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Abstract— Image interpolation techniques that create
high-resolution images from low-resolution (LR) images are
widely used in real world applications, but how to evaluate
the quality of interpolated images is not a well-resolved issue.
Subjective assessment methods are useful and reliable, but
are also slow and expensive. Here, we propose an objective
method to assess the quality of an interpolated natural image
using the available LR image as a reference. Our method
adopts a natural scene statistics (NSS) framework, where image
quality degradation is gauged by the deviation of its statistical
features from the NSS models trained upon high-quality
natural images. Two distortion measures are proposed, namely,
interpolated natural image distortion (IND) and weighted IND.
Validations by subjective tests show that the proposed approach
performs statistically equivalent or sometimes better than an
average human subject. Moreover, we demonstrate the potential
application of the proposed method in parameter tuning of
image interpolation algorithms.1

Index Terms— Image quality assessment, image interpolation,
natural scene statistics.

I. INTRODUCTION

IMAGE interpolation techniques that can improve the
spatial resolution of given low-resolution (LR) images

are extensively used in real-world devices and systems
such as web browsers, media players, photo editors, and
high-definition television (HDTV) [1]. Over the past decades,
an increasing number of interpolation algorithms have been
proposed. Early approaches such as nearest neighbor, bilinear,
and bicubic interpolations [2] predict the values of missing
pixels using spatially invariant fitting functions. More
advanced recent methods are often adapted towards image
edges or locally oriented structures [3]–[9]. Figure 1 depicts
examples of reconstructed high resolution (HR) images created
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Fig. 1. (a): low-resolution (LR) image; (b-e): interpolated images by a
scaling factor of 2; (f-i): interpolated images by a scaling factor of 4;
(j-m): interpolated images by a scaling factor of 8. Column 1: bilinear inter-
polation; Column 2: bicubic interpolation; Column 3: nearest neighbor (NN)
interpolation; Column 4: new edge-directed interpolation (NEDI) [3].
All interpolated images are cropped for better visualization.

from the LR “Lena” image for scaling factors of 2, 4 and 8,
by means of bilinear, bicubic, nearest neighbor (NN), and
new edge-directed interpolation (NEDI) [3] methods,
respectively. It can be observed that as the scaling factor
increases, the perceptual differences between different
interpolation methods become more pronounced. A natural
question arises here is: with a variety of interpolation
methods available, which one produces more natural-looking
realistic HR images? To answer this question, image quality
assessment (IQA) methods are highly desirable, without
which, different interpolation methods cannot be compared
and future improvement is pointless.

Subjective evaluation provides a direct and reliable method
in assessing the quality of interpolated images. In subjective
IQA experiments, human subjects may be instructed to assign
a “quality score” to each test image, and then the mean
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Fig. 2. Illustration of sub-image extraction from an HR image.

opinion scores (MOSs) as well as the variations between
multiple subjects can be calculated [10], [11]. The subjects
may also be asked to compare pairs of images and pick the
one with better quality [12], [13]. Such a two-alternative-
forced-choice (2AFC) approach has been shown to provide
consistent results in the literature of visual psychophysics [14],
though with low efficiency. A more efficient method is to ask
the subjects to rank the quality of multiple images [15].
All these subjective evaluation methods are useful in com-
paring the performance of interpolation algorithms. However,
they are often time-consuming and expensive, which largely
constrains their applications when the volume of images
becomes large or when one aims to incorporate them into the
optimal design of interpolation algorithms.

Very limited progress has been made in automatic or
objective quality assessment of interpolated images [15]. The
difficulty lies in the fact that a perfect-quality HR image
is unavailable to compare with. As a result, typical
full-reference (FR) objective IQA approaches (where a perfect-
quality reference HR image is available) such as peak signal-
to-noise-ratio (PSNR) and the structural similarity (SSIM)
index [16], [17] are not directly applicable. It is worth noting
that the pixels in the LR image constitute a subset of the
HR image pixels and are available to the IQA system. This
well fits into the category of reduced-reference (RR) IQA,
where only partial information about the perfect-quality
original image is accessible [18], [19]. Recently, there has been
a growing interest in using natural scene statistics (NSS) based
approaches for RR and no-reference (NR, where no informa-
tion about the reference image is available) IQA [20]. The
basic assumption behind NSS approaches is that high-quality
images captured from the natural visual environment have
strong low-level statistical regularities [21], to which the
biological visual apparatus has adapted and evolved over the
millennia [20]. Consequently, any departure from such
regularities creates “perceptual unnaturalness”, which is
assumed to be directly related to perceived image quality.

