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Abstract—The problem of reconstruction of digital images from
their blurred and noisy measurements is unarguably one of the
central problems in imaging sciences. Despite its ill-posed nature,
this problem can often be solved in a unique and stable manner,
provided appropriate assumptions on the nature of the images to
be recovered. In this paper, however, a more challenging setting is
considered, in which accurate knowledge of the blurring operator
is lacking, thereby transforming the reconstruction problem at
hand into a problem of blind deconvolution. As a specific ap-
plication, the current presentation focuses on reconstruction of
short-exposure optical images measured through atmospheric
turbulence. The latter is known to give rise to random aberrations
in the optical wavefront, which are in turn translated into random
variations of the point spread function of the optical system in use.
A standard way to track such variations involves using adaptive
optics. Thus, for example, the Shack–Hartmann interferometer
provides measurements of the optical wavefront through sensing
its partial derivatives. In such a case, the accuracy of wavefront
reconstruction is proportional to the number of lenslets used by
the interferometer and, hence, to its complexity. Accordingly,
in this paper, we show how to minimize the above complexity
through reducing the number of the lenslets while compensating
for undersampling artifacts by means of derivative compressed
sensing. Additionally, we provide empirical proof that the above
simplification and its associated solution scheme result in image
reconstructions, whose quality is comparable to the reconstruc-
tions obtained using conventional (dense) measurements of the
optical wavefront.

Index Terms—Deconvolution, derivative compressive sampling,
inverse problem, Shack–Hartmann interferometer (SHI).

I. INTRODUCTION

T HE NECESSITY to recover digital images from their dis-
torted and noisy observations is common for a variety of

practical applications, with some specific examples including
image denoising, super-resolution, image restoration, and wa-
termarking, just to name a few [1]–[4]. In such cases, it is con-
ventional to assume that the observed image is obtained as a
result of convolution of its original counterpart with a point
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spread function1 (PSF) . To account for measurement inaccu-
racies, it is also standard to contaminate the convolution output
with an additive noise term , which is usually assumed to be
white and Gaussian. Thus, formally

(1)

While and can be regarded as general members of the signal
space of real-valued functions on , the PSF is
normally a much smoother function, with effectively band-lim-
ited spectrum. As a result, the convolution with has a destruc-
tive effect on the informational content of , in which case
typically has a substantially reduced set of features with respect
to . This makes the problem of reconstruction of from a
problem of significant practical importance [6].
Reconstruction of the original image from can be carried

out within the framework of image deconvolution, which is a
specific instance of a more general class of inverse problems
[7]. Most of such methods are Bayesian in nature, in which case
the information lost in the process of convolution with is re-
covered by requiring the optimal solution to reside within a pre-
defined functional class [8], [9]. Thus, for example, in the case
when is known to be an image of bounded variation, the given
regularization leads to the famous Rudin–Osher–Fatemi recon-
struction scheme, in which is estimated as a solution to the
following optimization problem [10], [11]:

(2)

where is the regularization parameter. It should be noted
that, if the PSF obeys , problem (2) is strictly
convex and therefore admits a unique minimizer, which can be
computed using a spectrum of available algorithms [10]–[14].
In some applications, the knowledge of the PSF may be

lacking, which results in the necessity to recover the original
image from its blurred and noisy observations alone. Such a
reconstruction problem is commonly referred to as the problem
of blind deconvolution [7]. In this paper, however, we follow
the philosophy of hybrid deconvolution [15], whose main idea
is to leverage any partial information on the PSF to improve
the accuracy of image restoration. In particular, in the algorithm
described in this paper, such partial information is derived from
incomplete observations of the partial derivatives of the phase
of the generalized pupil function (GPF) of the optical system in
use, as detailed in the following.

