and f3 constants in our model using the best fitting values for
the full training set. Once f1 and f3 are fixed, f2 and f4 in (16)
are retrained and the results are shown in Table II. Also shown
in Table II are the σTC values of the corresponding PCs. It
can be observed that a higher f2 or f4 corresponds generally
to a PC of higher σTC (e.g., Pen container) and vice versa
(e.g., Tool box). Therefore, we adapt f2 and f4 to content
empirically:

f2 = h1σTC + h2 (17)

and
f4 = j1σTC + j2, (18)

where h1, h2, j1 and j2 are obtained through training using
the least square fitting of the Training Set.

Finally, submitting (17) and (18) into (16), we have

MOST =
f1

1 + e
Qp−h1σTC−h2

f3

+ j1σTC + j2. (19)

Such a model may be applied directly for quality prediction
of PCs free of geometric distortion, and may also be used
as a key component for quality assessment of PCs with both
texture and geometric distortions.

D. Geometric Distortion and Overall Quality Assessment

As described in Section II-B1, Trisoup encoding is a ge-
ometry coding mechanism that represents the object surface



8

as a series of triangle mesh, for which the TNS represented
by the NodeSizeLog2 (NSL) parameter defines the size of
the triangle nodes, and thus the accuracy of geometry repre-
sentations. Fig. 11 shows the relationship between MOS and
Qp at different NSL levels for different PC content. Clearly,
across all content, MOS generally reduces with Qp for fixed
NSL, and with NSL for fixed Qp. The question is whether
the impact of Qp and NSL, which determines the texture and
geometric distortions, respectively, are related to each other.
To investigate the independence between the two factors, we
define a normalized MOS (NMOS) as

NMOS(NSL,Qp) =
MOS(NSL,Qp)

MOS(NSL,Qp,min)
. (20)

We then plot NMOS versus Qp at different NSL levels in
Fig. 12. Compared with Fig. 11, the curves are much more
overlapped with each other, suggesting significant indepen-
dence between Qp and NSL. This also implies that the impact
of texture and geometric distortions are roughly separable
factors.

To model MOS against Trisoup block size, we use the
following logistic function to predict the geometric distortion
from the NSL parameter:

DG(NSL) =
l1

1 + e
−NSL+l2

l3

+ l4, (21)

where l1, l2, l3 and l4 are empirical parameters, and
DG(NSL) represents the decay degree at NSL.

As described earlier, the impact of texture distortion and
geometric distortion on MOS is roughly separable. Therefore,
we propose the overall G-PCC compressed bitstream-based
perceptual PC quality model, namely streamPCQ, as:

MOSest =MOST (Qp, Rp) ·DG(NSL) . (22)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the proposed streamPCQ model, we select
10 standardized PCs in the WPC database [3], [72] (Bag,
Banana, Cake, Cauliflower, Flowerpot, Glasses case, Honey-
dew melon, Statue, Ping-pong bat, Stone) as the Validation
Set. The PCs in the Validation Set cover a wide range of
both geometric and textual complexities. They are employed
for performance evaluation only, and has no overlap with the
Training Set (which were used to determined the empirical
parameters of the streamPCQ model, as described in Sec-
tion III). For each source PC, four Qp and three NSL values
are used for encoding at {40, 46, 52, 58} and {2, 4, 6},
respectively. The remaining coding configuration parameters
are set as default [13]. Finally, 120 distorted PCs are generated
and employed for performance evaluation.

Operational parameters given in Table III are determined
based on least square fitting with the Training Set following
the descriptions in Section III-C. To be specific, the process of
obtaining these parameters is divided into three steps. Firstly,
the values of c1, and d1, d2, d3, d4 were obtained according
to (13) and (14), respectively. Secondly, the values of f1,
f3, h1, h2, j1, and j2 were obtained according to (16), (17)
and (18). Finally, the values of l1, l2, l3 and l4 were obtained
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Fig. 11. MOS vs. Qp at different NodeSizeLog2 (NSL).

TABLE III
MODEL PARAMETERS OBTAINED USING THE TRAINING SET.

c1 d1 d2 d3 d4 f1 f3 h1
1.522 0.202 1.150 31.86 5.079 67.38 3.481 0.450

h2 j1 j2 l1 l2 l3 l4
44.80 0.811 8.438 0.461 4.491 -0.47 0.541

according to (21). Once determined, these parameters are fixed
for all the remaining experimental results reported in this
paper.

