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Abstract— A common approach to high dynamic range (HDR)
imaging is to capture multiple images of different exposures
followed by multi-exposure image fusion (MEF) in either
radiance or intensity domain. A predominant problem of this
approach is the introduction of the ghosting artifacts in dynamic
scenes with camera and object motion. While many MEF
methods (often referred to as deghosting algorithms) have been
proposed for reduced ghosting artifacts and improved visual
quality, little work has been dedicated to perceptual evaluation
of their deghosting results. Here we first construct a database
that contains 20 multi-exposure sequences of dynamic scenes
and their corresponding fused images by nine MEF algorithms.
We then carry out a subjective experiment to evaluate fused
image quality, and find that none of existing objective quality
models for MEF provides accurate quality predictions. Motivated
by this, we develop an objective quality model for MEF of
dynamic scenes. Specifically, we divide the test image into static
and dynamic regions, measure structural similarity between
the image and the corresponding sequence in the two regions
separately, and combine quality measurements of the two regions
into an overall quality score. Experimental results show that the
proposed method significantly outperforms the state-of-the-art.
In addition, we demonstrate the promise of the proposed model
in parameter tuning of MEF methods. The subjective database
and the MATLAB code of the proposed model are made publicly
available at https://github.com/h4nwei/MEF-SSIMd.

Index Terms— High dynamic range imaging, multi-exposure
image fusion, ghosting, image quality assessment, structural
similarity.

I. INTRODUCTION

ONE of the major bottlenecks of current sensors and
displays lies in their limited dynamic range [1], which

are unable to reproduce the full luminance levels of many
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Fig. 1. Ghosting artifacts due to object motion. (a) Source image sequence
by courtesy of Fabrizio Pece. (b) Pece10 [10]. (c) SPD-MEF [11].

realistic natural scenes. During the past decade, various high
dynamic range (HDR) imaging techniques have been devel-
oped to steadily improve the dynamic range of sensors.
A common theme in computational HDR imaging is to capture
multiple pictures of the same scene at different exposure levels,
followed by multi-exposure image fusion (MEF) in either radi-
ance or intensity domain. If the fusion is performed in radiance
domain (i.e., HDR reconstruction), tone mapping operators
are necessary to display the reconstructed HDR images on
devices with a low dynamic range (LDR). If the fusion
is performed in intensity domain after applying a camera
response function (CRF), a visually appealing LDR image with
abundant details may be directly produced, ready for display.

The main technical impediments to most MEF algorithms
are dynamic scenes, which contain moving objects. A small
misalignment between two exposures would easily result in the
ghosting artifacts during fusion (see Fig. 1). In recent years,
extensive effort has been put on developing MEF methods
for dynamic scenes (i.e., the deghosting algorithms) [2], [3].
In contrast, only limited work has been done to evaluate
the visual quality of deghosting results. Early subjective
experiments [4], [5] only involved a small set of dynamic
scenes and a limited nubmer of MEF algorithms, whose
results become less relevant with many new algorithms being
proposed recently. For objective quality assessment, Ma et al.
developed the MEF-SSIM index [6] for MEF of static scenes,
which has been successfully applied to perceptual optimization
of MEF algorithms [7], [8]. Tursun et al. [9] proposed one of
the first quality models for MEF of dynamic scenes, which,
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however, requires the camera parameters as input, limiting its
practical applications.

Motivated by the lack of perceptual quality assessment for
MEF of dynamic scenes, we first establish a database that
contains 20 multi-exposure sequences of dynamic scenes,
together with 180 fused images generated by nine state-of-the-
art MEF algorithms. A subjective experiment is carried out
using two-alternative forced choice (2AFC), where a consid-
erable consensus among subjects is observed. Inspired by the
philosophy behind MEF-SSIM [6], we describe an objective
quality model to account for dynamic scenes with emphasis on
quantifying the ghosting artifacts, leading to the MEF-SSIMd

index. Specifically, we divide the test image into static
and dynamic regions, measure structural similarity (SSIM)
between the image and the corresponding sequence in the
two regions separately, and average quality measurements
of the two regions to obtain an overall quality score.
Experimental results show that the proposed MEF-SSIMd

significantly outperforms state-of-the-art quality models for
MEF. In addition, we demonstrate that MEF-SSIMd is useful
in guiding the parameter tuning of MEF methods, resulting
in fused images with reduced ghosting artifacts and improved
visual quality.