In the past decade, NSS based approaches have been
successfully used in a number of RR and NR IQA algo-
rithms [19], [22]–[25], though have not been exploited in
quality assessment of interpolated images.

In this work, we aim to develop an NSS-based objective
quality assessment method for interpolated natural HR images
using their corresponding LR images as references.
Specifically, we build our NSS models using statistics
of three features trained from high-quality natural images
(details are given in Section II). The same set of features
are calculated for the interpolated image being evaluated,
and the deviations of these features from the NSS models
are combined to produce an overall distortion measure
of the interpolated HR image. A subjective experiment is
carried out on interpolated natural images to validate the
proposed method, which exhibits good agreement with subject
opinions. Finally, we demonstrate the potential application of
the proposed approach by applying it in the parameter tuning
of existing image interpolation algorithms.

II. PROPOSED METHOD

Given an LR image, an image interpolation algorithm
increases the spatial resolution to create an HR image by
predicting and inserting new pixels between the existing
LR image pixels. In practice, it is often desirable to rescale
an image to arbitrary sizes. Strictly speaking, “interpolation”
is not the correct term for such applications because the
original positions and values of the LR image pixels cannot
be fully maintained. In the current work, we only consider
the case of interpolations by integer scaling factors and there
is no fractional-pixel shift in the LR image. As such, the
LR image can be viewed as a downsampled version of the
HR image, where the pixel intensities remain unchanged at
the sampling points. Another assumption we make here is that
the LR image is noise free. This is reasonable because practical
interpolation algorithms are noise sensitive, and denoising is
typically applied before interpolation.
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Fig. 3. An example of sub-images extracted from an interpolated HR image.

Let α be the interpolation scaling factor. Starting from
the HR image, we could create α2 downsampled sub-images,
where one of them is the original LR image. An illustration
of this sub-image extraction process is shown in Fig. 2 and
a corresponding example of an interpolated image is given
in Fig. 3, where α = 3 and all the pixels marked with “0”
in Fig. 2 constitute a sub-image that is exactly the same as
the original LR image. All other sub-images are composed of
pixels generated during the interpolation process. Our general
assumption is that the statistical properties of all sub–images
extracted from a high–quality HR image are similar, because
all sub–images are nothing but downsampled versions of the
same original image at different starting points. This may
not be true for interpolated images, where only one of the
sub-images is from the original HR image, while all others
are artificially created by the interpolation algorithm. The key
idea is to observe the relative difference in statistical properties
across sub-images. For example, by close observation of the
sub-images in Fig. 3, one can discern the differences between
the original LR and the other sub-images, which often exhibits
“unnaturally” smoothed edges and structural content. This
observation inspires us to design statistical features based on
sub-image statistics and to quantify how such features differ
between high-quality natural HR images and interpolated
HR images. Since the LR image is available as one of the
sub-images, the design of the statistical features could make
use of such information. The first two statistical features
employed in the proposed IQA algorithm are developed by
following these ideas and are elaborated in the following sub-
sections.

A. Frequency Energy Falloff Statistics

It has long been discovered that the amplitude spectrum of
natural images falls with the spatial frequency approximately
proportional to 1/ f p [26], where f is the spatial frequency
and p is an image dependent constant. This motivates us to

Fig. 4. Frequency energy falloffs of sub-images in Fig. 3.

develop a statistical feature based on frequency energy falloff.
Specifically, we decompose the sub-images into dyadic scales
using a steerable pyramid transform [27], which constitutes
a tight frame and thus the energy in the spatial domain
is preserved in the transform domain. For natural images,
the energy in each scale, computed as the sum of squared
transform coefficients, falls from the coarse to fine scales.
Generally, the trends of scale or frequency energy falloff of
natural images are fairly similar [26], while unnatural blurry
images tend to have steeper slopes.

Figure 4 shows the frequency energy falloff curves drawn
for different sub-images in Figure 3. Two useful observations
can be made here: First, the falloffs are approximately straight
lines in log scale, which is consistent with the 1/ f p model;
Second, the slope of energy falloff reflects the blurriness of
the images. In particular, with the increase of blurriness from
Sub-image1 to Sub-image3, and to Sub-image9, the slopes
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of the falloffs become steeper. The substantial difference in
the speed of falloff between different sub-images observed
here is unlikely to happen in high-quality natural images,
where statistics on sub-images are presumably similar. This
observation suggests that measuring the statistical differences
between sub-image frequency energy falloff could be a useful
feature to distinguish interpolated images from high-quality
natural images. As shown in Fig. 3, the deviation of the slope
in the interpolated sub–image from that in the LR image
maximizes at two finest scales. Therefore, we use si to denote
the slope of frequency energy falloff between the two finest
scales in the i -th sub-image, and define a frequency energy
falloff feature as