To verify the effectiveness of (15) and (19), we carried
out the separate validation on the Validation Set as shown
in Table IV. The results suggest that both σTC and MOST

can be correctly predicted.
To understand the contributions of the texture distortion

and geometric distortion models in the proposed approach,
an ablation test was performed, where the same training and
validation procedures as in streamPCQ were used to create
the texture distortion only MOST (Qp, Rp) model and the
geometric distortion only DG(NSL) model. The test results
are shown in Table V, which suggest that both models play
important roles and make significant contributions to the
overall streamPCQ model.

We compare the proposed streamPCQ model with
PCMRR [42], PointSSIM [21], PCQM [22], GraphSIM [26]
and MPEG PSNRY [73] models, as shown in Table VI. These
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Fig. 12. Normalized MOS vs. Qp at different NodeSizeLog2 (NSL).

TABLE IV
SEPARATE VALIDATION RESULTS

Equation PLCC SRCC RMSE
(15) 0.8344 0.7243 3.1395
(19) 0.9054 0.8692 11.00

TABLE V
ABLATION TEST RESULTS

PCQA model PLCC SRCC RMSE
MOST (Qp, Rp) 0.6872 0.6879 18.26
DG(NSL) 0.4346 0.4269 22.24
streamPCQ 0.8062 0.8116 15.16

models are chosen for three reasons. First, geometry distortion
metrics, such as point-to-point, point-to-plane, angle similar-
ity, PC-MSDM, etc. [4]–[9], [23], [73], are not suitable for
assessing colored PCs. Second, projection-based metrics [3],
[11]–[19] are governed by the selection of viewpoints (i.e.,
camera position and distance), and the rendering mechanism to
consume the content [13], [37], [74], [75], where the rendering
parameters, such as splat size and orientation, distance from
the camera, and viewpoint, are unknown. Third, algorithms
not publicly available are not included [24], [30], [31], [36],
[37], [43]. Among the competing models, PointSSIM [21],
PCQM [22], GraphSIM [26] and MPEG PSNRY [73] are FR-

PCQA models, PCMRR [42] is a RR-PCQA model, and the
proposed streamPCQ is the only NR-PCQA model. Results
of the NR-PCQA model in [44] are not reported here as
it is oversimplified and does not produce adequate quality
prediction performance in our experiment.

Table VI reports the performance evaluation results in terms
of Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank-order Correlation Coefficient (SRCC), and Root Mean
Squared Error (RMSE) on the Validation Set. Fig. 13 shows
the scatter plots of objective score vs. MOS for all testing
PCQA models on the WPC database, along with the best fitting
logistic functions. From Table VI and Fig. 13, we can see
that the proposed model delivers the best performance in most
test cases of individual PC content, and is on par with the
PCQM [22] model in the case of overall assessment. PCQM
is used directly here without retraining, so its performance
may be improved if we retrain it on the database in this paper.
However, it needs to be emphasized that streamPCQ is the
only NR model under comparison and PCQM [22] model is
an FR model.

To test the generalizability of the streamPCQ model, a
cross-database validation was performed on the M-PCCD
database [13]. Because the M-PCCD database is rather small
to train a model, we use it for testing purpose only. Specifi-
cally, without adapting the parameters of streamPCQ, we test
it directly on the M-PCCD database, and the results are shown
in Table VII, which also compares the performance of other
PCQA models. Note that all other models are FR or RR
methods, and streamPCQ is the only NR model and does not
require full decoding of the compressed bitstreams. It is worth
mentioning that many source PCs in the M-PCCD database are
used for training the other models under comparison (except
for PSNRY ), and such content is completely unforeseen to
streamPCQ. It should also be noted that the performance
drops of PCMRR, PointSSIM and GraphSIM from the M-
PCCD to the WPC (Table VI) databases are quite significant
(implying overfitting). In comparison, PCQM (an FR model)
and streamPCQ produce relatively consistent performances
across the two databases. Therefore, these results suggest
good generalizability of the proposed streamPCQ method in
comparison with existing methods in the literature.