II. RELATED WORK

In this section, we provide a review of recent MEF methods
for dynamic scenes in both radiance and intensity domains.
Subjective and objective quality assessment for MEF is also
shortly discussed.

A. MEF Methods for Dynamic Scenes

HDR reconstruction algorithms perform MEF in radiance
domain, where the value is linear with respect to the exposure
time. Eden et al. [3] stitched multiple images at varying
orientations and exposures by selecting proper luminance
values to construct the HDR image. Gallo et al. [12] made use
of reference patches to detect inconsistent motion, and fused
consistent patches in gradient domain to reduce boundary
artifacts. Sen et al. [2] and Simakov et al. [13] adopted a
bidirectional similarity measure for HDR reconstruction in an
energy minimization framework. Lee et al. [14] cast HDR
reconstruction as a rank minimization problem, and estimated
a binary ghost indication matrix with sparsity and connectivity
constraints. A similar rank minimization method was proposed
in [15], where humans were involved to help detect moving
objects. Kalantari and Ramamoorthi [16] applied optical flow
techniques to align the input sequence, and then fed it
into a convolutional neural network for HDR reconstruction.
Wu et al. [17] described an end-to-end solution to HDR recon-
struction and tone mapping based on deep neural networks.

Several other MEF methods for dynamic scenes work
in intensity domain after applying CRFs. Median threshold
bitmap [18] for image alignment was adopted in [10] to
detect motion and to select the best exposure for fusion.
Li and Kang [19] used a median filter to remove moving
objects. Hu et al. [20] performed motion estimation for for-
ward warping, and filled holes in the warped sequence due to

erroneous and incomplete matches. Qin et al. [21] performed
a more flexible motion estimation, where patches can be
rotated or scaled for better searching. The intensity mapping
function (IMF) [22] has also been used to reduce ghosting
artifacts. Li et al. [23] used a bidirectional normalization-based
method to detect motion-inconsistent pixels, and applied IMF
to correct them. Ma et al. [11] proposed a structural patch
decomposition for MEF, and combined it with IMF to reject
inconsistent motion.

B. Quality Assessment of MEF Methods

Although many MEF algorithms for dynamic scenes
have been proposed, research in perceptual quality assess-
ment of multi-exposure fused images is quite limited.
Srikantha and Sidibé [4] summarized 17 deghosting meth-
ods proposed before 2011, and compared them qualitatively.
Hadziabdic et al. [24] conducted a subjective test to evaluate
four deghosting algorithms on nine natural scenes. A larger
database of 36 dynamic scenes was built recently [25] with
subjective data collected from image processing experts.
Tursun et al. [5] built a separate dataset consisting of ten
dynamic scenes with seven deghosting algorithms, and carried
out a subjective user study based on the 2AFC method.

Liu et al. [26] conducted an excellent review of objective
quality models for general-purpose image fusion. Here
we only review closely related studies that are used for
comparison in Section V. Cvejic et al. [27] adopted Tsallis
entropy to quantify the perceived quality of fused images,
while Hossny et al. [28] made use of mutual information.
Xydeas and Petrovic [29] explored edge strength and
orientation preservation in fused images. Wang and Liu [30]
measured edge preservation in wavelet domain at two
scales. Zheng et al. [31] computed spatial frequency errors
based on gradient information along four orientations.
Inspired by the SSIM index [32], Piella and Heijmans [33]
found a way to measure structural similarity between the
input sequence and fused image. Chen and Varshney [34]
applied the human perception theory in image fusion quality
assessment. It has been experimentally verified that the above
general-purpose quality models may not work well for the
specific MEF application [35]. Ma et al. [6] built the first
MEF database of static scenes, and developed the objective
MEF-SSIM model by decomposing an image patch into
three components: signal strength, signal structure and mean
intensity. Tursun et al. [9] proposed an objective quality
model for MEF of dynamic scenes, which produces three
quality maps to localize ghosting, gradient inconsistency
and visual difference artifacts respectively. The requirement
of knowing the camera settings (i.e., exposure time, ISO,
f-number, and CRF) limits the applicability of the model to
real-world scenarios, where only the fused image and the
corresponding LDR sequence are available.