e f =
[

1
α2−1

∑α2

k=2(sk − s1)
2
]1/2

s1
, (1)

where s1 computed from the first sub-image (which is the
same as the reference LR image) is used as a reference, and
the deviation of all other sub-images (for k = 2, . . . , α2) are
averaged and normalized by s1. For a high-quality HR image,
the deviation is expected to be small, leading to a small
e f feature (though unlikely to be zero, as will be shown
in Section II-D). By contrast, for interpolated images that
create blurry sub-images (as exemplified by Fig. 3), the
e f statistic is expected to be much larger.

B. Dominant Orientation Statistics

The frequency energy falloff feature described above
is based on global energy measures, while interpolation
processes often result in distortions in local image structures.
In the literature, image gradient is widely used to study
local structural details, particularly on edges and orienta-
tions [28]–[30]. Let I be an N × N image patch, and the
gradient at pixel (x, y) in I be ∇I(x, y) = [∇xI ∇yI

]
(x,y)

,
where ∇x and ∇y denote the derivatives in horizontal and
vertical directions, respectively. In the literature, careful study
had been dedicated to the optimal design of multi–dimensional
derivative filters [31]. Here we adopt the derivative kernels
proposed in [31] for image gradient estimation. By pooling
the gradients of all pixels in the patch, we obtain a gradient
matrix given by

∇I =

⎡
⎢⎢⎣

...
...

∇Ix(x, y) ∇Iy(x, y)
...

...

⎤
⎥⎥⎦

N2×2

. (2)

We follow the well-known compact singular value decomposi-
tion (SVD) approach [28] to estimate the dominant orientation
in the patch, together with the energy along the dominant and
its orthogonal directions. The compact SVD of ∇I can be
written as

∇I = U�VT = U
[
λ1 0
0 λ2

]
[v1 v2]T, (3)

where U and V are orthonormal matrices, and the column
vectors v1 and v2 indicate the dominant gradient orienta-
tion and its orthogonal direction (dominant edge orientation),
respectively. The matrix � is a 2 × 2 diagonal matrix,

where the singular values λ1 ≥ λ2 ≥ 0 provide energy
measures along v1 and v2 directions, respectively. A simple
and elegant energy-independent orientedness measure is given
by [28]

C = λ1 − λ2

λ1 + λ2
. (4)

In case that the image patch is fully oriented with
one dominant direction, λ1 � λ2 ≈ 0, and thus C ≈ 1. With
the decrease of the gap between λ1 and λ2, the C measure
declines. At the other extreme, when the energy along the two
orthogonal orientations are equally strong or when the image
patch is very smooth with little energy, the value of C is close
to 0. This orientedness measure has found successful applica-
tions in identifying local dominant orientations of textures [28]
and has been extended to multi-scale settings [29].

We compute the orientedness measure C over an
11×11 sliding window that runs across each sub-image. Let lk

be the mean of the C measure of the k-th sub-image, and we
define our dominant orientation statistic features as

el =
[

1
α2−1

∑α2

k=2(lk − l1)
2
]1/2

l1
. (5)

Like in Eq. (1), here l1 is computed from Sub-image 1 which is
the same as the reference LR image. The value of l1 is used as
a normalization factor to quantify the deviation of orientation
strength of all other sub-images (for k = 2, . . . , α2). For
a high-quality HR images, the deviation are expected to
be small, resulting in small el measures, while interpolated
images may generate much larger el , which will be shown
in Section II-D.

C. Spatial Continuity Statistics

Many interpolation algorithms create unnatural looking
discontinuities in the spatial domain. This inspires us to study
spatial continuity statistics and relate them to the naturalness
of images. Here we follow the general approach successfully
used in previous work to detect spatial discontinuity [32], [33],
based on which we develop a new statistical feature for spatial
discontinuity. Let f (i) for i = 0, . . . , N − 1 be one row
(or column) of pixels extracted from the image, where N is
the number of pixels in the row (or column). A straightforward
method to examine signal continuity is to compute an absolute
differencing signal given by

g(i) = | f (i + 1) − f (i)| for 0 ≤ i ≤ N − 2. (6)