To verify the robustness of the proposed streamPCQ model,
we calculated the PLCC, SRCC and RMSE between MOS and
objective score for 1000 random splits of training/validation
sets. The results, shown in Fig. 14, confirmed the accuracy of
the proposed model.

It is worth deep investigations of the outlier cases of the
proposed streamPCQ model. In particular, in Fig. 13 (f),
the outliers in the upper left side of the diagonal line often
correspond to PCs with smooth surfaces, as exemplified by
Fig. 15 (c), or with excessive brightness such as Fig. 15 (f).
On the other hand, the outliers in the bottom right side are
typically the PCs with a thinner side where the thickness is
smaller than one TNS, as exemplified by Figs. 15 (a) and (b),
or with holes, such as Figs. 15 (d) and (e). These observations
suggest interesting directions for future improvement.

To ascertain that the improvement of the proposed model is
statistically significant, we carried out a statistical significance
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TABLE VI
PERFORMANCE COMPARISON OF PCQA MODELS

Content PCMRR [42] PointSSIM [21] PCQM [22] GraphSIM [26] PSNRY [73] streamPCQ
PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC

Bag 0.8248 16.83 0.7972 0.8482 11.97 0.8601 0.8299 13.77 0.8392 0.8045 13.21 0.7972 0.6579 25.15 0.8811 0.8755 14.07 0.8671
Banana 0.7683 19.06 0.9231 0.6971 22.82 0.6154 0.6982 14.82 0.7413 0.8714 17.90 0.8671 0.9475 8.319 0.9582 0.9536 17.27 0.9371
Cake 0.0382 24.25 0.1748 0.8848 19.72 0.8741 0.7823 22.76 0.8811 0.7657 24.60 0.7273 0.7522 20.59 0.8811 0.8854 20.64 0.9231
Cauliflower 0.2185 21.66 0.1888 0.8549 18.56 0.8252 0.9508 10.22 0.9231 0.8862 17.07 0.7832 0.9514 12.61 0.9513 0.9813 11.64 0.9653
Flowerpot 0.7589 32.54 0.7483 0.2659 30.13 0.1259 0.9598 13.95 0.8811 0.9551 17.20 0.9441 0.9722 21.63 0.9091 0.8147 17.59 0.6154
Glasses case 0.6592 17.69 0.6993 0.8573 12.27 0.7692 0.7748 15.07 0.8322 0.6388 15.87 0.6503 0.5398 23.71 0.8322 0.6435 19.13 0.6224
Honeydew melon 0.7539 15.78 0.8266 0.8139 16.63 0.8112 0.4198 24.03 0.3287 0.8678 15.83 0.9587 0.7892 19.46 0.9654 0.9367 8.483 0.9791
Ping-pong bat 0.8362 17.32 0.9650 0.5652 21.56 0.6154 0.9457 13.43 0.9790 0.0029 34.75 0.1338 0.9119 19.99 0.9721 0.8352 16.58 0.8182
Statue 0.4332 27.66 0.2028 0.4627 29.30 0.3427 0.9351 9.469 0.9301 0.2531 28.56 0.0560 0.8035 17.88 0.8811 0.8847 12.30 0.8252
Stone 0.2665 20.44 0.2238 0.9006 8.608 0.8322 0.8442 12.13 0.9513 0.9040 10.11 0.9578 0.7052 21.31 0.9512 0.9579 8.101 0.9720
Overall 0.4448 21.93 0.2403 0.5575 20.33 0.5459 0.7885 15.09 0.7963 0.5291 20.78 0.4335 0.5956 19.67 0.5529 0.8062 15.16 0.8116

0 0.01 0.02 0.03 0.04 0.05 0.06

Objective score

0

20

40

60

80

100

M
O

S

Bag

Banana

Cake

Cauliflower

Flowerpot

Glasses_case

Honeydew_melon

Ping-pong_bat

Statue

Stone

(a) PCMRR

0 0.1 0.2 0.3 0.4 0.5

Objective score

0

20

40

60

80

100

M
O

S

(b) PointSSIM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Objective score