III. SUBJECTIVE QUALITY ASSESSMENT

FOR MEF OF DYNAMIC SCENES

In this section, we detail the construction of our MEF
database of dynamic scenes. We then describe our subjective
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Fig. 2. Multi-exposure sequences of dynamic scenes used in the subjective
experiment. Each sequence is represented by the best-quality fused image. All
images are resized for neat display.

experiment and data analysis, resulting in a number of useful
observations [36].

A. MEF Database of Dynamic Scenes

We collect 20 multi-exposure sequences of dynamic natural
scenes, including indoor and outdoor environments, rigid and
deformable structures, clean and noisy regions, and small and
large object motion patterns (see Fig. 2). Each sequence con-
tains at least three images representing under-exposure, over-
exposure, and in-between captures. We do not consider camera
motion in our experiment, as it is usually small and uniform in
practice, and can be well handled by setting a tripod or using
image registration algorithms [18], [37]. In other words, all
sequences in the database are perfectly aligned.

We select nine state-of-the-art MEF algorithms for
dynamic scenes to generate fused images, including
Pece10 [10], Sen12 [2], Li12 [19], Hu13 [20], Lee14 [14],
Li14 [23], Photomatix [38], Qin15 [21], and SPD-MEF [11].
These methods are chosen to represent a variety of design
philosophies, including pixel-based and patch-based methods,
fusion in radiance domain followed by tone mapping and
fusion in intensity domain directly, and SSIM based and
low-rank based algorithms. The deghosting results are either
generated by the original authors or using the publicly
available implementations with default settings. Specifically,
for algorithms that perform MEF in radiance domain (i.e.,
HDR reconstruction), the Debevec and Malik’s approach [39]
is used to recover the CRF (including gamma correction) and
generate radiance sequences. Lee14 [14] adopts the MATLAB
function tonemap() to obtain LDR images. Sen12, Pece10,
and Hu13 fuse aligned LDR sequences using Mertens09 [40].
Photomatix is a commercial HDR software. Eventually,
180 fused images are produced with samples shown in Fig. 3.

B. Subjective Experiment

The subjective experiment is setup in a normal indoor
environment. The display is a true-color LCD monitor at

Fig. 3. Samples fused images from nine MEF algorithms in the subjective
experiment. (a) Li12 [19]. (b) Photomatix [38]. (c) Qin15 [21]. (d) Lee14 [14].
(e) Sen12 [2]. (f) Pece10 [10]. (g) Hu13 [20]. (h) Li14 [23].
(i) SPD-MEF [11].

a resolution of 1920 × 1080 pixels, and is calibrated in
accordance with the ITU-T BT.500 recommendations [41].
The luminance of the background behind the monitor is about
20 cd/m2. The ambient illumination does not directly reflect
off the display.

We collect human opinions using the 2AFC method, where
participants are shown two fused images along with three
input exposures, and are asked to choose the one of higher
visual quality (see Fig. 4). We invite 60 subjects (40 males
and 20 females) with normal or corrected-to-normal visual
acuity, aged from 18 to 40, to participate in the experiment.
They have no previous experience in image quality assess-
ment. The experiment starts with a training session using ten
image pairs independent of the test session. The subjects are
instructed to focus on visual artifacts and structural informa-
tion preservation, and are allowed to move their positions
to get closer or further away from the screen for better
view experience. In the test session, a complete experiment
includes 20 × (9

2

) = 720 paired comparisons. To reduce
the fatigue effect, we divide the experiment into three sub-
sessions, in which participants are able to compare 240 image
pairs within 30 minutes. Each subject takes part in one sub-
session, and each image pair is ranked exactly 20 times.

