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Objective Quality Assessment for Multiexposure
Multifocus Image Fusion

Rania Hassen, Member, IEEE, Zhou Wang, Fellow, IEEE, and Magdy M. A. Salama, Fellow, IEEE

Abstract— There has been a growing interest in image fusion
technologies, but how to objectively evaluate the quality of fused
images has not been fully understood. Here, we propose a method
for objective quality assessment of multiexposure multifocus
image fusion based on the evaluation of three key factors of
fused image quality: 1) contrast preservation; 2) sharpness; and
3) structure preservation. Subjective experiments are conducted
to create an image fusion database, based on which, performance
evaluation shows that the proposed fusion quality index correlates
well with subjective scores, and gives a significant improvement
over the existing fusion quality measures.

Index Terms— Image fusion, image quality assessment, local
phase coherence, multi-focus image fusion, multi-exposure image
fusion.

I. INTRODUCTION

THE goal of image fusion is to integrate information
from multiple input images to create a fused one that

is more informative for human or machine perception as
compared to any of the input images [1], [2]. Image fusion
techniques have been used in various application areas includ-
ing remote sensing, biomedical imaging, and multi-exposure
multi-focus image integration. In optical remote sensing,
a group of sensors may work together, each of which captures
some specific aspects of spectral and/or spatial information.
Fusing both the spatial and spectral information from all
sensors provides a more descriptive image, and only the
fused image needs to be stored for subsequent analysis of the
scene [3]. In biomedical imaging, different imaging modalities
are complementary in nature in acquiring different aspects of
biological structures and activities. For example, magnetic res-
onance imaging (MRI) is often useful in revealing anatomical
structures whereas metabolic activities may be captured more
reliably using positron emission tomography (PET). By using
fusion technologies, it is possible to obtain a single image
that effectively describes anatomical structures and metabolic
activities simultaneously [4]. Image fusion techniques are also
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widely used in constructing high dynamic range (HDR) images
by combining multiple low dynamic range (LDR) images
taken with different exposures [5]. These HDR images are
useful in many applications including in-vehicle cameras,
surveillance in night vision, camera-guided aircraft docking,
high-contrast photo development, and robot vision. Optical
lenses of imaging sensors, especially those with long focal
lengths, only have limited depths of field. As a result, it is
impossible to have all objects with significantly different
distances from the sensor to be in good focus at the same time.
Therefore, another widely recognized application of image
fusion is to merge multiple images of the same scene but with
different focus points. Such multi-focus image fusion methods
that well-preserve relevant information from the original data
are highly desirable in many machine vision and image
processing tasks [6], [7]. There are also applications where
simultaneous multi-exposure and multi-focus image fusion
are desirable. For example, in landscape astrophotography,
generally night photography pushes image sensors to the
limits. Recent DLSR sensors are better in handling focus
and dynamic range than before. However with the physical
limitations of current cameras, it is physically impossible to
take a single exposure where both the stars and foreground
are in focus while having minimal movement in the stars,
a detailed sky, and a non-noisy foreground. Therefore, in order
to create an image with a well exposed and in-focus sky and
foreground, one may take multiple exposures at different focus
distances and ISOs, and then blend them together by image
fusion techniques to create the final result. In addition, the fact
that both multi-exposure and multi-focus image fusion desires
good contrast and good sharpness while preserving as much
as possible the structural details motivates us to work on it as
a unified problem.

Due to the large number of applications and the
diversity of fusion techniques, considerable efforts have
been made to develop objective performance measures for
image fusion. Traditionally, the assessment of a fusion scheme
is carried out by subjective evaluation, which is known to be
slow, expensive, and most importantly, cannot be embedded
into automated frameworks for system and parameter
optimizations. A valuable alternative to subjective evaluation is
objective image fusion measures that are consistent with
human visual perception. It has been observed in the literature
that in some special cases of multi-focus image fusion, an
“ideal” fused image may be available or manually constructed,
which can then be used as a ground-truth reference image to
test multi-focus fusion algorithms [8]–[10]. However,
obtaining an “ideal” image is not always feasible, especially
in general application scenarios of multi-exposure and
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multi-focus image fusion. Therefore, objective quality
assessment approaches without assuming the availability
of a “ground truth” image are highly desirable. Several
quality measures relate fused image quality with different
aspects of information content preservation. Qu et al. [11]
developed an information-theory based measure, where the
summation of the mutual information (MI) between the fused
and two input images is calculated to gauge the difference
in quality. Xydeas and Petrovic [12] proposed an edge-based
performance measure which evaluates the relative amount of
edge information that is transferred from the input images
to the fused image. Similarly, Wang and Liu [13] proposed
a measure based on a multi-scale scheme implemented
with a two-level Haar wavelet, where the edge information
is retrieved from the high and band-pass components of
the wavelet decomposition. A number of recent fusion
performance measures build upon the structural similarity
index (SSIM) [14], [15]. Piella and Heijmans [16] calculate
pixel-by-pixel SSIM maps between each source image and
the fused image, and then apply a weighted average method
to obtain an overall evaluation of the fusion performance.
In Yang et al.’s method [17], complementary or conflicting
regions are distinguished from redundant regions in the
two source images using SSIM maps and are treated
separately. In an attempt to take into consideration human
visual perception, Chen and Varshney [18] proposed an image
fusion quality measure that employs the contrast sensitivity
function (CSF) of the visual system and considers local
spatial information on a region-by-region basis.