1Note that, in optical imaging, this function is also referred to as an impulse
transfer function [5].
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Optical imaging is unarguably the field of applied sciences
from which the notion of image deconvolution has originated
[16]–[18]. In particular, in short-exposure turbulent imaging
[19], acquired images are blurred with a PSF, which depends
on a spatial distribution of the atmospheric refraction index
along the optical path connecting an object of interest and the
observer. Due to the effect of turbulence, the above distribution
is random and time dependent, which implies that the PSF
cannot be known in advance.
A standard way to overcome the above limitation is through

the use of adaptive optics (AO) [20]. As will be shown later in
this paper, the PSF of a short-exposure optical system is deter-
mined by its corresponding GPF , which can be expressed in
a polar form as . While, in practice, the amplitude
can be either measured through calibration or computed as a

function of the aperture geometry, phase accounts for turbu-
lence-induced aberrations of the optical wavefront and, hence,
is generally unknown at any given experimental time. Fortu-
nately, phase turns out to be a measurable quantity, and this
is where the tools of AO come into play. One of such tools is
the Shack–Hartmann interferometer (SHI) (also known as the
Shack–Hartmann wavefront sensor) [21], [22], which allows di-
rect measurement of the gradient of over a predefined grid of
spatial coordinates. Subsequently, these measurements are con-
verted into a useful estimate of through numerically solving
an associated Poisson equation.
Among some other factors, the accuracy of phase recon-

struction by the SHI depends on the size of its sampling grid,
which is in turn defined by the number of lenslets composing
the wavefront sensor of the interferometer (see the following).
Unfortunately, the grid size and the complexity (and, hence,
the cost) of the interferometer tend to increase pro rata, which
creates an obvious practical limitation. Accordingly, to over-
come this problem, we propose to modify the construction of
the SHI through reducing the number of its lenslets. Although
the advantages of such a simplification are immediate to see, its
main shortcoming is obvious as well: The smaller the number
of lenslets is, the stronger is the effect of undersampling and
aliasing. These artifacts, however, can be compensated for by
subjecting the output of the simplified SHI to the derivative
compressed sensing (DCS) algorithm of [23]. As will be shown
in the following, DCS is particularly suitable for reconstruction
of from incomplete measurements of its partial derivatives.
The resulting estimates of can be subsequently combined
with to yield an estimate of PSF , which can in turn be used
by a deconvolution algorithm. Thus, the proposed method for
estimation of PSF and subsequent deconvolution of can be
regarded as a hybrid deconvolution technique, which comes to
simplify the design and complexity of the SHI, on one hand,
and to make the process of reconstruction of optical images as
automatic as possible, on the other hand.
The rest of this paper is organized as follows. Some neces-

sary technical preliminaries are summarized in Section II. In
Section III, the main principles of SHI-based phase reconstruc-
tion are presented. The DCS algorithm, along with its efficient
numerical implementation, is introduced in Section IV. In
Section V, the resulting estimates of the PSF are used for

deconvolution of short-exposure turbulent images. Experi-
mental results are presented in Section VI, whereas Section VII
finalizes this paper with a discussion and conclusions.

II. TECHNICAL PRELIMINARIES

In short-exposure imaging, due to phase aberrations in the
optical wavefront induced by atmospheric turbulence, the PSF
of an imaging system in use is generally unknown [19]. To better
understand the setup under consideration, we first note that, in
optical imaging, PSF is obtained from an amplitude spread
function (ASF) as . The ASF, in turn, is defined in
terms of a GPF that is given by [24]

(3)

where is the focal distance and is the optical wavelength.
Being a complex-valued quantity, can be represented in
terms of its amplitude and phase as

(4)

Here, the GPF amplitude (which is sometimes simply
referred to as the aperture function) is normally a function of the
aperture geometry. Thus, for instance, in the case of a circular
aperture, can be defined as [19]

if
otherwise

(5)

where denotes the pupil diameter. Thus, given ,
one could determine and, therefore, . Unfortunately, phase

is influenced by the random effect of atmospheric
turbulence and, as a result, cannot be known ahead of time.
A standard way to overcome the uncertainty in is to