C. Subjective Data Analysis

The resulting subjective data is a preference tensor C with
C(i, j, k) representing the number of times the fused image
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TABLE I

PREFERENCE MATRIX ACCUMULATED ACROSS 20 NATURAL SCENES

Fig. 4. User interface in the subjective experiment.

generated by i -th algorithm is preferred over that of the j -th
algorithm on the k-th natural scene. The diagonals of C in the
first two dimensions are zeros, excluding self comparison. We
apply the least squares method to aggregate pairwise rankings
under the Bradley-Terry model [42]. The Gumbel random
variable is assumed for the visual quality of each fused image,
whose difference is a logistic random variable. Therefore,
P(i ≥ j |k) can be calculated from the logistic cumulative
distribution function and has a closed-form solution [43]

P(i ≥ j |k) = exp(µ(i, k)/s)

exp(µ(i, k)/s) + exp(µ( j, k)/s)
, (1)

which can be estimated by the empirical count proportion
C(i, j,k)

C(i, j,k)+C( j,i,k) . µ(i, k) represents the location parameter to be
estimated using least squares, namely the mean opinion score
(MOS) of the fused image generated by the i -th algorithm
on the k-th scene. s =

√
3

π is the scale parameter set to
match the Thurstone’s Case V model. We also try to aggregate
pairwise ranking information in C under the Thurstone model
(assuming Gaussian for the quality of each fused image) and
obtain very similar results, as evidenced by a mean Spearman’s
rank-order correlation coefficient (SRCC) of 0.998 across
different scenes.

We randomly choose three subjects from three different sub-
sections to form a subject group, and evaluate its performance
by computing SRCC between the global rankings from each
group and the MOSs. The mean and standard deviation (std)
results are depicted in Fig. 5, where we find that individual
subject groups achieve considerable agreement with each

Fig. 5. SRCC between the global rankings of individual subject groups and
the MOSs. Rightmost column: performance of the mean subject group.

other. The performance of the “mean subject group” (averaged
across all subject groups) is also given in the rightmost
column.

D. Performance of MEF Algorithms for Dynamic Scenes

We first conduct pairwise comparison of MEF algorithms
by summing the preference tensor C over the third dimension,
resulting in an accumulated preference matrix P (see Table I).
A larger P(i, j) − P( j, i) indicates that the i -th algorithm
produces better-quality fused images than the j -th algorithm.
We also aggregate the pairwise comparisons into global
ranking results as shown in Fig. 6, from which we have several
useful observations. First, SPD-MEF [11] performs the best
on average, whose success may be attributed to the exposure-
invariant features and IMF for robust motion estimation.
Second, patch-based methods such as SPD-MEF [11],
Hu13 [20] and Sen12 [2] generally perform better than
pixel-based algorithms such as Pece10 [10], Li12 [19] and
Lee14 [14]. This is not surprising because patch-based algo-
rithms take neighbouring information into account, leading to
more robust motion alignment. As the second best algorithm,
the pixel-based Li14 [23] also considers neighbouring pixels
in extreme cases to refine the motion rejection process. Third,
the low-rank based method, Lee14 [14] is subpar in our test
largely due to the failure of preventing ghosting artifacts,
especially on sequences with small object motion. Low-rank
based schemes assume that the static background dominates
the scene and therefore large foreground motion can be
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Fig. 6. Global ranking results of MEF algorithms for dynamic scenes under
two statistical models.

sparsely coded. However, this is not the case for small and
random motion, which occurs frequently in realistic natural
scenes. Other methods (e.g., Pece10 [10] and Li12 [19]) that
rely on the static background assumption do not perform
well either. Fourth, we find several types of distortions that
may strongly affect human judgments of perceptual quality.
For example, in certain extreme cases, the ghosting artifacts
cannot be avoided when the moving objects are under-/over-
exposed, whose structures cannot be properly retrieved from
other exposures. This turns out to be the main challenge of
the current MEF algorithms for dynamic scenes. Besides, halo
artifacts near strong object boundaries would likely appear
if the dynamic range difference between the foreground and
background is large. Color speckle noise may arise in fused
images due to inaccurate CRF estimation. Blurring artifacts
may emerge if there are small errors in motion estimation.