The purpose of the current work is to develop an objective
quality model for multi-exposure multi-focus image fusion.
The general approach of our method is to separate the
problem into the assessment of three important factors of
fused image quality − contrast preservation, sharpness, and
structure preservation. Our work is partially motivated by
the design principle of the SSIM approach [14], where local
image fidelities are split into luminance, contrast and structural
similarities. The importance of luminance preservation varies
across different image fusion tasks. In the current application,
we found that directly preserving the luminance of the input
images is not of critical importance in improving the overall
image quality, and thus we focus on contrast and structure
preservations. In addition, sharpness has been recognized as
an important factor in no-reference image quality assess-
ment (IQA) [19], [20] as well as in image fusion [21].
A recently developed local phase coherence (LPC) based
approach mainly makes use of local phase information in
the evaluation of image sharpness [22]. This is well-suited
to our framework and complements the other two factors,
where local amplitude (or energy) aspect has been taken into
account in contrast preservation measurement. The assessment
and combination of the three critical and complementary
factors lead us to a novel Fusion Quality Index (FQI).
To validate the proposed approach and to compare the
effectiveness and efficiency of different fusion algorithms,
we carried out a subjective experiment and built a new fusion
image quality database, which is probably the first of its
kind. Comparisons with subjective ratings suggest that FQI

Fig. 1. Sample images with multi-exposure and multi-focus effects. Each
row is a pair of images of the same scene but with different levels of exposure
and different focus points.

outperforms existing fusion quality measures in the literature.
To further demonstrate the potential applications of FQI,
we apply it in parameter tuning of image fusion algorithms,
where we show that FQI can be used as a flexible tool to guide
the optimizations of image fusion algorithms.

II. OBJECTIVE QUALITY ASSESSMENT METHOD

In photography, when a visual scene contains objects
in different distances and when the camera has a limited
focal length or crop factor, the camera depth-of-field is lim-
ited, causing some objects in the scene to be out-of-focus.
In some other scenarios when the luminance of a scene
changes dramatically across spatial locations significant infor-
mation loss in the darkest and/or brightest regions, recorded
as “black” (underexposed) or “white” (overexposed) values.
These two common types of problem in photography can be
mitigated with image fusion techniques. Examples of pairs
of images with simultaneous multi-exposure and multi-focus
effects are shown in Fig. 1. Perception studies indicate that the
best fusion strategy is task dependent [23] and that humans
exploit different features in an image for different tasks [24].
Therefore, an ideal fusion quality measure should be task
specific, and the “best” fusion algorithm changes from task
to task. In case of multi-exposure and multi-focus fusion, the
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task is to integrate input images with different focal points
and/or different exposures to generate one fused image with
sharper features and clearer structural details as compared
to the source images. Assume we have L input images
{Al} = {A1, A2, A3, ....., AL} which are fused to produce
image F . We found that three characteristics − contrast preser-
vation, sharpness, and structure preservation − are critically
important in accounting for the visual quality of F given {Al}.
A. Contrast Preservation Assessment