measure it using the tools of shearing interferometry, a partic-
ular example of which is the SHI [21]. The latter is capable
of sensing the partial derivatives of over a predefined
grid of spatial locations. In this case, an accurate reconstruc-
tion of entails taking a fairly large number of the sam-
ples of , which is essential for minimizing the effect
of aliasing on the estimation result [25]. Thus, in some applica-
tions, the number of sampling points (as defined by the number
of SHI lenslets) reaches as many as a few thousands. It goes
without saying that reducing the number of lenslets would have
a positive impact on the SHI in terms of its cost and approach-
ability. Alas, such a reduction is impossible without undersam-
pling, which is likely to have a formidable effect on the overall
quality of phase estimation.
In this paper, to minimize the effect of phase undersampling,

we exploit the DCS algorithm of [23]. The latter can be viewed
as an extension of the conventional compressed sensing (CCS)
scheme, in which the standard sparsity constraints are sup-
plemented by additional constraints related to some intrinsic
properties of partial derivatives. Using this “side information,”
which are called the cross-derivative constraints, allows sub-
stantially improving the quality of reconstruction of , as
compared with the case of CCS-based estimation.
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III. SHI

As it was mentioned earlier in this paper, the SHI can be used
to measure the gradient of the GPF phase ,
from which its values can be subsequently inferred. A standard
approach to this reconstruction problem is to assume the un-
known phase to be expandable in terms of some basis
functions , as shown in the following [22]:

(6)

where the representation coefficients are supposed to
be unique and stably computable. Note that, in this case, the data
of uniquely identify , whereas the coefficients

can be estimated due to the linearity of (6) that suggests

(7)

In AO, it is conventional to define to be Zernike
polynomials (also known as Zernike functions) [24]. These
polynomials constitute an orthonormal basis in the space of
square-integrable functions defined over the unit disk in .
Zernike polynomials can be subdivided in two subsets of the
even and odd Zernike polynomials, which possess
closed-form analytical definitions as given by

(8)

(9)

where and are nonnegative integers with ,
is the azimuthal angle, and is the radial distance.

The radial polynomials in (8) and (9) are defined as

(10)
Note that, since the Zernike polynomials are defined using

polar coordinates, it makes sense to reexpress the phase and
its gradient in the polar coordinate system as well (technically,
this would amount to replacing and in (6) and (7) by and
, respectively). Moreover, due to the property of the Zernike
polynomials to be an orthonormal basis, the representation co-
efficients in (6) and (7) can be computed by orthogonal
projection, namely

(11)

In practice, however, is unknown; therefore, the coeffi-
cients need to be estimated by other means. Thus, in
the case of the SHI, the coefficients can be estimated from a fi-
nite set of discrete measurements of .

Fig. 1. Example of a 10 10 SHI array on a circular aperture. The shading
indicates those blocks (i.e., lenslets) that are rendered active.

The main function of the SHI is to acquire discrete measure-
ments of by means of linearization. The linearization takes
advantage of subdividing a (circular) aperture into rectangular
blocks with their sides formed by a uniform rectangular lat-
tice. An example of such a subdivision is shown in Fig. 1 for
the case of a 10 10 lattice grid. In general, the grid is as-
sumed to be sufficiently fine to approximate by a linear func-
tion over the extent of a single block. This results in a piece-
wise linear approximation of , whose accuracy asymptotically
improves when the lattice size goes to infinity. Formally, let

be a circular aperture
of radius and be a
square subset of such that . Then, for each polar co-
ordinate and an grid of square blocks of size

, the phase can be expressed as

(12)

for all in a neighborhood of . The ap-
proximation in (12) suggests that

(13)

where denotes matrix transposition. While in (12) can be
derived from boundary conditions, coefficients and should
be determined through direct measurements. To this end, the
SHI is endowed with an array of small focusing lenses (i.e.,
lenslets), which are supported over each of the square blocks
of the discrete grid, thereby forming a wavefront sensor. In the
absence of phase aberrations, the focal points of the lenslets are
spatially identified and registered using a high-resolution CCD
detector, whose imaging plane is aligned with the focal plane of
the sensor. Then, when the wavefront gets distorted by atmo-
spheric turbulence, the focal points are dislocated toward new
spatial positions, which can also be pinpointed by the same de-
tector. The resulting displacements can be measured and subse-
quently related to the values of at corresponding points of
the sampling grid.
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Fig. 2. Basic structure of the SHI and a resulting pattern of the focal points.