IV. OBJECTIVE QUALITY ASSESSMENT FOR

MEF OF DYNAMIC SCENES

In this section, we present in detail our objective quality
model - MEF-SSIMd for MEF of both static and dynamic
scenes. When the input natural scene is static, MEF-SSIMd

reduces gracefully to MEF-SSIM [6], which is verified to
be consistent with human perception of fused image quality.
Specifically, we first divide the test fused image into static and
dynamic regions, quantify the perceived quality of static and
dynamic regions separately, and combine the measurements to
obtain an overall quality score.

A. Region Segmentation

Before region segmentation, we need to make sure that
the input exposures are aligned for camera motion. Among
existing image registration algorithms, we employ a feature-
based method, which relies on SIFT [37] matching to estimate
an affine transformation with an l21-norm loss. It works well
for test sequences in our database. The l21-norm loss is robust

to mismatched points, and can be efficiently implemented
using an iteratively reweighted least squares method.

Our region segmentation approach starts by decomposing
an image patch into three conceptually independent compo-
nents [6]

xk = ‖xk − lk‖ · xk − lk

‖xk − lk‖ + lk

= ‖x̃k‖ · x̃k

‖x̃k‖ + lk

= ck · sk + lk, (2)

where ‖x̃k‖ denotes the l2-norm of a mean-removed patch
from the k-th exposure. ck , sk , and lk stand for contrast,
structure, and intensity of xk , respectively.

The mean-removed and contrast-normalized sk contains
ideal information for object motion detection in the test
sequence. Specifically, we compute the cross-correlation (i.e.,
the inner product) of two signal structures co-located in two
exposures

ρk,k′ = sT
k sk′ ≈ x̃T

k x̃k′ + ε

‖x̃k‖ ‖x̃k′ ‖ + ε
, (3)

where k, k ′ ∈ {1, · · · , K }, k �= k ′, and K is the number
of exposures in the sequence. ε is a small positive constant
to improve numerical stability of motion estimation against
sensor noise [11]. ρk,k′ lies in [−1, 1] with a smaller value
indicating less structural consistency between sk and sk′ .
By applying Eq. (3) across different spatial locations and
different distinctive pairs of exposures, we obtain

(K
2

)
struc-

tural consistency maps {Mk,k′ } (see Fig. 7, when K = 3).
We binarize Mk,k′ with a predefined threshold T

Bk,k′ (i) =
{

1 if Mk,k′ (i) ≥ T

0 if Mk,k′ (i) < T ,
(4)

where i is the spatial location index. We combine the binary
maps into one by

B =
⋂

Bk,k′ , (5)

where
⋂

is the AND operation, meaning that a region is
detected to be static if it is static in all {Bk,k′ } maps. An exam-
ple of B is shown in Fig. 7, where white represents static
regions and black represents dynamic regions.

B. Quality Assessment of Static Regions

For quality assessment of static regions, we make use of the
MEF-SSIM [6] index. Specifically, we first perform structural
patch decomposition on the input sequence using Eq. (2).
The contrast of a desired patch is determined by the highest
contrast among all co-located patches across exposures

ĉ = max
1≤k≤K

ck = max
1≤k≤K

‖x̃k‖ , (6)

assuming that higher contrast implies better visibility under
the realistic capture constraint. The structure of the desired
patch is computed by a weighted average of the input structure
vectors

ŝ = s̄
‖s̄‖ , where s̄ =

∑K
k=1 w (x̃k) sk∑K

k=1 w (x̃k)
, (7)
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Fig. 7. Demonstration of region segmentation. (a) Input multi-exposure sequence by courtesy of Fabrizio Pece. (b) Structural consistency maps using Eq. (3).
(c) Corresponding binary maps using Eq. (4). (d) Final binary map using Eq. (5).

and w(·) is an �p-norm weighting function with p adap-
tively determined based on a patch consistency measure [6].
In MEF-SSIM [6], the desired intensity is not computed due
to its low relevance to perceived quality.