In the case of a high-quality HR natural image, the spatial
continuity behavior is presumably close to uniform in statisti-
cal sense, while such behavior in an interpolated image may
vary in a pattern related to the interpolation grid. To capture
such variations, for a given interpolation factor α, we first
measure the average spatial continuity at every α pixels by

k j = 1

M

M−1∑
i=0

g(αi + j) for 0 ≤ j ≤ α − 1. (7)

where M = �(N − 1)/α�. This results in an length-α vector
k = {k j | j = 0, · · · , α −1}. We then use the ratio between the
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Fig. 5. Histograms of e f feature obtained from 1000 (a) HR natural images,
and interpolated images using (b) bilinear, (c) bicubic, (d) nearest neighbor,
(e) NEDI [3], (f) (DFDF) [6], (g) ARSD [5], (h) NARM [4] and (i) ICBI [7]
algorithms.

mean and std of the k vector as a measure of spatial continuity
variation:

es = std(k)

μ(k)
. (8)

This measure is averaged across all rows and columns in
the image, resulting in an overall spatial continuity variation
feature.

D. Statistical Modeling

At the heart of our approach is the NSS framework,
where NSS models obtained from collections of natural
images are essential in establishing the base reference to
assess the naturalness and quality of the images being tested.
Figures 5(a), 6(a), and 7(a) show the histograms of
e f , el and es features, respectively, obtained from
1000 high-quality original HR natural images. In addition,
in Figures 5(b)-(i), 6(b)-(i), and 7(b)-(i), we show the
corresponding histograms of interpolated HR images of
scaling factor 2 generated using 8 interpolation approaches,
which include bilinear, bicubic, nearest neighbor, NEDI [11],
directional filtering and data fusion (DFDF) [6], adaptive
autoregression and soft-decision estimation (ARSD) [5],
nonlocal autoregressive modeling (NARM) [4], and iterative
curvature-based interpolation (ICBI) [7] algorithms. It can
be observed that for high quality natural HR images, the
histograms of all three features are concentrated near zero but
do not peak exactly at zero. By contrast, different interpolation
methods introduce different types and levels of changes in
e f , el and es features. As a result, the statistics of these
features deviate from those of natural images. For examples,
interpolation algorithms that tend to create overly smooth
images (such as bilinear interpolation, bicubic interpolation,
NEDI and DFDF) significantly expand the dynamic ranges

Fig. 6. Histograms of el feature obtained from 1000 (a) HR natural images,
and interpolated images using (b) bilinear, (c) bicubic, (d) nearest neighbor,
(e) NEDI [3], (f) (DFDF) [6], (g) ARSD [5], (h) NARM [4] and (i) ICBI [7]
algorithms.

Fig. 7. Histograms of es feature obtained from 1000 (a) HR natural images,
and interpolated images using (b) bilinear, (c) bicubic, (d) nearest neighbor,
(e) NEDI [3], (f) (DFDF) [6], (g) ARSD [5], (h) NARM [4] and (i) ICBI [7]
algorithms.

of the e f feature. On the other hand, the nearest neighbor
method repeats the originally LR pixel values to create
HR images, resulting in large peaks at zero in e f and es

features. The edge directed NEDI method significantly affects
spatial continuity statistics, whereas the bicubic or bilinear
interpolation methods may strengthen spatial continuity. It is
also interesting to observe that the feature histograms created
by the most advanced algorithms such as ICBI exhibit the
closest statistics to those of the natural images. All the above
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Fig. 8. Histograms of (a) ln e f , (b) ln el and (c) ln es features for α = 2 drawn from original high-quality HR natural images, along with their corresponding
Gaussian fitting functions.

TABLE I

FITTING PARAMETERS OF STATISTICAL MODELS

observations are intuitively sensible and demonstrate the
potential usefulness of the proposed features, but in order
to convert them to a quantitative image quality/distortion
measure, we first need to build probability density models of
these features.

All three features are non-negative by definition. In our
study, we find it useful to observe them in the logarithm
domain. Figures 8(a), 8(b) and 8(c), respectively, show the
histograms of ln e f , ln el and ln es features for α = 2 drawn
from high-quality HR natural images. It is interesting to
observe that all three histograms can be well fitted using
Gaussian functions, which are also shown in the corresponding
figures. This allows us to model the probability density of these
features using simple models. In particular, for e f feature,
we have

pe f (e f ) = 1

Z f
exp

⎡
⎣−

(
ln e f − μ f√

2σ f

)2
⎤
⎦, (9)

where Z f is a constant normalization factor that ensures the
density model integrate to 1. μ f and σ f are the logarithm
domain mean and standard deviation parameters, respectively,
for which the optimal values are obtained by maximal likeli-
hood estimation. We found that the same probability density
model provides good fittings to the feature histograms drawn
from high-quality HR natural images, regardless of the values
of α, though the optimal model parameters may change
with α. By computing the optimal parameters for different
α values between 2 and 8, we find empirical models that well
summarize the optimal parameters, μ f and σ f , as functions
of α. The empirical models are given in Table I.