To explain how the given procedure can be performed, addi-
tional notations are in order. Let denote a finite set of spatial
coordinates defined according to

and (14)

The set can be thought of as a set of the spatial coordinates
of the geometric centers of the SHI lenslets, which are restricted
to the domain of its aperture . Under the assumption of (12),
one can then show [26] that the focal displacement

measured at some is related
to the value of according to

(15)

where is the focal distance of the wavefront lenslets. An ex-
ample of the given measurement setup is depicted in Fig. 2.
Now, provided a total of measurements of

over , one can approximate the coefficients of a
truncated series expansion of as a solution to the least squares
minimization problem, as given by

(16)

subject to appropriate boundary conditions. It is worthwhile
noting that (16) can be rewritten in a vector–matrix form as

(17)

where is a matrix of discrete values of the par-
tial derivatives of the Zernike polynomials, is a measurement
(column) vector of length , and is
a vector of the representation coefficients of . The constraint

in (17) is optional and may be used to further regu-
larize the solution by forcing to belong to some convex set

. Thus, for example, when the set coincides with the whole
, the solution to (17) is given by

(18)

where denotes the Moore–Penrose pseudoinverse of ,
whose definition is unique and stable as long as the row rank
of is greater or equal to (hence, suggesting that

). Having estimated , phase can be approx-
imated as

(19)

Higher accuracy of phase estimation requires using higher
order Zernike polynomials, which in turn necessitates a propor-
tional increase in the number of wavefront lenses. Moreover, as
required by the linearization procedure in the SHI, the lenses
have to be of a relatively small sizes (sometimes, on the order
of a few micrometers), which may lead to the use of a few thou-
sand lenses per one interferometer. Accordingly, to simplify the
construction and to reduce the cost of SHIs, we propose to re-
duce the number of wavefront lenslets while compensating for
the induced information loss through the use of DCS, which is
detailed in the following.

IV. DCS

A. Classical Compressed Sensing

Central to signal processing is the Shannon–Nyquist theorem
[27], which specifies conditions on which a band-limited signal
can be stably and uniquely recovered from its discrete mea-
surements. However, in around 2005, a different sampling the-
orem was formulated that, in some cases, abrogates the funda-
mentals of its predecessor. This new theory, nowadays known
as compressed sensing (also known as compressive sampling),
asserts that signals, which admit a sparse representation in a
predefined basis/frame, can be recovered from their discrete
measurements, whose number is proportional to the -norm
of the coefficients of the sparse representation. In such a case,
the sparser the representation of the signal is, the smaller the
number of measurements required for signal reconstruction can
be. As a result, cases are numerous in which the sampling effi-
ciency of compressed sensing far supersedes that of the classical
Shannon–Nyquist sampling [28], [29].
The CCS setting assumes a linear measurement model, which

the observations of some unknown quantity of interest
are acquired according to

(20)

where stands for an observation (sampling) matrix
with . Because of the property of the linear system in
(20) of being underdetermined, the recovery of from is im-
possible unless it is known that is sparse and hence has a rela-
tively low value of . In such a case, if the sampling matrix
obeys the restricted isometry property [28], [29] with respect

to a predefined class of sparse signals (to which is believed
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to belong), CCS allows to be recovered as a solution to [30],
[31]

(21)

which is a convex minimization problem, which is straightfor-
ward to reformulate in terms of linear programming. Moreover,
in the case when the measurements are error prone, a more
robust version of CCS is to recover according to

(22)

where is a parameter controlling the size of measurement
noise. Moreover, it was shown in [28] and [29] that the esti-
mation error in the signal reconstructed according to (22) can
be bounded by a linear function of . This implies robustness
of the CCS reconstruction toward the presence of measurement
noise.
It should be finally noted that the optimization problem (22)

can be reformulated in its equivalent Lagrangian form, in which
case one has

(23)

with being an optimal Lagrange multiplier [30]. In what
follows, it is assumed that an optimal value of is known. (For
more details on this subject, the reader is referred to [30] as well
as to the later sections of this paper).

