
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

End-to-End Blind Image Quality Assessment
Using Deep Neural Networks

Kede Ma, Student Member, IEEE, Wentao Liu, Student Member, IEEE, Kai Zhang, Zhengfang Duanmu, Student
Member, IEEE, Zhou Wang, Fellow, IEEE, and Wangmeng Zuo, Senior Member, IEEE

Abstract—We propose a Multi-task End-to-end Optimized
deep neural Network (MEON) for blind image quality assess-
ment (BIQA). MEON consists of two sub-networks—a distortion
identification network and a quality prediction network—sharing
the early layers. Unlike traditional methods used for training
multi-task networks, our training process is performed in two
steps. In the first step, we train a distortion type identification
sub-network, for which large-scale training samples are readily
available. In the second step, starting from the pre-trained early
layers and the outputs of the first sub-network, we train a
quality prediction sub-network using a variant of the stochastic
gradient descent method. Different from most deep neural
networks (DNN), we choose biologically inspired generalized
divisive normalization (GDN) instead of rectified linear unit
(ReLU) as the activation function. We empirically demonstrate
that GDN is effective at reducing model parameters/layers while
achieving similar quality prediction performance. With modest
model complexity, the proposed MEON index achieves state-
of-the-art performance on four publicly available benchmarks.
Moreover, we demonstrate the strong competitiveness of MEON
against state-of-the-art BIQA models using the group MAximum
Differentiation (gMAD) competition methodology.

Index Terms—Blind image quality assessment, deep neural
networks, multi-task learning, generalized divisive normalization,
gMAD competition.

I. INTRODUCTION

BLIND image quality assessment (BIQA) aims to predict
the perceptual quality of a digital image with no access

to its pristine counterpart [1]. It is a fundamental problem in
image processing that has not been fully resolved [2]. Early
BIQA models are mainly based on hand-crafted features [3]–
[6], which rely heavily on knowledge of the probabilistic
structures of our visual world, the mechanisms of image degra-
dations, and the functionalities of the human visual system
(HVS) [7], [8]. Built upon feature representations, a quality
prediction function is learned using the ground truth data in the
form of subject-rated images. Typically, the knowledge-driven
feature extraction and data-driven quality prediction stages are
designed separately. With the recent exciting development of
deep neural network (DNN) methodologies [9], a fully data-
driven end-to-end BIQA solution becomes possible.
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Although DNN has shown great promises in many vision
tasks [9]–[11], end-to-end optimization of BIQA is challenging
due to the lack of sufficient ground truth samples for training.
Note that the largest subject-rated image quality assessment
(IQA) database contains only 3, 000 annotations [12], while
digital images live in a space of millions of dimensions.
Previous DNN-based BIQA methods tackle this challenge in
three ways. Methods of the first kind [13] directly inherit
the architectures and weights from pre-trained networks for
general image classification tasks [14] followed by fine-tuning.
The performance and efficiency of such networks depend
highly on the generalizability and relevance of the tasks used
for pre-training. The second kind of methods [15]–[17] work
with image patches by assigning the subjective mean opinion
score (MOS) of an image to all patches within it. This
approach suffers from three limitations. First, the concept of
quality without context (e.g., the quality of a single 32 × 32
patch) is not well defined [7], [18]. Second, local image quality
within context (e.g., the quality of a 32 × 32 patch within
a large image) varies across spatial locations even when the
distortion is homogeneously applied [19]. Third, patches with
similar statistical behaviors (e.g., smooth and blurred regions)
may have substantially different quality [20]. Methods of the
third kind [21] make use of full-reference IQA (FR-IQA)
models for quality annotation. Their performance is directly
affected by that of FR-IQA models, which may be inaccurate
across distortion levels [2] and distortion types [12]. Other
methods for generating training data involve the creation of
synthetic scores [22] and discriminable image pairs (DIP) [23],
both of which rely on FR-IQA models and may suffer from
similar problems.

In this work, we describe a framework for end-to-end
BIQA based on multi-task learning. Motivated by previous
works [16], [24], we decompose the BIQA problem into two
subtasks. Subtask I classifies an image into a specific distortion
type from a set of pre-defined categories. Subtask II predicts
the perceptual quality of the same image, taking advantage
of distortion information obtained from Subtask I. On the one
hand, the two subtasks are related because quality degradation
arises from distortion and the quality level is also affected by
the distortion amount. On the other hand, they are different
because images with different distortion types may exhibit
similar quality while images with the same distortion type
may have drastically different quality, as shown in Fig. 1.
The subtasks are accomplished by two sub-networks of linear
convolutions and nonlinearities with shared features at early
layers. Feature sharing not only greatly reduces the computa-
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Fig. 1. Images (a)-(d) with different distortion types have similar quality while images (e)-(h) of the same distortion type have different quality, according
to our subjective testing. (a) Gaussian blurring. (b) Gaussian noise contamination. (c) JPEG compression. (d) JPEG2000 compression. (e)-(h) JPEG2000
compression with increasing compression ratios from left to right.
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Fig. 2. (a) Traditional multi-task learning [16]. (b) Proposed multi-task
learning structure.

tion, but also enables the network to pre-train the shared layers
via Subtask I, for which large-scale training data (distortion
type) can be automatically generated at low cost. Unlike tradi-
tional multi-task learning, Subtask II of our method depends
on the outputs of Subtask I, as shown in Fig. 2. As such,
the distortion information is transparent to Subtask II for
better quality prediction. We define a layer that is differential
with respect to both convolutional activations and outputs of
Subtask I to guarantee the feasibility of backpropagation. After
pre-training, the entire network is end-to-end optimized using a
variant of the stochastic gradient descent method. In addition,
instead of using rectified linear unit (ReLU) [25], we adopt
generalized divisive normalization (GDN) joint nonlinearity
as the activation function that is biologically inspired and has
proven effective in assessing image quality [26], Gaussianizing
image densities [27], and compressing digital images [28]. We
empirically show that GDN has the capability of reducing
model parameters/layers and meanwhile maintaining similar
quality prediction performance. We evaluate the resulting
Multi-task End-to-end Optimized Network (MEON) based
image quality index on four publicly available IQA databases
and demonstrate that it achieves state-of-the-art performance
compared with existing BIQA models. Finally, we investigate
the generalizability and robustness of MEON using the group
MAximum Differentiation (gMAD) competition methodolo-
gy [2] on the Waterloo Exploration Database [29]. We observe
that MEON significantly outperforms the most recent DNN-
based BIQA model [17] and is highly competitive against MS-
SSIM [30], a well-known FR-IQA model.