Similarly, for el feature, we obtain the following model for
high-quality HR natural images

pel (el) = 1

Zl
exp

[
−

(
ln el − μl√

2σl

)2
]
, (10)

where Zl is a normalization factor and the maximal likelihood
estimations of the model parameters μl and σl are provided
in Table I.

For es feature, the model for high-quality HR natural images
is given by

pes (es) = 1

Zs
exp

[
−

(
ln es − μs√

2σs

)2
]
, (11)

where Zs is a normalization factor, and the maximum
likelihood estimations of the model parameters μs and σs are
summarized in Table I. Note that all the parameters introduced
so far are purely determined by statistics of high-quality
natural images only, without involving distorted images or
human interference.

E. Quality Assessment Model

We use the pe f , pel and pes models built upon statistics
of natural images in Section II-D as the basis to assess the
naturalness of test images. A high-quality natural image is
expected to have larger values of pe f , pel and pes than
distorted unnatural images. Assuming statistical independence
between e f , el and es features, one can define a naturalness
measure based on a joint probability model:

pn = 1

K
pe f (e f )pel (el)pes (es), (12)

where a normalization factor K = 1/(Z f Zl Zs) is added such
that the value of pn is upper-bounded by 1. In information
theory, self-information or “surprisal” is often employed as
a measure of the information content associated with the
outcome of a random variable. We adopt this approach and
convert the probability-based measure in Eq. (12) into an
interpolated natural image distortion (IND) measure given by

IND = − ln pn. (13)

Plugging Eq. (9), Eq. (10), Eq. (11) and Eq. (12) into Eq. (13),
we have

IND = − ln (Z f pe f (e f )) − ln (Zl pel (el)) − ln (Zs pes (es))

=
(

ln e f − μ f√
2σ f

)2

+
(

ln el − μl√
2σl

)2

+
(

ln es − μs√
2σs

)2

≡ D f + Dl + Ds , (14)
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where we define the first term, denoted by D f , as the distortion
of frequency energy falloff feature, the second term, denoted
by Dl , as the distortion of dominant orientation statistical
feature, and the third term, denoted by Ds , as the distortion
of spatial continuity feature.

Although IND provides a simple and parameter-free
(no training using distorted images or subjective testing data
is involved) measure about the statistical unnaturalness of the
test images, it lacks the flexibility to account for the variations
in perceptual annoyance to different types of distortions.
A natural extension of this approach is to assign different
importance to different distortion features by linearly weight-
ing the three distortion components. This results in a weighted
IND measure (WIND) given by

WIND = w f D f + wl Dl + ws Ds , (15)

Without loss of generality, we fix wl = 1, and the remaining
weighting parameters w f and ws are determined based on
subjective evaluation, and the details are given in Section III.

III. VALIDATION

To validate the proposed quality model, we built a database
of interpolated images and carried out subjective quality
assessment experiments. The database contains thirteen high-
quality natural HR source images, representing different types
of structural content, including indoor and outdoor scenes,
humans, animals, natural scenes, and man-made architectures.
None of the images used to build the NSS models in Section II
is selected in this subjective test database. All source images
have a size of 512 × 512. By directly downsampling the
images by factors of 2, 4 and 8, we created 39 LR images
with sizes of 256 × 256, 128 × 128 and 64 × 64, respectively.
For each downsampled image, eight interpolation algorithms
were employed to create interpolated HR images by scaling
factors of 2, 4 and 8, respectively. The interpolation
algorithms include classical and widely used bilinear, bicubic
and nearest neighboor interpolation methods, as well as
state-of-the-art algorithms such as NEDI [3], DFDF [6],
ARSD [5], NARM [4], and ICBI [7]. Most of them interpolate
an image by a scaling factor of 2, and were iteratively
applied 2 and 3 times to achieve scaling factors of 4 and 8,
respectively. Eventually, a total of 312 interpolated HR images
were created, which are divided into 3 scaling factor levels and
totally 39 image sets, each with 8 interpolated HR images.