B. DCS

Let the partial derivatives of evaluated at the points of set
be column-stacked into vectors and of length
. In what follows, the partial derivatives and are as-

sumed to be sparsely representable by an orthonormal basis in
. Representing such a basis by an unitary matrix ,

the given assumption suggests the existence of two sparse vec-
tors and such that and . In the exper-
imental studies reported in this paper, matrix is constructed
using the nearly symmetric orthogonal wavelets of Daubechies
having five vanishing moments [32].
The proposed simplification of the SHI amounts to reducing

the number of wavefront lenslets. Formally, such a reduction
can be described by two subsampling matrices and
, where . Specifically, let and
be incomplete (partial) observations of and , respec-

tively. Then, based on the theoretical guarantees of CCS, the
vectors and of the partial derivatives of can be approx-
imated by and , respectively, where and are
obtained as

(24)

(25)

for some , . Moreover, in the case when
, computing the given estimates can be combined into a single

optimization problem. Specifically, let ,
, and . Then

(26)

In this form, problem (26) is identical to (23), in which case it
can be solved by a variety of available tools of convex optimiza-
tion [30], [31].
The DCS algorithm augments CCS by subjecting the mini-

mization in (26) to an additional constraint that stems from the
fact that [23]

(27)

which is valid for all twice continuously differentiable functions
. Thus, in the discrete setting, the given condition can be ex-
pressed using two partial differences matrices and , in
which case it reads

(28)

To further simplify the notations, let and be two coordi-
nate-projection matrices, whichmap the composite vector into
and according to and , respectively.

Then, (31) can be reexpressed in terms of as

(29)

or, equivalently

(30)

where . Consequently, with the ad-
dition of the cross-derivative constraint (30), DCS solves the
constrained minimization problem given by

s.t.

(31)
A solution to (31) can be found, for instance, by means of

the Bregman algorithm [33], in which case is obtained as a
stationary point of the sequence of iterations produced by

(32)
where is a vector of Bregman variables (or, equivalently,
augmented Lagrange multipliers) and is a user-defined
parameter.2

Note that the -update step in (32) has the format of a stan-
dard basis pursuit denoising problem [34], which can be solved
by a variety of optimization methods [35]. In this paper, we used
the FISTA algorithm in [36] due to the simplicity of its imple-
mentation as well as for its remarkable convergence properties.
It should be noted that the algorithm does not require explicitly

2In this paper, we use .
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defining the matrices and . Only the operations of multipli-
cation by these matrices and their transposes need to be known,
which can be implemented in an implicit and computationally
efficient manner.
Once an optimal is recovered, it can be used to estimate the

noise-free versions of and as and , respec-
tively. These estimates can be subsequently passed on to the fit-
ting procedure in Section III to recover the values of , which,
in combination with a known aperture function , provide an
estimate of the PSF as an inverse discrete Fourier transform of
the autocorrelation of . Algorithm 1 below summa-
rizes our method of estimation of the PSF.

Algorithm 1: PSF estimation via DCS

1) Data: , , and
2) Initialization: For a given transform matrix and
matrices/operators , , , , , and , preset
the procedures of multiplication by , , , and .

3) Phase recovery: Starting with an arbitrary and
, iterate (32) until convergence to result in an

optimal . Use the estimated (full) partial derivatives
and to recover the values of over .

4) PSF estimation: Using a known aperture function ,
compute the inverse Fourier transform of to
result in a corresponding ASF . Estimate the PSF as

.

The estimated PSF can be used to recover the original image
from through the process of deconvolution, as explained in

the section that follows.