0

20

40

60

80

100

M
O

S

(c) PCQM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Objective score

0

20

40

60

80

100

M
O

S

(d) GraphSIM

15 20 25 30 35

Objective score

0

20

40

60

80

100

M
O

S

(e) PSNRY

0 20 40 60 80 100

Objective score

0

20

40

60

80

100

M
O

S

(f) streamPCQ

Fig. 13. Scatter plots of MOS vs. objective model prediction.
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Fig. 14. Robustness of the proposed streamPCQ model. PLCC, SRCC and RMSE between MOS and objective score are computed for 1000 random splits
of training/validation sets.

analysis by following the approach introduced in [76]. First, a
nonlinear regression function is applied to map the objective
quality scores to predict the subjective scores. We observe
that the prediction residuals all have zero-mean, and thus the
model with lower variance is generally considered better than

the one with higher variance. We conduct a hypothesis testing
using F-statistics. Since the number of samples exceeds 50, the
Gaussian assumption of the residuals approximately hold [77].
The test statistic is the ratio of variances. The null hypothesis is
that the prediction residuals from one quality model come from
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Fig. 15. Outlier PC content.

TABLE VII
CROSS-DATABASE VALIDATION RESULTS ON M-PCCD

PCQA model PLCC SRCC RMSE
PCMRR 0.7820 0.8755 1.3783
PointSSIM 0.9331 0.8915 0.4958
PCQM 0.7182 0.8950 1.3783
GraphSIM 0.9376 0.9474 0.4791
PSNRY 0.6508 0.5786 1.0464
streamPCQ 0.6909 0.7760 0.9965

the same distribution and are statistically indistinguishable
(with 95% confidence) from the residuals from another model.
We compare every possible pairs of objective models. The
results are summarized in Table VIII, where a symbol ”1”
means that the performance of the row model is statistically
better than that of the column model, a symbol ”0” means the
opposite, and a symbol ”-” means that the two models are sta-
tistically indistinguishable. It can be observed that most of the
existing PCQA metrics are statistically indistinguishable from
each other. Moreover, the streamPCQ and PCQM models are
statistically indistinguishable but better than all other models,
demonstrating the outstanding performance of streamPCQ as
the only NR model under comparison.

Recall that one of the major motivations in developing BB
NR-PCQA models is the potential low computational cost. To
compare the computational complexity of streamPCQ against
other PCQA models, all competing models are evaluated in
terms of their execution time for three representative PCs at
low, middle and high content complexity levels (measured
as their total points in the PCs). The test is conducted on
a Dell Precision 5820 Tower with a 3.6GHz Intel(R) Xeon(R)
W-2123 processor, 32GB of RAM, Seagate BUP SCSI Disk
Device, and Windows 10 Professional operating system. The
execution times of all models are given in Table IX, where
models were sorted in ascending order with respect to their
execution time. For easy comparison, we also provided nor-
malized execution time relative to the number of points in the
PC, and relative to the streamPCQ model. It can be observed
that the execution times of PCQM, PointSSIM, PSNRY and
PCMRR are roughly proportional to the number of points in
the cloud, while that of GraphSIM expands at a much slower
speed. By contrast, the execution time of streamPCQ does not
grow with the complexity of the PCs, and is by far the lowest
among all competing models. The time saving is the highest on
PCs of high content complexity. The speed advantage, together
with its NR nature, makes the proposed streamPCQ model a

better choice in practical especially time-critical applications.

V. CONCLUSION

In this work, we tackle the problem of bitstream-based per-
ceptual quality assessment of compressed 3D PCs. We make
one of the first attempts to develop a BB NR-PCQA method,
namely streamPCQ, without fully decoding compressed PC
bitstreams. Encoding parameters, including Trisoup node size,
texture quantization parameters, and texture bitrates, are ex-
tracted by a bitstream analyzer, followed by texture complexity
estimation, texture distortion assessment, and geometric distor-
tion modeling, before an overall streamPCQ quality prediction
is reached. We compare the proposed NR streamPCQ model
with state-of-the-art FR and RR PCQA models and find that
streamPCQ delivers highly competitive performance with a
fraction of computational cost.

It should be noted that the limitation of the streamPCQ
model is that only Trisup+RAHT distortion is measured.
Future work will focus on developing bitstream-based PCQA
models that consider other compression distortion types, such
as Octree+RAHT, Octree+Lifting, Trisoup+Lifting, V-PCC
and so on.
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