Thirty subjects, including 17 males and 13 females, aged
between 20 and 30, participated in the experiments. The
subjects were either naïve or only have general knowledge
about image processing, but no prior knowledge about the
specific research work being carried out for this study.
An HP ZR30w 30-inch monitor was used for the subjective test
and the display spatial resolution is 2560 × 1600. This allows
us to display a full set (out of the 39 sets) of 8 interpolated
images, together with the original source HR image and the
LR image, on the same screen. The viewing distance is
adjusted to be approximately 32 pixels per degree of visual
angle. A brief introduction and training session is conducted
before the test. For each of the 39 image sets, the subjects

were asked to use the source HR image and the LR image
as references, and score each of the 8 interpolated images
shown on the screen with a quality scale between 1 and 10.
After the subjective test, a statistical analysis was performed
and one subject was identified to be an outlier and the corre-
sponding scores were removed. The remaining 29 subjective
scores for each image were averaged to a mean opinion
score (MOS). It is worth noting that we are using an absolute
scale rating approach in the experiment, as opposed to paired
comparison or direct ranking approach. We find that for this
particular experiment, this approach gives more reliable results
as compared to paired comparison method (which is slow and
may cause transition problems) or direct ranking approach
(which often leads to large variations between subjective
rankings when the quality of two or more images are close).

In the subsequent analysis, we treat the MOS value obtained
for each image as the “ground truth”, which is used to compare
against any other quality prediction method. Spearman’s rank-
order correlation (SRCC) and Pearson’s linear correlation
coefficient (PLCC) after a monotonic non-linear mapping
are calculated to quantify the level of agreement between
MOS and the quality prediction method being tested. Both
evaluation criteria are upper-bounded by 1, which corresponds
to perfect agreement, and higher values represent higher levels
of agreement.

Before applying the SRCC and PLCC tests to assess
objective quality models, we first evaluate how an average
subject would perform in such tests. This is done by computing
the SRCC and PLCC values between MOSs and the scores
given by any particular individual subject. When this is done
for all 29 subjects, we calculate the mean and standard devia-
tion of the SRCC and PLCC values across all subjects. These
average subject performance measures give useful baseline
reference points on how an objective model behaves relative
to a typical human subject. The average subject performance
in terms of SRCC and PLCC is provided in Tables II, III
for different scaling factors. In general, an average subject’s
SRCC and PLCC values are only moderately correlated with
MOSs and are typically between the range of 0.5 and 0.8. This
suggests that although subjects generally agree with each other
on the quality of interpolated images, there exist significant
variations between subject opinions. In the case of scaling
factor 2, most interpolation algorithms perform quite well,
making it difficult for the subjects to differentiate the relative
quality of the interpolated images. This is reflected in the
relatively low mean and high std of SRCC and PLCC values.
With the increase of the scaling factor, the differences
between the interpolation algorithms can be more easily
discerned, making it a relatively easier task for the subjects.
This leads to improved agreement between subjects, reflected
by higher mean SRCC and PLCC values (Tables II and III).

One interesting observation is that the performance of an
average human subject improves with the increase of the
interpolation scale factor while an opposite pattern is observed
for the purposed objective method. One possible theory that
may be useful to provide an explanation is as follows. In the
field of computational neuroscience, it has been widely
hypothesized that the visual system is highly adapted to
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TABLE II

SRCC EVALUATION ON INTERPOLATED IMAGES WITH DIFFERENT SCALING FACTORS

optimally encode the information in the natural scenes [21].
In other words, prior models about what a natural scene
should look like have already been built in the visual system.
When evaluating the quality of an image, one makes use of
two general cues. The first is signal fidelity, for which one
can compare the distorted image with what is known about
the reference image (in the case of image interpolation, the
LR image provides a reduced reference). The second is about
naturalness, for which one has to refer to the built-in prior
models of natural scenes to judge the quality of the test image.

When the interpolation scale factor is small, there is relatively
more information about the reference image, and with an
increasing scale factor, such information becomes less. This
explains why the performance of the objective quality models
like ours degrade. By contrast, the visual system has much
stronger prior knowledge about statistical naturalness, and is
thus able to make better judgement at higher scale factors.