There are several variations of contrast definitions in the
vision science literature. The general idea is to normalize
the foreground intensity signal strength with the background
luminance. This approach has some limitations when applied
in complex natural images viewed in practical application
environment. Specifically, compared with the ideal dark-
room environment in standard vision science experiments, the
background luminance used as normalization factor is not
well-controlled in case of practical application environment.
A simple method is to integrate the background luminance in
the entire environment as the normalization factor for contrast
computation. This leads to applying the same normalization
factor to everywhere in the image. As such, it was found
in the literature of image quality assessment that using only
the standard deviation without a normalization factor leads
to a simple, useful, and robust local contrast measure [14].
Following the same approach in [14], we measure contrast
preservation locally using a sliding window approach, which
results in a map that indicates the spatial variation of local
contrast preservation. The complication is that in the case
of multiple input images, multiple input image patches are
available at each spatial location, which may have different
contrasts. A useful assumption is that the input image patch
that has the highest contrast is the most informative, and
the contrast of the fused image patch should be close to
the contrast of the most informative image patch. Figure 2
illustrates the process of the proposed contrast preservation
assessment method together with image examples for the case
of two input images. Let al,k and fk be the k-th local image
patches of the l-th input and fused images, respectively. The
local contrast similarity assessment function is defined as

c({al,k}; fk) =
2σ fk max

l
{σal,k } + C1

σ 2
fk

+ (max
l

{σal,k })2 + C1
, (1)

where σal,k , and σ fk are the standard deviations of local
image patches in the l-th input and fused images, respectively,
max

l
{σal,k } is the maximum standard deviation of all σal,k for

l = 1, 2, ..., L and C1 is a positive stabilizing constant. This
local measure is applied using a sliding window that runs
across the image space, leading to a contrast preservation map
bounded between 0 and 1, where a higher value corresponds
to better contrast preservation. Direct averaging is then applied
to pool the map into a single contrast preservation measure:

Qc(F | {Al}) = 1

N

N∑

k=1

c({al,k}; fk), (2)

where N is the total number of patches.

Fig. 2. Framework of contrast preservation assessment with examples for
the case of two input images.

B. Sharpness Assessment

Sharpness is an important determinant in visual perception
of image quality [22]. In our earlier work, an LPC-based
sharpness index (LPC-SI) was proposed [22], which is a
NR approach and achieved highly competitive performance
when tested using publicly available image databases. In addi-
tion, LPC-SI produces a dense sharpness map that indicates
the spatial variations of perceptual sharpness, a feature that is
lacking in other sharpness measures in the literature [22].

Here we apply the LPC-SI approach to the fused
image, which is first passed through a series of N-scale
M-orientation complex log-Gabor filters without any sub-
sequent down-sampling process. Let ci jk be the resulting
complex coefficient at the i -th scale, the j -th orientation, and
the k-th spatial location. The LPC-based sharpness measure at
the k-th location is given by

Hk =
∑M

j=1

∣∣c1 j k
∣∣ cos

(
�

{∏N
i=1 cwi

i j k

})

∑M
j=1

∣∣c1 j k
∣∣ + C2

, (3)
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Fig. 3. Framework of sharpness assessment with examples.

where �{·} denotes the angle of a complex number, wi are
an optimal set of factors to relate the phases across different
scales, cos

(
�

{∏N
i=1 cwi

i j k

})
measures the phase coherence at

the j -th orientation and the k-th spatial location, and C2 is
a constant to avoid instability in case of small magnitude
coefficients. The magnitudes of the finest scale coefficients
c1 j k across different orientations j are used as weighting
factor, where higher magnitude leads to higher weight.

The collection of LPC measures computed for the fused
image Hk(F) at all spatial locations constitutes a sharpness
map of the fused image. The overall image sharpness is
obtained by pooling the LPC map using a weighted averaging
of ranked LPC values H(k)(F) as follows

Qsh(F) =
∑K

k=1 uk H(k)(F)
∑K

k=1 uk
, (4)

where uk is the weight assigned to the k-th ranked
LPC value H(k)(F) and is computed as an exponentially
decaying function given by [22]

uk = exp

[
−

(
k − 1

K − 1

)/
βk

]
, (5)

which gives a weight 1 to the highest LPC value and the
decaying speed is controlled by the parameter βk . As in [22],
the parameters are set as M = 8, N = 3, s1 = 1, s2 = 3/2,
s3 = 2, w1 = 1, w2 = −3, w3 = 2, βk = 1e − 4, and
C2 = 2, respectively. These parameters are set empirically,
but are found to be insensitive to the overall performance.
Figure 3 depicts the framework of the sharpness assessment
procedure with an image example.