II. RELATED WORK

In this section, we provide a brief review of feature engi-
neering in BIQA and previous studies closely related to our
work. For a more comprehensive treatment of general IQA
and BIQA, please refer to [23], [31]–[34].

Assuming the distortion affecting an image is known, ear-
ly BIQA research focused on extracting distortion-specific
features that can handle only one distortion type, e.g.,
JPEG/JPEG2000 compression [35], [36] and blurring artifact-
s [37]. Only in the past decade has general BIQA become
an active research topic, for which spatially normalized coef-
ficients [4] and codebook-based features [38] are popular. In
BRISQUE [4], inspired by earlier work on reduced-reference
(RR) IQA using local gain control based divisive normaliza-
tion [26], natural scene statistics (NSS) are extracted from lo-
cally normalized luminance coefficients. Such a normalization
approach has been used in many BIQA models [38]–[40] as a
starting point of feature extraction or a preprocessing step for
DNN-based BIQA models [15], [16], [21]. In CORNIA [38],
a codebook is constructed by clustering spatially normalized
patches with k-means, based on which soft-assignment en-
coding and feature pooling are performed. Despite its high
dimension, CORNIA features have been frequently adopted in
later BIQA models such as BLISS [22] and dipIQ [23]. The
feature set has been improved to HOSA [41] by incorporating
higher order statistics.

Kang et al. [15] implemented a DNN with one convolutional
and two fully connected layers for BIQA as an end-to-end
version of CORNIA [38]. In order to perform both maximum
and minimum pooling, ReLU nonlinearity [25] is omitted
right after convolution. Bianco et al. [13] investigated various
design choices of DNN for BIQA. They first adopted DNN
features pre-trained on the image classification task as inputs
to learn a quality evaluator using support vector regression
(SVR) [42]. They then fine-tuned the pre-trained features in
a multi-class classification setting by quantizing the MOS
into five categories, and fed the fine-tuned features to SVR.
Nevertheless, their proposal is not end-to-end optimized and
involves heavy manual parameter adjustments [13]. Bosse et
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TABLE I
MODEL SIZE COMPARISON OF DNN-BASED BIQA MODELS

BIQA model Kang14 [15] Kang15 [16] DeepBIQ [13] deepIQA [17] Kim17 [21] MEON
Model size (×104) 72 7.9 5,687 523 739 10.6

al. [17] significantly increased the depth of DNN by stacking
ten convolutional and two fully connected layers, whose ar-
chitecture was inspired by the VGG16 network [10] for image
classification. They also adapted their network to handle FR-
IQA. Kim and Lee [21] first utilized the local score of an FR-
IQA algorithm as the ground truth to pre-train the model and
then fine-tuned it using MOSs. They observed that pre-training
with adequate epochs is necessary for the fine-tuning step to
converge. All of the above methods either work with image
patches, which may suffer from noisy training labels, or inherit
network structures from other tasks with low relevance and
unnecessary complexity. We summarize model complexities
of DNN-based models in Table I.

Our work is motivated by two previous methods. In
BIQI [24], Moorthy and Bovik proposed a two-step framework
for BIQA, where an image is first classified into a particular
distortion category, and then the distortion-specific quality
prediction is performed [24]. The two steps of BIQI are
optimized separately. Unlike BIQI, we are aiming at an end-
to-end solution, meaning that feature representation, distortion
type identification, and quality prediction are optimized jointly.
In [16], Kang et al. simultaneously estimated image quality
and distortion type via a traditional multi-task DNN. However,
simultaneous multi-task training requires ground truths of
distortion type and subjective quality to be both available,
which largely limits the total number of valid training samples.
In addition, the quality prediction subtask is ignorant of the
output from the distortion identification subtask. As a result,
the performance is less competitive.

III. MEON FOR BIQA
In the proposed MEON index, we take a raw image of

256 × 256 × 3 as input and predict its perceptual quality
score. How larger images are handled will be explained in
Section III-C. MEON consists of two subtasks accomplished
by two sub-networks. Sub-network I aims to identify the
distortion type in the form of a probability vector, which
indicates the likelihood of each distortion and is fed as partial
input to Sub-network II, whose goal is to predict the image
quality. Each subtask involves a loss function. Since Sub-
network II relies on the output of Sub-network I, the two
loss terms are not independent. We pre-train the shared layers
in MEON via Subtask I and then jointly optimize the entire
network with a unified loss function.

In this section, we first describe GDN as our nonlinear
activation function used in MEON and then present in detail
the construction of the two subtasks in Fig. 3. Finally, we
introduce our end-to-end training and testing procedures.