Determining the optimal weighting parameters w f and ws

in Eq. (15) based on subjective data is a straightforward
linear regression problem. In addition to finding the
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TABLE III

PLCC EVALUATION ON INTERPOLATED IMAGES WITH DIFFERENT SCALING FACTORS

optimal parameters, we also perform cross-validations to test
the robustness of the process [34]. In particular, for each
scaling factor, we randomly divide all images to a training
group and a testing group. The weight parameters w f and ws

are obtained by linear regression using the training group and
are then tested using the testing group. Since the images from
the same image set (out of 13 sets) are generated from the
same source image, assigning these images to both training
and testing groups violates the independence between them.
Thus we divide the images based on image sets. As such,

a leave-1-out method will use 12 image sets for training
and 1 for testing, and a 7-6 split method uses 7 image sets
for training and 6 for testing. In each case, the training
and testing process is repeated multiple times, each with a
different random split between training and testing groups.
A comparison between leave-1-out and 7-6 split approaches
are shown in Table IV, where we observe that the
7-6 split method performs slightly worse, which may
be due to its limited coverage of image content in the
training group. Therefore, we use leave-1-out method
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TABLE IV

COMPARISON OF CROSS VALIDATIONS USING LEAVE-1-OUT

AND 7-6 SPLIT IN WIND

TABLE V

WEIGHTING FACTORS w f AND ws , ALONG WITH SRCC AND PLCC

PERFORMANCE, OBTAINED FROM LEAVE-ONE-OUT TEST FOR

DIFFERENT SCALING FACTOR α

to decide on the parameters in our WIND algorithm.
Specifically, for each scaling factor, the leave-1-out process
is repeated 13 times, each with a different set for testing.
The mean and std of the w f and ws values obtained
for scaling factors 2, 4 and 8 are given in Table V,
together with the corresponding mean SRCC and PLCC
performance test results over 13 trails. It appears that the
weights obtained in all 13 trails are fairly close to each other,
with low std values. In addition, the mean SRCC and PLCC
results of the 13 leave-1-out trials are also close to those
obtained using a fixed set of the average weighting parameters
applied to all 13 image sets (which are shown in the WIND
performance in the last rows in Tables II-III). All these suggest
that the weights obtained through this procedure is robust.
The mean w f and ws values for each scaling factor α given
in Table V are the final values in all the subsequent tests.

In Table V, we also observe that with the increase of
the scaling factor, the impact of frequency energy falloff
and dominant orientation statistics increases (as compared to
spatial continuity statistics). This is not surprising because
with larger scaling factor, it becomes more difficult for an
interpolation algorithm to maintain the original energy distri-
butions at high frequencies as well as the orientations in local
image structures. These are also the major factors that affect
the perceptual quality of the interpolated images.

Table V provides the weighting parameters for scaling
factors of 2, 4 and 8 only. A natural way to extend the
weight selection approach at other integer scaling factors is
to interpolate along the scaling factor axis, and we found the
following functions are useful for this purpose:

w f = 0.0002α4.43 + 1.16, (16)

ws = 0.008α1.7 + 0.06, (17)

To the best of our knowledge, no other objective
IQA method is directly applicable to the scenario we are
interested in (where an LR image is used as a reference to

assess the quality of an HR image). Therefore, in addition
to comparing the proposed IND and WIND measures with
an average human subject (as described earlier), we compare
them with well-known FR-IQA measures, including PSNR
and SSIM [16]. We have also included state-of-the-art
NR-IQA methods NIQE [35], BIQI [36], DIVIINE [37],
BLIINDS-II [38] and BRISQUE [24] in the comparison,
which have shown promising performance when tested using
a number of public image databases, but has never been tested
on interpolated images. Note that the FR methods are included
here as reference models only. They are not applicable in
real applications because the perfect-quality original reference
HR image is not available.

To evaluate the performance of different IQA measures, one
could compute the SRCC and PLCC correlations of objective
measures against MOS for all interpolated images and all
scaling factors. However, such results could be misleading,
because the most crucial job in real applications is to
differentiate different interpolation methods for the same
source image at the same scale factor. Therefore, a more
relevant analysis approach is to validate the performance of
different IQA methods on a set of images interpolated from
the same source at the same scale factor. This approach is also
fully consistent with how our subjective study was designed.

The performance evaluation results are summarized in
Tables II and III for the cases of scaling factors 2, 4 and 8.
It can be observed that for almost all image sets, the
SRCC and PLCC values of the proposed IND and WIND
measures are well within the range of ±1 standard devia-
tion from the SRCC and PLCC values of average human
subjects. This indicates that the proposed methods behave
quite similarly to an average subject. Unsurprisingly, between
IND and WIND, WIND performs consistently better and often
outperforms an average human subject. The FR SSIM and
PSNR methods are general-purpose approaches without any
prior knowledge or specific considerations of image interpola-
tion application, thus they only achieve moderate correlations
with subjective evaluations and are inferior to the proposed
methods, which use novel features particularly designed to
capture distortions in interpolated images. Moreover, none of
the existing NR models exhibits competitive performance.