Once ĉ and ŝ are determined, we combine them to obtain
the desired mean-removed patch

x̂ = ĉ · ŝ. (8)

A simplified version of the SSIM index [32] is used to assess
the local image quality between the desired patch x̂ and the
corresponding patch y for static regions

qs(x̂, y) = 2σx̂y + ε

σ 2
x̂ + σ 2

y + ε
, (9)

where σ 2
x̂ , σ 2

y , and σx̂y are the local variance of x̂ and y,
and the local covariance between x̂ and y, respectively. The
local quality scores are averaged to obtain an overall quality
measure of the static regions

qs = 1

N

N∑
i=1

qs(Ri X̂, Ri Y), (10)

where X̂ and Y stand for the desired image for reference
and the test fused image, respectively. N is the total number
of static patches. Ri is a binary matrix with the number of
columns equal the image dimension and the number of rows
equal to the patch size. It serves as an operator that extracts
the i -th local patch from the image.

C. Quality Assessment of Dynamic Regions

To achieve high accuracy in object motion detection, many
deghosting algorithms pick one exposure as the reference

motion to appear in the fused images [6], [12], [19]. However,
for quality assessment, it is difficult to know beforehand
whether the motion of the test fused image has a correspon-
dence in the sequence. Moreover, different deghosting algo-
rithms may have different strategies to select the ideal exposure
as the reference, which result in different motion appearances
in the fused images. To possibly match the motion in the
test image and to successfully detect the ghosting artifacts,
we exhaust all K exposures in the sequence, each of which is
used as the reference to generate a quality map, and the one
with the highest overall quality survives. Specifically, we select
the k-th exposure as the reference, and create (K − 1) latent
images with the help of IMF [22] by mapping the intensity
values of the reference image to the rest (K − 1) exposures.
This results in a pseudo static sequence that contains the same
motion in the reference exposure, and Eq. (10) can be directly
adopted to evaluate the perceptual quality

qs
k = 1

N

N∑
i=1

qs(Ri X̂k, Ri Y), (11)

where X̂k is the desired image generated by using the k-
th exposure as the reference. After sweeping all exposures,
we obtain K quality scores, over which we compute the
maximum as the final quality score of dynamic regions

qd = max
1�k�K

qs
k . (12)

Some examples of quality maps generated by MEF-SSIMd

are shown in Fig. 8, where higher brightness indicates
better quality. For static regions, we observe that the visual
appearance of the sky and buildings in (d) is slightly
unnatural, resulting in relatively low qs value. The static



FANG et al.: PERCEPTUAL EVALUATION FOR MEF OF DYNAMIC SCENES 1133

Fig. 8. Demonstration of quality maps generated by the proposed MEF-SSIMd . (a) Input multi-exposure sequence by courtesy of Zhengguo Li. (b) Binary
map for region segmentation. (c) Fused image by Pece10 [10]. (d) Fused image by Lee14 [14]. (e) Fused image by SPD-MEF [11]. (f) Quality map of (c)
with qs = 0.937, qd = 0.558, and q = 0.748. (g) Quality map of (d) with qs = 0.908, qd = 0.768, and q = 0.838. (h) Quality map of (e) with qs = 0.939,
qd = 0.829, and q = 0.884. Higher brightness in the quality map indicates better quality.

regions in (c) and (e) are visually similar, resulting in close
qs values. For dynamic regions, we observe that MEF-SSIMd

successfully captures the ghosting artifacts in (c), which are
strongly penalized. Although ghosting is significantly reduced
in (d), some structural details of the girl in red are not well
preserved compared to (e). All of these are clearly reflected
in the corresponding quality maps.

The overall quality score is obtained by simple averaging
the two quality measurements from static and dynamic regions

q = qs + qd

2
. (13)

We have tried other advanced pooling strategies, e.g., weight-
ing by distortion and information content [45], but obtain
similar performance.

V. EXPERIMENTS

In this section, we compare the performance of MEF-SSIMd

to a set of objective quality models for image fusion on
two databases, and verify that the performance improvements
are statistically significant using a recent statistical analysis
tool [46], [47].