A. GDN as Activation Function
Since Nair and Hinton revealed the importance of the ReLU

nonlinearity in accelerating the training of DNN [25], ReLU

and its variants [43], [44] have become the dominant activation
functions in DNN literature. However, the joint statistics of
linear filter responses after ReLU exhibit strong higher-order
dependencies [27], [28]. As a result, ReLU generally requires
a substantially large number of model parameters to achieve
good performance for a particular task. These higher-order
statistics may be significantly decorrelated through the use of
a joint nonlinear gain control mechanism [45], [46] inspired
by models of visual neurons [47], [48]. Previous studies also
showed that incorporating the local gain control operation in
DNN improves the generalizability in image classification [9]
and object recognition [49], where the parameters are predeter-
mined empirically and fixed during training. Here, we adopt a
GDN transform that has been previously demonstrated to work
well in density estimation [27] and image compression [28].
Specifically, given an S-dimensional linear convolutional acti-
vation x(m,n) = [x1(m,n), · · · , xS(m,n)]T at spatial loca-
tion (m,n), the GDN transform is defined as

yi(m,n) =
xi(m,n)(

βi +
∑S
j=1 γijxj(m,n)

2
) 1

2

, (1)

where y(m,n) = [y1(m,n), · · · , yS(m,n)]T is the normal-
ized activation vector at spatial location (m,n). The weight
matrix γγγ and the bias vector βββ are parameters in GDN to
be optimized. Both of them are confined to [0,+∞) so as
to ensure the legitimacy of the square root operation in the
denominator and are shared across spatial locations. GDN
is a differentiable transform that can be trained with any
preceding or subsequent layers. In addition, GDN is proven
to be iteratively invertible under mild assumptions [27], which
preserves better information than ReLU.

During training, we need to backpropagate the gradient
of the loss ` through the GDN transform and compute the
gradients with respect to its inputs and parameters. According
to the chain rule

∂`

∂xj(m,n)
=

S∑
i=1

∂`

∂yi(m,n)

∂yi(m,n)

∂xj(m,n)
, (2)

∂`

∂βi
=

M∑
m=1

N∑
n=1

∂`

∂yi(m,n)

∂yi(m,n)

∂βi
, (3)

∂`

∂γij
=

M∑
m=1

N∑
n=1

∂`

∂yi(m,n)

∂yi(m,n)

∂γij
, (4)

where M and N denote the spatial sizes of the GDN trans-
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Fig. 3. Illustration of MEON configurations for BIQA, highlighting the GDN nonlinearity. We follow the style and convention in [28], and denote the
parameterization of the convolutional layer as “height × width | input channel × output channel | stride | padding”.

formed coefficients and

∂yi(m,n)

∂xj(m,n)
=


βi+

∑
k 6=i γikxk(m,n)

2

(βi+
∑S

k=1 γikxk(m,n)2)
3
2

i = j

−γijxi(m,n)xj(m,n)

(βi+
∑S

k=1 γikxk(m,n)2)
3
2

i 6= j
, (5)

∂yi(m,n)

∂βi
=

−xi(m,n)

2
(
βi +

∑S
j=1 γijxj(m,n)

2
) 3

2

, (6)

∂yi(m,n)

∂γij
=

−xi(m,n)xj(m,n)2

2
(
βi +

∑S
k=1 γikxk(m,n)

2
) 3

2

. (7)

Some DNNs incorporate the batch normalization (BN) trans-
form [50] that whitens the responses of linear filters to reduce
the internal covariate shift and to rescale them in a reasonable
operating range. GDN is different from BN in many ways.
First, during testing, the mean and variance parameters are
fixed and BN is simply an affine transform applied to the input.
By contrast, GDN offers high nonlinearities especially when it
is cascaded in multiple stages. Second, BN jointly normalizes
all the activations across the mini-batch and over all spatial
locations, which makes it an element-wise operation. Although
the parameters in GDN are shared across the space similar
to BN, the normalization of one activation at one location
involves all activations across the channel, making it spatially
adaptive. Another transform that is closely related to GDN is
the local response normalization (LRN) [9], which has a form
of

yi(m,n) =
xi(m,n)(

β′ + γ′
min(S,i+S′/2)∑

j=max(1,i−S′/2)

xj(m,n)2

)α′ , (8)

where α′, β′, γ′, and S′ are scalar parameters predetermined
using a validation set. The sum in the denominator runs over
S′ adjacent activations at the same spatial location. LRN has
been used to boost the performance of image classification [9]
and object recognition [49]. Both GDN and LRN are inspired
by models of biological neurons. When the fixed exponent
of 1

2 in the denominator is generalized to a scalar parameter,
LRN becomes a special case of GDN. We experiment with
such a generalized version of Eq. (1), but do not observe

noticeable performance gains. Therefore, we choose to use
Eq. (1) throughout the paper.

B. Network Architecture

We denote our input mini-batch training data set by{(
X(k),p(k), q(k)

)}K
k=1

, where X(k) is the k-th raw input
image, p(k) is a multi-class indicator vector with only one
entry activated to encode the ground truth distortion type, and
q(k) is the MOS of the k-th input image. As depicted in Fig. 3,
we first feed X(k) to the shared layers, which are responsible
for transforming raw image pixels into perceptually meaning-
ful and distortion relevant feature representations. It consists
of four stages of convolution, GDN, and maxpooling, whose
model parameters are collectively denoted by W. The parame-
terizations of convolution, maxpooling, and connectivity from
layer to layer are detailed in Fig. 3. We reduce the spatial
size by a factor of 4 after each stage via convolution with
a stride of 2 (or without padding), and 2 × 2 maxpooling.
As a result, we represent a 256 × 256 × 3 raw image by a
64-dimensional feature vector. On top of the shared layers,
Sub-network I appends two fully connected layers with an
intermediate GDN transform to increase nonlinearity, whose
parameters are denoted by w1. We adopt the softmax function
to encode the range to [0, 1]

p̂
(k)
i (X(k);W,w1) =

exp
(
y
(k)
i (X(k);W,w1)

)
∑C
j=1 exp

(
y
(k)
j (X(k);W,w1)

) ,
(9)

where p̂(k) = [p̂
(k)
1 , · · · , p̂(k)C ]T is a C-dimensional probability

vector of the k-th input in a mini-batch, which indicates the
probability of each distortion type. We take pristine images
into account and use one entry to represent the “pristine”
category. p̂(k) is the quantity fed to sub-network II and
creates the dependent structure. For Subtask I, we consider
the empirical cross entropy loss

`1({X(k)};W,w1) = −
K∑
k=1

C∑
i=1

p
(k)
i log p̂

(k)
i (X(k);W,w1) .