IV. APPLICATION: PARAMETER TUNING IN

INTERPOLATION ALGORITHMS

The application domain of objective IQA measures is
beyond comparing interpolated images and selecting the
best interpolation algorithms. Many interpolation algorithms
contain one or more parameters. Different selections of these
parameters may result in interpolated HR images with very
different perceptual quality, and the optimal parameters are
often image-dependant. Without human interference, it is a
challenging task to choose these parameters. An objective
quality measure provides a useful tool to pick these
parameters automatically. To demonstrate this, here we use
the ICBI algorithm [7] as an example.

The ICBI method is a state-of-the-art “edge-directed”
interpolation algorithms that upscale the image by keeping
the original pixels in an enlarged grid and then estimate the
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Fig. 9. ICBI [7] interpolated images over a wide range of wc and we selections. Darker shade indicates lower WIND value or higher image quality.

missing pixels. The estimation is done using weighted
averaging of neighboring pixels where the weights are deter-
mined based on local edge analysis. The ICBI algorithm uses
some initial values for missing pixels, and then tries to define
an energy term for each interpolated pixel. The ultimate goal
is to minimize the energy term by small changes in the
second order derivatives. In [7], the energy term is a weighted
sum of three components: curvature continuity Uc, curvature
enhancement Ue and isophote smoothing Ui . The energy of
each interpolated pixel at (i, j) is given by

U(i, j) = wcUc(i, j) + weUe(i, j) + wiUi (i, j), (18)

According to [7], the Uc term is effective in removing
artifacts but creates blurry images while the Ue term helps
produce sharper edges. As a result, the relative values between

wc and we determines a tradeoff between edge sharpness and
artifacts removal. It was found that the Ui component adds
only a slight improvement to perceived image quality and
thus wi has relatively little influence on the performance of
ICBI [7].

Since the perceptual quality of the interpolated image varies
significantly with wc and we, these parameters are typically
chosen with try and error [7]. To visualize this, in Fig. 9,
we plot the WIND measure as a 2D function of wc and
we for a test image interpolated by ICBI at scaling factor
4, where darker shade in the plot indicates a lower value of
WIND or higher quality of the interpolated image. Sample
interpolated images corresponding to different options of
(wc, we) values are also given. It is worth noting that the visual
quality as a function of (wc, we) is not smooth everywhere.
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Indeed, it could be quite sensitive, such that in certain areas
in the parameter space, small changes could lead to dramatic
variations in perceived quality of the interpolated images,
making it difficult to manually decide on the right parameters
to use. Careful inspections and comparisons of the interpolated
images as well as their corresponding WIND values suggest
that WIND is a good perceptual quality indicator and pro-
vides a useful tool to automatically choose the best values
of (wc, we).

V. CONCLUSION AND FUTURE WORK

We propose an NSS-based objective model to automatically
assess the quality of interpolated natural HR images using
LR images as references. Three statistical features are
employed in the proposed approach, including sub-image
frequency energy falloff statistics, sub-image local dominant
orientation statistics and spatial continuity statistics. Statistical
models are established based on high-quality natural
HR images. The departures from such statistics are measured
as the key indicators of perceptual unnaturalness, which is
assumed to be closely related to perceived image quality.
We build an image database of interpolated natural images
and carried out subjective tests. Our experiments show
that the proposed quality measure agrees well with the
mean subjective opinions of interpolated image quality and
often outperforms an average human subject. Furthermore,
we demonstrate the extended potential applications of the
proposed measure by applying it to automatic parameter
tuning of state-of-the-art ICBI interpolation algorithm.

As one of the first attempts on a new research topic,
our model has several limitations that should be improved
in the future. First, the current method is applicable to the
case of interpolations by integer factors only. In practice,
users may resize an image by a fractional factor. Not all the
statistical features used here can be directly applied and more
feature extraction and statistical modeling work is necessary.
Second, currently it is assumed that the three NSS features
are independent to each other, which simplifies the model and
produces promising results. In the future, how these features
are related and how to optimally combine these features may
be further exploited. Third, since the current models are built
upon natural scene statistics, it may not properly generalize
to the case of graphical images. Discovering new meaningful
features for these images is a topic worth further investigating.
Finally, many recent image super-resolution algorithms take
one or multiple LR images as the input to create HR images,
where the positions of the LR image pixels may be shifted by
fractional factors from the integer pixel grid. This poses new
challenges to IQA research and opens up new space for future
exploration.
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