A. Experimental Setup

We validate the proposed MEF-SSIMd on two databases -
the one described in Section III-A and the other introduced

in [25]. The latter consists of 36 multi-exposure sequences
of dynamic scenes, which is divided into four sets accord-
ing to different motion patterns. Six deghosting algorithms
are used to produce 216 HDR images. In order to gener-
ate the corresponding LDR images for quality evaluation,
we adopt the same tone mapping operator in [48]. We com-
pare MEF-SSIMd against nine objective models, including
Hossny08 [28], Cvejic06 [27], Wang04 [44], Xydeas00 [29],
Wang08 [30], Zheng07 [31], Piella03 [33], Chen07 [34],
and MEF-SSIM [6]. The implementation of MEF-SSIM is
obtained from the original authors, while others are based on
the implementations in [26] with respective parameters set by
default.

Most parameters of MEF-SSIMd are inherited from
MEF-SSIM [6]. These include a window size of 11 × 11, and
ε = (0.03L)2 in Eq. (3) and Eq. (9), where L = 255 represents
the dynamic range of intensity value for 8-bit images. The
threshold T for static and dynamic region segmentation in
Eq. (4) is set to 0.5.

B. Validation

We first use SRCC between MOSs and model predictions
as the quantitative measure, which lies in [0, 1] with a higher
value indicating better performance. The results for each
sequence in our database and for each set (consisting of nine
sequences) in [25] are listed in Tables II and III, respectively.
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TABLE II

SRCC RESULTS OF MEF-SSIMd AGAINST NINE EXISTING MODELS ON OUR DATABASE

TABLE III

SRCC RESULTS OF MEF-SSIMd AGAINST NINE EXISTING MODELS ON THE DATABASE INTRODUCED IN [25]

We find that the proposed MEF-SSIMd achieves the best per-
formance for most visual scenes in both databases, and is a sig-
nificant improvement over its baseline model MEF-SSIM [6].
Other objective models, mainly based on mutual informa-
tion [28], gradient magnitude [29], or SSIM [33] are not
effective at measuring structural preservation in static regions
and the ghosting artifacts in dynamic regions. Nevertheless,
nearly all models fail on the “Arch” and “Office” sequences,
whose object motion is large and discontinuous with extremely
under-/over-exposed regions in the background. This casts
grand challenges to region segmentation and subsequent qual-
ity assessment because little consistent information across
exposures can be gathered for quality evaluation of the fused
image. In addition, when comparing the performance of
MEF-SSIMd with that of the mean subject group (Fig. 5),
we find that there is still quite some room for further devel-
opment of better objective quality models.

We also adopt two recent quantitative measures [46], [47],
which are specifically designed for human data from 2AFC
experiments, to compare the performance of objective quality
models. The test image pairs are first classified into pairs with
and without significant differences according to subjective
preference judgments collected from different participants. For
all image pairs, the receiver operating characteristic (ROC)
curve can be drawn to illustrate the model capability to

discriminate between different and similar image pairs. For
the subset of image pairs that are of significant differences,
the better/worse ROC measures the model ability to determine
which image in a pair has better visual quality. The area
under curve (AUC) is applied to summarize the performance
of competing models, with a higher value indicating better
performance. The associated statistical significance can be
demonstrated using a hypothesis testing approach based on
t-statistics [49]. We show the different/similar and the bet-
ter/worse AUC results in Fig. 9 and Fig. 10, respectively,
which are computed with a 95% confidence interval. The
statistical significance results are also shown, where a black
square indicates that the row model is significantly worse than
the column model, and a white square means the opposite.
A gray square indicates that the row and column models are
statistically indistinguishable. From the results, we find that the
AUC performance improvement of MEF-SSIMd is statistically
significant for both different/similar ROC and better/worse
ROC analysis.