V. DECONVOLUTION

The acquisition model (1) can be rewritten in an equivalent
operator form as given by

(33)

where denote the operator of convolution with the estimated
PSF . Note that, in this case, the noise term accounts for
both measurement noise as well as the inaccuracies related to
estimation error in .
The deconvolution problem of finding a useful approxima-

tion of given its distorted measurement can be addressed in
many way, using a multitude of different techniques [36]–[38].
In this paper, we use the ROF model and recover a regularized
approximation of the original image as

(34)

where denotes the total variation
(TV) semi-norm of .
The minimization problem in (34) can be solved using a mag-

nitude of possible approaches. One particularly efficient way to
solve (34) is to substitute a direct minimization of the cost func-
tion in (34) by recursively minimizing a sequence of its local
quadratic majorizers [36]. In this case, the optimal solution

can be obtained as the stationary point of a sequence of inter-
mediate solutions produced by

(35)

where is the adjoint of and is chosen to satisfy
. In this paper, the TV denoising at the second step of

(35) has been performed using the fixed-point algorithm in [11].
The convergence of (35) can be further improved by using the
same FISTA algorithm in [36]. The resulting procedure is sum-
marized in Algorithm 2.

Algorithm 2: TV deconvolution using FISTA

1) Initialize: Select an initial value ; set and

2) Repeat until convergence:
•
•
•
•

In summary, Algorithms 1 and 2 represent the essence of the
proposed algorithm for hybrid deconvolution of short-exposure
optical images. The next section provides experimental results
that further support the value and applicability of the proposed
methodology.

VI. RESULTS

To demonstrate the viability of the proposed approach, its
performance has been compared against referencemethods. The
first reference method used a dense sampling (DS) of the phase
(as it would have been the case with a conventional design of
the SHI), thereby eliminating the need for a CS-based phase
reconstruction. The resulting method is referred below to as the
DS approach. Second, to assess the importance of incorporation
of the cross-derivative constraints, we have used both CCS and
DCS for phase recovery. In what follows, comparative results
for phase estimation and subsequent deconvolution are provided
for all the given methods.

A. Phase Recovery

To assess the performance of the proposed and reference
methods under controllable conditions, simulation data were
used. The random nature of atmospheric turbulence necessi-
tated the use of statistical methods to model its effect on a
wavefront propagation. Specifically, in this paper, the effect of
atmospheric turbulence was simulated based on the modified
Von Karman model [39]. This model is derived based on
Kolmogorov’s theory of turbulence, which models atmospheric
turbulence using temperature fluctuations [39]. In particular,
under some general assumptions on the velocity of turbulent
medium and the distribution of its refraction index, the Von
Karman power spectrum density is given by

(36)
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Fig. 3. Example of a simulated phase (a) along with its partial derivatives
with respect to (b) and (c) .

where is the refractive index and and are chosen to
match the high-frequency and low-frequency behaviors of tur-
bulence, respectively. The model of (36) can be used to generate
random realizations of the GPF phase, as described, e.g., in [19].
A typical example of the GPF phase is shown in Fig. 3(a).

In this case, the size of the phase screen was set to be equal to
10 10 cm, whereas the sampling was performed over a 128
128 uniform grid (which would have corresponded to the use

of 16 384 lenslets of a SHI). The corresponding values of the
(discretized) partial derivatives and are shown
in Fig. 3(b) and (c), respectively.
In this paper, the subsampling matrices and were ob-

tained from an identity matrix through a random subsampling
of its rows by a factor resulting in a required compression ratio
. To sparsely represent the partial derivatives of , was de-
fined to correspond to a four-level orthogonal wavelet transform
using the nearly symmetric wavelets of Daubechies with five
vanishing moments [40] and periodic boundary condition.
To demonstrate the value of using the cross-derivative

constraint for phase reconstruction, the CCS and DCS algo-
rithms have been compared in terms of the MSEs of their
corresponding phase estimates. The results of this comparison
are summarized in Fig. 4 for different compression ratios (or,
equivalently, (sub)sampling densities) and SNR dB.
As expected, one can see that DCS results in lower values of

MSE, as compared with CCS, which implies higher accuracy
of phase reconstruction. Moreover, the difference in the per-
formances of CCS and DCS appears to be more significant for
lower sampling rates, whereas both algorithms tend to perform
similarly when the sampling density approaches the DS case.
Specifically, for the sampling density of , DCS results
in a ten times smaller value of MSE as compared with the case
of CCS, whereas both algorithms have comparable performance
for . This result suggests that, at higher compression
rates, DCS is likely to result in more accurate reconstructions of
the GPF phase, as compared with the case of CCS.