(10)
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Since we feed pristine images into Sub-network I by adding
the “pristine” category, our training set is mildly unbalanced.
Specifically, the number of images suffering from a particular
distortion is L times as many as pristine images, where L
is the number of distortion levels. It is straightforward to
offset such class imbalance by adding weights in Eq. (10)
according to the proportion of each distortion type. In our
experiments, instead of over-weighting pristine images in the
loss function, we over-sample them L times during training,
which is beneficial for learning strong discriminative features
to handle mild distortion cases.

Sub-network II takes the shared convolutional features and
the estimated probability vector p̂(k) from Sub-network I
as inputs. It predicts the perceptual quality of X(k) in the
form of a scalar value q̂(k), where a lower score indicates
worse perceptual quality. As in Sub-network I, to increase
nonlinearity, we append two fully connected layers with an
intermediate GDN layer, whose parameters are collectively
denoted by w2. We double the node number of the first
fully connected layer compared with that of Sub-network
I, because predicting image quality is expected to be more
difficult than identifying the distortion type. After the second
fully connected layer, the network produces a score vector
s(k), whose i-th entry represents the perceptual quality score
corresponding to the i-th distortion type. We define a fusion
layer that combines p̂(k) and s(k) to yield an overall quality
score

q̂(k) = g(p̂(k), s(k)) . (11)

We continue by completing the definition of g(·). First, in
order to achieve theoretically valid backpropagation, g should
be differentiable with respect to both p̂(k) and s(k). Second,
pairs (p̂

(k)
i , s

(k)
i ) and (p̂

(k)
j , s

(k)
j ) should be interchangeable in

g to reflect the equal treatment of each distortion type under
no privileged information. Third, g needs to be intuitively
reasonable. For example, more emphasis should be given
to s

(k)
i if p̂(k)i is larger; q̂(k) should be monotonically non-

decreasing with respect to each entry of s(k). Here, we
adopt a probability-weighted summation [24] as a simple
implementation of g

q̂(k) = p̂(k)T s(k) =

C∑
i=1

p̂
(k)
i · s

(k)
i , (12)

which is easily seen to obey all the properties listed above.
We have also tried the outer product implementation with non-
negative weights learned during training and obtained similar
results. For subtask II, we use the `1-norm as the empirical
loss function

`2({X(k)};W,w2) = ‖q− q̂‖1 =

K∑
k=1

|q(k) − q̂(k)| . (13)

We have also tried the `2-norm as the loss and observed
similar performance. This is different from patch-based DNN
methods [17], which show a clear preference to the `1-norm
due to a high degree of label noise in the training data.

We now define the overall loss function of MEON as

`({X(k)};W,w1,w2) = `1 + λ`2 , (14)

where λ is the balance weight to account for the scale differ-
ence between the two terms or to impose relative emphasis on
one over the other.

We finish this subsection by highlighting another special
treatment of MEON in addition to Eq. (11) and Eq. (12). The
gradient of ` with respect to p̂(k)i in Sub-network I

∂`

∂p̂
(k)
i

=
∂`1

∂p̂
(k)
i

+ λ
∂`2

∂p̂
(k)
i

(15)

= −p
(k)
i

p̂
(k)
i

− λsign
(
q(k) − q̂(k)

)
s
(k)
i (16)

depends on the gradient backpropagated from Sub-network II.

C. Training and Testing

The success of DNN is largely owing to the availability
of large-scale labeled training data. However, in BIQA, it is
difficult to source accurate MOSs at a large scale. MEON
tackles this problem by dividing the training into two steps:
pre-training and joint optimization. At the pre-training step,
we minimize the loss function in Subtask I

(Ŵ, ŵ1) = argmin `1({X(k)};W,w1) . (17)

The training set used for pre-training can be efficiently gen-
erated without subjective testing. Details will be discussed
in Section IV. At the joint optimization step, we initialize
(W,w1) with (Ŵ, ŵ1) and minimize the overall loss function

(W?,w?
1,w

?
2) = argmin `({X(k)};W,w1,w2) . (18)

During testing, given an image, we extract 256 × 256 ×
3 sub-images with a stride of U . The final distortion type
is computed by majority vote among all predicted distortion
types of the extracted sub-images. Similarly, the final quality
score is obtained by simply averaging all predicted scores.

IV. EXPERIMENTS

In this section, we first describe the experimental setups
including implementation details of MEON, IQA databases,
and evaluation criteria. We then compare MEON with classic
and state-of-the-art BIQA models. Finally, we conduct a series
of ablation experiments to identify the contributions of the core
factors in MEON.

A. Experimental Setups

1) Implementation Details: Both pre-training and joint op-
timization steps adopt the Adam optimization algorithm [51]
with a mini-batch of 40. For pre-training, we start with the
learning rate α = 10−2 and subsequently lower it by a factor
of 10 when the loss plateaus, until α = 10−4. For joint
optimization, α is fixed to 10−4. Other parameters in Adam are
set by default [51]. The learning rates for biases are doubled.
The parameters βββ and γγγ in GDN are projected to nonnegative
values after each update. Additionally, we enforce γγγ to be
symmetric by averaging it with its transpose as recommended
in [28]. The balance weight in Eq. (14) is set to account for the
scale difference between the two terms (0.2 for LIVE [52] and
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Fig. 4. Sample source images used for pre-training. (a) Human. (b) Animal. (c) Plant. (d) Landscape. (e) Cityscape. (f) Still-life. (g) Transportation. All
images are cropped for better visibility.