In addition, we analyze the sensitivity of MEF-SSIMd with
respect to T in Eq. (4), a critical parameter that segments
the image into static and dynamic regions. A large T would
misclassify some static regions as dynamic, whose quality
assessment depends on IMF and is prone to error. A small
T may fail in capturing the ghosting artifacts due to inac-
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Fig. 9. Different/similar ROC analysis. (a) AUC values of different quality models, which range from 0 to 1 with higher values indicating better performance.
(b) Statistical significance matrix based on t-statistic. A black square indicates that the row model is significantly worse than the column model, and a white
square means the opposite. A gray square indicates that the row and column models are statistically indistinguishable. We follow the style in [47].

Fig. 10. Better/worse ROC analysis. (a) AUC values of different quality models, which range from 0 to 1 with higher values indicating better performance.
(b) Statistical significance matrix based on t-statistic.

curate motion estimation. We find that MEF-SSIMd is quite
robust to variations of T , especially within small values. The
default setting generates reasonable region segmentation maps
(see Fig. 7) and achieves satisfactory performance on our
database (see Table IV).

VI. APPLICATION: AUTOMATIC PARAMETER TUNING OF

MEF ALGORITHMS OF DYNAMIC SCENES

Besides objective quality evaluation of fused images,
an effective objective quality model should be able to
guide the design and optimization of MEF algorithms for
dynamic scenes. In this section, we demonstrate this idea by
applying MEF-SSIMd to automatic parameter tuning of MEF
algorithms.

There are often one or multiple parameters in MEF
algorithms for dynamic scenes, whose optimal values are

TABLE IV

SENSITIVITY ANALYSIS OF THE THRESHOLD T IN TERMS OF SRCC ON

OUR DATABASE. THE DEFAULT SETTING IS HIGHLIGHTED IN BOLD

image-dependent. Therefore, it is a challenging and time-
consuming task to handpick a set of parameter values that
work well for all images. MEF-SSIMd is able to replace the
role of humans in this task, especially when the volume of
images to be processed is large. Here, we use SPD-MEF [11]
as the example MEF algorithm, which contains two user-
specified parameters Ts and Tm to detect inconsistent object
motion. Ts rejects inconsistent patches across exposures with
respect to the reference patch. Tm identifies large pixel-wise
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Fig. 11. Parameter tuning using MEF-SSIMd . Warmer color in the surface plot indicates better predicted quality. (a) q = 0.971. (b) q = 0.934. (c) q = 0.901.
(d) q = 0.885.

differences between each exposure and its latent correspon-
dence generated by IMF. Both Ts and Tm lie in [0, 1] with
default values of Ts = 0.8 and Tm = 0.1 [11], but the
perceptual quality of fused images could be highly sensitive
to these parameters.

Fig. 11 gives example images generated with different Ts

and Tm values on the image sequence “Horse”, where warmer
color in the surface plot indicates better predicted quality of the
corresponding fused image. By varying Ts and Tm , we obtain
fused images of significantly different quality. For example,
Fig. 11(d) exhibits strong ghosting artifacts, while Fig 11(a)
is clear and vivid. Moreover, MEF-SSIMd aligns well with
human perception of fused image quality, suggesting that it
is a useful tool to automatically select the optimal values
of Ts and Tm .

VII. CONCLUSION

We have performed perceptual evaluation for MEF of
dynamic scenes. We created an MEF database and conducted
a subjective experiment to collect human opinions of fused
image quality. No objective quality models are able to
accurately predict human data. Therefore, we design the
MEF-SSIMd index, which successfully captures the ghosting
artifacts, resulting in the best quality prediction performance.
The use of MEF-SSIMd was also demonstrated through
automatic parameter tuning of MEF algorithms.

Our subjective database provides a useful, but limited means
of assessing the performance of MEF-SSIMd . A more direct
assessment can arise from perceptual optimization, namely
maximizing MEF-SSIMd for best fused images in either image
domain or through a deep neural network. The images gener-
ated along the trajectory would provide a direct visualization
of how MEF-SSIMd aligns with human judgments, and thus
an effective way to identify its advantages and disadvantages.

The baseline MEF-SSIM has been successfully demonstrated
to guide the design of better MEF algorithms for static
scenes [7], therefore we believe MEF-SSIMd holds much
promise in perceptual optimization of MEF methods for
dynamic scenes as well.
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