Fig. 4. MSE of phase reconstruction obtained with different methods as a func-
tion of . Here, the dashed and solid lines correspond to CCS and DCS, respec-
tively, and SNR is equal to 40 dB.

Fig. 5. (a) Phase reconstructed obtained by means of CCS for SNR dB
and . (b) Phase reconstructed obtained by means of DCS for the same
values of SNR and . (c) and (d) Corresponding error maps for CCS and DCS.

A number of typical reconstruction results are shown in
Fig. 5, whose left and right subplots depict the phase estimates
obtained using the CCS and DCS algorithms, respectively, for
the case of . The error maps of the two estimates are
shown in subplot (c) and (d) of the same figure, which allows
us to see the difference in the performance of these methods
more clearly. In addition, a close comparison with the original
phase [as shown in Fig. 3(a)] reveals that DCS provides a more
accurate recovery of the original , which further supports
the value of using the cross-derivative constraints. In fact,
exploiting these constraints effectively amounts to using addi-
tional “measurements,” which are ignored in the case of CCS.
As an additional comparison, The convergence of theMSE as

a function of the number of iterations, for both CCS and DCS al-
gorithms, is illustrated in Fig. 6. One can see that DCS results in
a substantially faster convergence, as compared with CCS. This
behavior could be explained by considering the cross-deriva-
tive constraints exploited by DCS to be effectively equivalent to
noise-free measurements. To further investigate this argument,
the convergence of the cross-derivative fidelity term
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Fig. 6. Convergence analysis of phase reconstruction obtained with different
methods as a function of iterations. Here, the dashed and solid lines correspond
to CCS and DCS, respectively, SNR , and .

Fig. 7. Convergence analysis of derivative constraint obtained with different
methods as a function of iterations. Here, the dashed and solid lines correspond
to CCS and DCS, respectively, SNR , and .

for both methods under comparison is compared in
Fig. 7. One can see that, in the case of DCS, this term converges
considerably faster than in the case of CCS, which improves to
the overall speed of convergence of DCS, making it superior to
that of CCS.
To investigate the robustness of the compared algorithms to-

ward measurement noise, their performances have been com-
pared for a range of SNR values. The results of this comparison
are summarized in Fig. 8. Since the cross-derivative constraints
exploited by DCS effectively restrict the feasibility region for
an optimal solution, the algorithm exhibits an improved robust-
ness to the effect of additive noise, as compared with the case
of CCS. This fact represents another advantage of incorporating
the cross-derivative constraints in the process of phase recovery.
From the viewpoint of statistical estimation theory, the data fi-

delity terms in (23)–(25) suggest a Gaussian noise model, which
may not be natural for all optical systems. In fact, this is the
Poisson noise model, which is considered to be a more standard
one in optical imagery. It turns out, however, that the use of the
cross-derivative constraints by DCS makes it robust toward the
inconsistency in noise modeling. This argument is supported by
the results in Fig. 9, which summarizes the values of MSE ob-
tained by CCS and DCS reconstructions for different levels of
Poisson noise. One can see that, in this case, the MSE values

Fig. 8. MSE of phase reconstruction obtained with different methods as a func-
tion of SNR. Here, the dashed and solid lines correspond to CCS and DCS, re-
spectively, and .

Fig. 9. MSE of phase reconstruction obtained with different methods as a func-
tion of SNR where the noise model is Poisson. Here, the dashed and solid lines
correspond to CCS and DCS, respectively, and .

are comparable with the Gaussian case while being substantially
smaller in comparison to the CCS-based reconstruction.
It should be taken into account that, although the shape of

does not change the energy of the PSF , it plays a crucial role
in determining its spatial behavior. In the section that follows,
it will be shown that even small inaccuracies in reconstruction
of could be translated into dramatic difference in the quality
of image deconvolution.