1 for TID2013 [12]). During testing, the stride U is set to 128.
We augment the training data by randomly horizontal flipping
and changing their contrast and saturation within the range
that is indiscernible to human eyes. Since quality changes with
scales which correspond to different viewing distances, we do
not augment training data across scales.

We select 840 high-resolution natural images with nearly
pristine quality as the basis to construct the dataset for pre-
training. They can be loosely categorized into seven class-
es: human, animal, plant, landscape, cityscape, still-life, and
transportation, with representative images shown in Fig. 4. We
down-sample each image to further reduce possible compres-
sion artifacts, keeping a maximum height or width of 768.
C − 1 distortion types (excluding the “pristine” category)
are applied to those images, each with 5 distortion levels.
As previously described, we over-sample pristine images to
balance the class labels during pre-training. Therefore, our
dataset contains a total of C × 840 × 5 images with ground
truth labels automatically generated.

2) IQA Databases: We compare MEON with classic and
state-of-the-art BIQA models on four standard IQA databases.
They are LIVE [52], CSIQ [53], TID2013 [12], and the Wa-
terloo Exploration Database [29]. The first three databases are
subject-rated while MOSs are not available in the Exploration
database (which calls for innovative evaluation criteria as will
be introduced in Section IV-A3). In the first set of experiments,
we consider four distortion types that are common in the
four databases: JPEG2000 compression (JP2K), JPEG com-
pression (JPEG), white Gaussian noise contamination (WN),
and Gaussian blur (BLUR). This leaves us 634, 600, 500, and
94880 test images in LIVE [52], CSIQ [53], TID2013 [12],
and the Exploration database, respectively. In the second set
of experiments, we investigate the effectiveness of MEON

on handling more distortion types (24 to be specific) by
considering all 3, 000 test images in TID2013 [12].

3) Evaluation Criteria: Five evaluation criteria are adopted
as follows.
• Spearman’s rank-order correlation coefficient (SRCC): It

is a nonparametric measure and is defined as

SRCC = 1−
6
∑
i d

2
i

I(I2 − 1)
, (19)

where I is the test image number and di is the rank
difference between the MOS and the model prediction
of the i-th image. SRCC is independent of monotonic
mappings.

• Pearson linear correlation coefficient (PLCC): It is a
nonparametric measure of the linear correlation

PLCC =

∑
i(qi − qm)(q̂i − q̂m)√∑

i(qi − qm)2
√∑

i(q̂i − q̂m)2
, (20)

where qi and q̂i stand for the MOS and the model
prediction of the i-th image, respectively.

• Pristine/distorted image discriminability test (D-
test) [29]: It quantifies the ability of a BIQA model
to discriminate pristine from distorted images. Given a
database, we group the indices of pristine and distorted
images into sets Sp and Sd, respectively. Based on
model predictions, an optimal threshold T ∗ can be found
to maximize the correct classification rate

D = R(T ∗) =
1

2

( |Sp ∩ S′p|
|Sp|

+
|Sd ∩ S′d|
|Sd|

)
, (21)

where S′p = {i|q̂i > T ∗} and S′d = {i|q̂i ≤ T ∗}. D
ranges from [0, 1] with a larger value indicating a better
separability induced by the BIQA model.
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TABLE II
MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS ON

CSIQ [53]

SRCC JP2K JPEG WN BLUR ALL4
DIIVINE [3] 0.844 0.819 0.881 0.884 0.835
BRISQUE [4] 0.894 0.916 0.934 0.915 0.909
CORNIA [38] 0.916 0.919 0.787 0.928 0.914
ILNIQE [40] 0.924 0.905 0.867 0.867 0.887
BLISS [22] 0.932 0.927 0.879 0.922 0.920
HOSA [41] 0.920 0.918 0.895 0.915 0.918
dipIQ [23] 0.944 0.936 0.904 0.932 0.930
deepIQA [17] 0.907 0.929 0.933 0.890 0.871
MEON 0.898 0.948 0.951 0.918 0.932

PLCC JP2K JPEG WN BLUR ALL4
DIIVINE [3] 0.898 0.818 0.903 0.909 0.855
BRISQUE [4] 0.937 0.960 0.947 0.936 0.937
CORNIA [38] 0.947 0.960 0.777 0.953 0.934
ILNIQE [40] 0.942 0.956 0.880 0.903 0.914
BLISS [22] 0.954 0.970 0.895 0.947 0.939
HOSA [41] 0.946 0.958 0.912 0.940 0.942
dipIQ [23] 0.959 0.975 0.927 0.958 0.949
deepIQA [17] 0.931 0.951 0.933 0.906 0.891
MEON 0.925 0.979 0.958 0.946 0.944

• Listwise ranking consistency test (L-test) [29]: It exams
the consistency of a BIQA model under test images
differing only in distortion levels. The assumption here
is that image quality degrades monotonically with the
increase of the distortion level for any distortion type.
Given a database with J source images, C distortion
types, and L distortion levels, the average SRCC is
adopted to quantify the ranking consistency

Ls =
1

JC

J∑
i=1

C∑
j=1

SRCC(lij , sij) , (22)

where lij and sij indicate distortion levels and model
predictions to images that are generated from the i-th
source image by applying the j-th distortion type.

• Pairwise preference consistency test (P-test) [29]: It
builds upon the notion of DIP, which consists of two
images whose perceptual quality is discriminable. Given
a database with Q DIPs, where a BIQA model correctly
predicts the concordance of Qc DIPs, the pairwise pref-
erence consistency ratio is computed by

P =
Qc
Q
. (23)

P lies in [0, 1] with a higher value indicating better
performance.

SRCC and PLCC are standard evaluation criteria adopted by
the video quality experts group (VQEG) [54]. We apply them
to LIVE [52], CSIQ [53], and TID2013 [12]. The other three
tests are introduced by Ma et al. [29] to account for large-
scale image databases without MOSs, such as the Waterloo
Exploration Database [29] used in the paper.

B. Experimental Results

1) Results on Four Distortions: We compare MEON with
classic and state-of-the-art BIQA models on four common
distortion types in LIVE [52], CSIQ [53], TID2013 [12], and

TABLE III
MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS ON

TID2013 [12]

SRCC JP2K JPEG WN BLUR ALL4
DIIVINE [3] 0.857 0.680 0.879 0.859 0.795
BRISQUE [4] 0.906 0.894 0.889 0.886 0.883
CORNIA [38] 0.907 0.912 0.798 0.934 0.893
ILNIQE [40] 0.912 0.873 0.890 0.815 0.881
BLISS [22] 0.906 0.893 0.856 0.872 0.836
HOSA [41] 0.933 0.917 0.843 0.921 0.904
dipIQ [23] 0.926 0.932 0.905 0.922 0.877
deepIQA [17] 0.948 0.921 0.938 0.910 0.885
MEON 0.911 0.919 0.908 0.891 0.912

PLCC JP2K JPEG WN BLUR ALL4
DIIVINE [3] 0.901 0.696 0.882 0.860 0.794
BRISQUE [4] 0.919 0.950 0.886 0.884 0.900
CORNIA [38] 0.928 0.960 0.778 0.934 0.904
ILNIQE [40] 0.929 0.944 0.899 0.816 0.890
BLISS [22] 0.930 0.963 0.863 0.872 0.862
HOSA [41] 0.952 0.949 0.842 0.921 0.918
dipIQ [23] 0.948 0.973 0.906 0.928 0.894
deepIQA [17] 0.963 0.960 0.943 0.897 0.913
MEON 0.924 0.969 0.911 0.899 0.912

the Waterloo Exploration Database [29]. The competing algo-
rithms are chosen to cover a diversity of design philosophies,
including three classic ones: DIIVINE [3], BRISQUE [4] and
CORNIA [38], and five state-of-the-art ones: ILNIQE [40],
BLISS [22], HOSA [41], dipIQ [23] and deepIQA [17]. All
implementations except BLISS [22] are obtained from the
authors. We implement our own version of BLISS and train
it on the dataset used for pre-training MEON. In order to
make a fair comparison, all models are re-trained/validated
on the full LIVE database and tested on CSIQ, TID2013,
and the Exploration database. As for MEON, we randomly
select 23 reference and their corresponding distorted images
in LIVE for training, and leave the rest 6 reference and
their distorted images for validation. The model parameters
with the lowest validation loss are chosen. When testing,
we follow the common practice of Mittal et al. [4] and
Ye et al. [22], and randomly choose 80% reference images
along with their corresponding distorted images to estimate
the parameters {ηi|i = 1, 2, 3, 4} of a nonlinear function
q̃ = (η1−η2)/(1+exp(−(q̂−η3)/|η4|))+η2, which is used to
map model predictions to the MOS scale. The rest 20% images
are left out for testing. This procedure is repeated 1, 000 times
and the median SRCC and PLCC values are reported.

TABLE IV
THE D-TEST, L-TEST, AND P-TEST RESULTS ON THE WATERLOO

EXPLORATION DATABASE [29]

D-test L-test P-test
DIIVINE [3] 0.8538 0.8908 0.9540
BRISQUE [4] 0.9204 0.9772 0.9930
CORNIA [38] 0.9290 0.9764 0.9947
ILNIQE [40] 0.9084 0.9926 0.9927
BLISS [22] 0.9080 0.9801 0.9996
HOSA [41] 0.9175 0.9647 0.9983
dipIQ [23] 0.9346 0.9846 0.9999
deepIQA [17] 0.9074 0.9467 0.9628
MEON 0.9384 0.9669 0.9984

Tables II, III, and IV show the results on CSIQ [53],
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TABLE V
THE CONFUSION MATRICES PRODUCED BY MEON ON CSIQ, TID2013,

AND THE EXPLORATION DATABASE. THE COLUMN AND THE RAW
CONTAIN GROUND TRUTHS AND PREDICTED DISTORTION TYPES,

RESPECTIVELY

Accuracy JP2K JPEG WN BLUR Pristine

CSIQ

JP2K 0.847 0.007 0.000 0.093 0.053
JPEG 0.040 0.820 0.000 0.027 0.113
WN 0.000 0.000 0.947 0.013 0.040

BLUR 0.067 0.006 0.000 0.827 0.100
Pristine 0.067 0.000 0.100 0.166 0.667

TID2013

JP2K 0.944 0.016 0.000 0.040 0.000
JPEG 0.032 0.968 0.000 0.000 0.000
WN 0.000 0.000 1.000 0.000 0.000

BLUR 0.088 0.008 0.000 0.848 0.056
Pristine 0.160 0.000 0.040 0.000 0.800

Exploration

JP2K 0.985 0.000 0.000 0.015 0.000
JPEG 0.006 0.994 0.000 0.000 0.000
WN 0.000 0.000 1.000 0.000 0.000

BLUR 0.003 0.000 0.000 0.997 0.000
Pristine 0.213 0.050 0.067 0.234 0.436

TID2013 [12], and the Exploration database [29], respectively,
from which the key observations are as follows. First, MEON
achieves state-of-the-art performance on all three databases.
Although there is slight performance bias towards JPEG and
WN, MEON aligns all distortions pretty well across the
perceptual space. Second, MEON significantly outperforms
DIIVINE [3], an improved version of BIQI [24] with more
advanced NSS. The performance improvement is largely due
to the jointly end-to-end optimization for feature and multi-
task learning. Third, MEON performs the best in D-test
on the Exploration database, which is no surprise because
we are optimizing a finer-grained version of D-test through
Subtask I. More specifically, the network learns not only
to classify the image into pristine and distorted classes but
also to identify the specific distortion type when distorted.
Fourth, we observe stronger generalizability of MEON on
the Exploration database compared with another DNN-based
method, deepIQA [17]. We believe the performance improve-
ment arises because 1) the proposed novel learning framework
has the quality prediction subtask regularized by the distortion
identification subtask; 2) images instead of patches are used as
inputs to reduce the label noise; 3) the pre-training step enables
the network to start from a more task-relevant initialization,
resulting in a better local optimum.