B. Image Deconvolution

As a next step, the phase estimates obtained using the CCS-
and DCS-based methods for were combined with the
aperture function to result in their respective estimates of
the PSF . These estimates were subsequently used to decon-
volve a number of test images such as “Satellite,” “Saturn,”
“Moon,” and “Galaxy.” All the test images were blurred with
an original PSF, followed by their contamination with additive
Gaussian noise of different levels, which is controlled by the
variance of noise distribution. As an example, the “Satellite”
image along with its blurred and noisy version are shown in
Fig. 10(a) and (b), respectively.
Using the PSF estimates, the deconvolution was carried out

using the method detailed in [11]. For the sake of comparison,
the deconvolution was also performed using the PSF recovered
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TABLE I
SSIM AND PSNR COMPARISONS OF PHASE RECOVERY RESULTS

Fig. 10. (a) Satellite image and (b) its blurred and noisy version.

Fig. 11. (a) Image estimate obtained with the CCS-based method for phase
recovery SSIM . (b) Image estimate obtained with the DCS-based
method for phase recovery SSIM .

from DS of . Note that this reconstruction is expected to have
the best accuracy since it neither involves undersampling nor re-
quires a CS-based phase estimation. All the deconvolved images
have been compared with their original counterparts in terms
of PSNR as well as of the structural similarity index (SSIM)
of [41], which is believed to be a better indicator of perceptual
image quality [42]. The resulting values of the comparison met-
rics are summarized in Table I, whereas the deconvolution re-
sults produced by the CCS- and DCS-based methods are shown
in Fig. 11.
The given results demonstrate the importance of accurate

phase recovery, where even a relatively small phase error can
have a dramatic effect on the quality of image deconvolution.
Under such conditions, the proposed method produces image
reconstructions of a superior quality, as compared with the case
of CCS. Moreover, comparing the results in Table I, one can see
that DS only slightly outperforms DCS in terms of PSNR and

Fig. 12. (a) Image estimate obtained with the CCS-based method for phase
recovery SSIM . (b) Image estimate obtained with the DCS-based
method for phase recovery SSIM where the noise model is assumed
to be Poisson.

SSIM, whereas in many practical cases, the difference between
the performances of these methods are hard to detect visually.
Finally, the results of CCS-based and DCS-based image re-

constructions for the case of Poisson noise contamination are
shown in Fig. 12. A close comparison of these results reveals
a noticeable degradation in the performance of the CCS-based
algorithm, whereas the DCS-based results are virtually indistin-
guishable from those obtained in the Gaussian case.

VII. DISCUSSION AND CONCLUSION

In this paper, the applicability of DCS to the problem of re-
construction of optical images has been demonstrated. It was
shown that, in the presence of atmospheric turbulence, the phase
of GPF is a random function, which needs to be

measured using AO. To simplify the complexity of the latter,
a CS-based approach has been proposed. As opposed to CCS,
however, the proposed method performs phase reconstruction
subject to an additional constraint, which stems from the prop-
erty of to be a potential field. The DCS algorithm has been
shown to yield phase estimates of substantially better quality as
compared with the case of CCS.
In this paper, our main focus has been on simplifying the

structure of the SHI through reducing the number of its wave-
front lenslets while compensating for the effect of undersam-
pling by means of DCS. The solution was computed using the
Bregman algorithm, which provides a computationally efficient
framework to carry out the constrained phase recovery. More-
over, the resulting phase estimates were used to recover their
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associated PSF, which was subsequently used for image decon-
volution. It was shown that the DCS-based estimation of with

results in image reconstructions of the quality compa-
rable to that of DS while substantially outperforming the results
obtained with CCS.
While the proposed method offers a practical solution to the

problem of phase estimation in AO, some interesting questions
about the theoretical aspects of DCS still lay open. In partic-
ular, the question of theoretical performance of CS in the pres-
ence of side information on the source signal needs to be ad-
dressed through future research. For practical purpose one can
also take benefit of this algorithm to modify the SHI. Instead
of working with the measurements of the phase gradient, their
linear combination can be used, e.g., Bernoulli weights. The re-
sulting sensing basis might have smaller coherence with respect
to the basis of wavelets, thereby offering the possibility of more
accurate and stable reconstruction.
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