As a by-product, MEON outputs the distortion information
of a test image, whose accuracy on CSIQ [53], TID2013 [12],
and the Exploration database [29] is shown in Table V.
Empirical justifications for the correlation of the two subtasks
can be easily seen, where a lower classification error of a
particular distortion generally leads to better quality prediction
performance on that distortion and vice versa (e.g., WN and
BLUR). Since the statistical behaviors of WN have obvious
distinctions with the other three distortions, MEON predicts
WN nearly perfectly. On the other hand, it confounds JP2K
with BLUR sometimes because JP2K often introduces signif-
icant blur at low bit rates. When the distortion level is mild,
MEON occasionally labels distorted images as pristine, which
is not surprising because the HVS is also easily fooled by

such cases. Finally, there is still much room for improvement
of correctly classifying pristine images. We conjecture that
adding more training data in the pre-training step may help
improve the results.

Moreover, we let MEON play the gMAD competition
game [2] with deepIQA [17]. Instead of attesting a com-
putational model for a perceptual quantity, the MAximum
Differentiation (MAD) competition [55] method works by fal-
sifying it, which has the capability to minimize the number of
testing stimuli because essentially even one counter-example
is sufficient to disprove a model. gMAD extends the idea by
allowing a group of models for competition and by finding
the optimal stimuli in a large database [2]. We choose the
Exploration database [29] as the playground. An image pair is
automatically searched for the maximum quality difference in
terms of MEON, while keeping deepIQA [17] predictions at
the same quality level. The procedure is then repeated with
the roles of the two models exchanged. Four such image
pairs are shown in Fig. 5 (a)-(d), where MEON considers
pairs (a) and (b) of the same quality at low- and high-quality
levels, respectively, which is in close agreement with our visual
observations. By contrast, deepIQA incorrectly predicts the
top images of (a) and (b) to have much better quality than
that of the bottom images. Similar conclusions can be drawn
by examining pairs (c) and (d), where the roles of the two
models are reversed. The results of gMAD provide strong
evidence that the generalizability of MEON is significantly
improved over deepIQA [17]. We further compare MEON
through gMAD with MS-SSIM [30], an FR-IQA model that
performs the best among 16 IQA models according to a recent
subjective experiment [2]. Fig. 6 (a)-(d) show the results,
from which we observe that MEON is highly competitive
against MS-SSIM [30] in the sense that both methods are
able to fail each other by successfully finding strong counter-
examples. Specifically, MS-SSIM [30] tends to over-penalize
WN but under-penalize BLUR. MEON is able to reveal such
weaknesses of MS-SSIM, which can be easily discerned in the
bottom images of Fig. 6 (c) and (d). On the other hand, MS-
SSIM takes advantage of the fact that MEON does not handle
BLUR and JP2K well enough and finds counter-examples from
those distortions.

2) Results on More Distortion Types: We investigate the
scalability of our multi-task learning framework to handle
more distortion types by training and testing on the full
TID2013 database [12]. For pre-training, we make our best
effort to reproduce 15 out of the 24 distortions in TID2013
and apply them to the 840 high-quality images. As a result,
only parameters of the shared layers W are provided with
meaningful initializations. Since BLISS [22] and dipIQ [23]
cannot be trained without all distorted images available, we
exclude them from the comparison. For joint optimization, we
follow Bosse et al. [17] and use 15, 5, and 5 reference and
their corresponding distorted images for training, validation,
and testing, respectively. Median SRCC results are reported
based on 10 random splits in Table VI. All other competing
BIQA models except deepIQA [17] are re-trained, validated,
and tested in exactly the same way. Since the training codes
of deepIQA are not available, we copy the results from the
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TABLE VI
MEDIAN SRCC RESULTS ACROSS 10 SESSIONS ON THE FULL TID2013 DATABASE

SRCC #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13
DIIVINE [3] 0.756 0.464 0.869 0.374 0.794 0.704 0.650 0.900 0.814 0.795 0.804 0.514 0.892
BRISQUE [4] 0.674 0.550 0.804 0.222 0.824 0.749 0.677 0.855 0.492 0.751 0.696 0.285 0.719
CORNIA [38] 0.496 0.130 0.655 0.373 0.715 0.647 0.632 0.844 0.688 0.758 0.866 0.587 0.603
ILNIQE [40] 0.924 0.847 0.947 0.786 0.908 0.847 0.933 0.869 0.846 0.901 0.930 0.400 0.708
HOSA [41] 0.833 0.575 0.808 0.432 0.906 0.817 0.783 0.903 0.873 0.903 0.920 0.712 0.743
deepIQA [17] — — — — — — — — — — — — —
MEON 0.813 0.722 0.926 0.728 0.911 0.901 0.888 0.887 0.797 0.850 0.891 0.746 0.716

SRCC #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 All
DIIVINE [3] 0.215 0.389 0.124 0.189 0.280 0.691 0.340 0.690 0.769 0.700 0.795 0.632
BRISQUE [4] 0.158 0.362 0.253 0.102 0.200 0.587 0.211 0.546 0.842 0.770 0.764 0.572
CORNIA [38] 0.282 -0.025 0.194 0.145 -0.006 0.461 0.560 0.648 0.646 0.672 0.867 0.611
ILNIQE [40] -0.173 0.000 0.328 0.080 0.103 0.773 0.507 0.911 0.822 0.801 0.878 0.534
HOSA [41] 0.143 0.330 0.279 0.307 0.414 0.711 0.537 0.756 0.840 0.821 0.903 0.707
deepIQA [17] — — — — — — — — — — — 0.761
MEON 0.116 0.500 0.177 0.252 0.684 0.849 0.406 0.772 0.857 0.779 0.855 0.808

Best deepIQA

Worst deepIQA

Fixed MEON

Best deepIQA

Worst deepIQA

Fixed MEON

Best MEON

Worst MEON

Fixed deepIQA

Best MEON

Worst MEON

Fixed deepIQA

(a) (b) (c) (d)

Fig. 5. gMAD competition results between MEON and deepIQA [17]. (a) Fixed MEON at the low-quality level. (b) Fixed MEON at the high-quality level.
(c) Fixed deepIQA at the low-quality level. (d) Fixed deepIQA at the high-quality level.

Best MS-SSIM

Worst MS-SSIM

Fixed MEON

Best MS-SSIM

Worst MS-SSIM

Fixed MEON

Best MEON

Worst MEON

Fixed MS-SSIM

Best MEON

Worst MEON

Fixed MS-SSIM

(a) (b) (c) (d)

Fig. 6. gMAD competition results between MEON and MS-SSIM [30]. (a) Fixed MEON at the low-quality level. (b) Fixed MEON at the high-quality level.
(c) Fixed MS-SSIM at the low-quality level. (d) Fixed MS-SSIM at the high-quality level.
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TABLE VII
MEDIAN SRCC RESULTS OF ABLATION EXPERIMENTS ACROSS 1, 000

SESSIONS ON CSIQ [53] AND TID2013 [12]

CSIQ TID2013
Single-task 0.844 0.850
Traditional multi-task 0.885 0.871
MEON w/o pre-training 0.894 0.880
MEON with pre-training 0.932 0.912

TABLE VIII
SRCC RESULTS OF CONFIGURATIONS WITH DIFFERENT ACTIVATION

FUNCTIONS AND MODEL COMPLEXITIES

CSIQ TID2013
ReLU + single layer 0.922 0.891
ReLU + double layers 0.924 0.900
ReLU + double layers + BN 0.930 0.918
MEON (GDN + single layer) 0.932 0.912

original paper for reference (note that the random seeds for
the 10 data splits may be different).

From Table VI, we observe that MEON outperforms pre-
vious BIQA models by a clear margin, aligning 24 distor-
tions in the perceptual space remarkably well. By contrast,
although ILNIQE [40] does an excellent job in predicting
image quality under the same distortion type, which is also
reflected in its superior performance in L-test on the Ex-
ploration database, it fails to align distortion types correctly.
Moreover, all competing BIQA models including MEON do
not perform well on mean shift (#16) and contrast change
(#17) cases. This is not surprising for methods that adopt
spatial normalization as preprocessing, such as BRISQUE [4],
CORNIA [38], ILNIQE [40], and HOSA [41] because the
mean and contrast information has been removed at the very
beginning. Moreover, mean shift and contrast change may not
be considered as distortions at all because modest mean shift
may not affect perceptual quality and contrast change (e.g.,
contrast enhancement) often improves image quality.

3) Ablation Experiments: We conduct a series of ablation
experiments to single out the core contributors of MEON.
We first train Sub-network II with random initializations as
a simple single-task baseline. We also experiment with the
traditional multi-task learning framework by directly produc-
ing an overall quality score. From Table VII, we observe that
without pre-training, MEON achieves the best performance.
Moreover, pre-training brings the prediction accuracy to the
next level. We conclude that the proposed multi-task learning
framework and the pre-training mechanism are keys to the
success of MEON.

Next, we analyze the impact of the GDN transform on
model complexity and quality prediction performance. We
start from a baseline by replacing all GDN layers with ReLU.
We then double all convolutional and fully connected layers
in both Sub-networks I and II with ReLU nonlinearity to see
whether a deeper network improves the performance. Last, we
introduce the BN transform right before each ReLU layer. The
results are listed in Table VIII, from which we see that simply
replacing GDN with ReLU leads to inferior performance.
The network with a deeper architecture slightly improves the

performance. When combined with BN, it achieves compet-
itive performance against MEON. This suggests that GDN
may be an effective way to reduce model complexity without
sacrificing performance. Specifically in our case, GDN is
able to half the layers and parameters of the network while
achieving similar performance when compared with ReLU.

V. CONCLUSION AND DISCUSSION

We propose a novel multi-task learning framework for
BIQA, namely MEON, by decomposing the BIQA task into
two subtasks with dependent loss functions. We optimize
MEON for both distortion identification and quality prediction
in an end-to-end fashion. The resulting MEON index demon-
strates state-of-the-art performance, which we believe arises
from pre-training for better initializations, multi-task learning
for mutual regularization, and GDN for biologically inspired
feature representations. In addition, we show the scalability
of MEON to handle more distortion types and its strong
competitiveness against state-of-the-art BIQA approaches in
the gMAD competition.

The general idea behind the proposed approach does not
limit its application scope to BIQA only. With proper mod-
ifications of the MEON network architecture, we may learn
end-to-end FR- and RR-IQA networks. Furthermore, such
deep learning based IQA networks may be incorporated into
other image processing applications. For example, through
backpropagation, a DNN-based IQA model may be directly
used to drive DNN-based image compression and restoration
algorithms.

Another promising future direction is to extend the current
work to other problems that involve perceptual attributes of
images. For example, in the fields of authentic [56] and
aesthetic [57] IQA, we are faced with the same problem of
limited training data, which casts great challenges to train
DNN without over-fitting. How to extend the idea of the
current work to these problems is an interesting direction yet
to be explored.
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