C. Structure Preservation Assessment

The SSIM method [14] provides a useful design principle
as well as a simple and effective method to measure the struc-
tural fidelity between images. Following the SSIM approach,
we evaluate structural fidelity locally using a sliding window
approach, which leads to a structure preservation map.
However, since multiple input images are available in image
fusion applications, multiple structure preservation maps are
created, each computed by comparing one input image with

the fused image. Novel strategies need to be developed to
pool these maps into a scalar evaluation regarding the overall
structure preservation.

Figure 4 shows the diagram of the proposed structure
preservation assessment algorithm along with image examples
for the case of two input images. Let al,k , and fk be the
k-th local image patches in the l-th input and fused images,
respectively, the structural fidelity evaluation is conducted
between each of the input image patches and their fusion
result:

S(al,k, fk) = σal,k fk + C3

σal,k σ fk + C3
(6)

where σal,k and σ fk are the local standard deviations of the
local image patches, σal,k fk is the cross correlation between the
two corresponding patches, respectively, and C3 is a stabilizing
constant (as in [14]). The collections of S(al,k , fk) values
at all spatial locations constitute L structure preservation
maps that deliver information about how image structures are
preserved in the fused image. Multi-focus input images contain
complementary sharp regions, where the regions with sharper
content tend to be better focused and thus better preserve local
image structures. It is thus reasonable to give more importance
to the sharper regions. As illustrated in Fig. 4, we use
LPC-based sharpness measure to create sharpness maps, which
are subsequently used to weigh the structure preservation
maps computed from both input images. The overall structure
preservation measure is given by

Qs(F | {Al}) = 1

L

L∑

l=1

∑K
k=1 Hk(Al)S(al,k , fk)∑K

k=1 Hk(Al)
(7)

where Hk(Al)is the LPC map of the l-th input image Al . Since
the local structure preservation measure (6) is upper-bounded
by 1, the value of Qs(F | {Al}) is also upper-bounded by 1.

D. Overall Quality Assessment

The contrast preservation, sharpness, and structure preserva-
tion measures descried above address different aspects about
fused image quality and are complementary to each other.
By combining these measures, we obtain an overall image
fusion quality index (FQI) given by

Q(F | {Al}) = Qc(F | {Al}) · Qsh(F) · Qs(F | {Al}). (8)

Since all three components are upper-bounded by 1, the overall
FQI measure is also upper-bounded by 1, which corresponds
to perfect contrast preservation, sharpness and structure preser-
vation simultaneously.

III. SUBJECTIVE EXPERIMENT

Because the human observers are the ultimate consumers in
most applications, subjective user study is considered as the
most reliable approach to evaluate the quality of fused images.
The fusion community has captured and shared a number of
multi-focus and multi-exposure reference images for algorithm
development and assessment. A variety of methods have been
used for subjective evaluation of the quality of fused images.
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Fig. 4. Framework of structure preservation assessment with examples for the case of two input images.

Typically, a subject is asked to rank or rate the quality of
the image on a linear or ordinal scale. Three approaches
are discussed in the literature [25] − simple ranking, Single
Stimulus Continuous Quality Evaluation (SSCQE), and
Double Stimulus Continuous Quality Evaluation (DSCQE).
Single and double stimulus methods represent categorical
rating, in which observers judge the quality of a single and
a pair of images on a fixed 5-point scale. In [25], a paired
comparison was used to evaluate the relative advantage of
one or neither of the two offered fusion results as perceived by
the test audience. The method is straightforward and popular
in computer graphics [26], but is tedious if a large number of
conditions needs to be compared. Another type of comparative
evaluation used in the literature (and is adopted in the current
work) is to rank a set of images from the best to the worst,
such as the work in [27] and [28], which follows the standard
CCIR procedure [29].

To the best of our knowledge, currently there is no publicly-
available subject-rated image fusion database that can be
directly employed to test and compare algorithms developed
for image fusion quality assessment. Therefore, we build
a database of simultaneous multi-exposure and multi-focus
images. The database is created from 14 pairs of source images
of 560 × 560 or 480 × 480 resolutions, one overexposed and
the other underexposed. Each pair of images is further altered
by simulated out-of-focus at complementary spatial locations,

where the out-of-focus effect is simulated using foveated filters
with different fixation points [30]. Examples of the resulting
multi-exposure multi-focus image pairs are given in Fig. 1.

Six fusion algorithms with various rules to extract and
combine image structures from the input image pairs are
employed to create the fused images. Many fusion algorithms
involve multi-resolution decompositions followed by fusion
rules that impose more emphasis on the input image that has
more salient features in a spatially adaptive manner, where
typical fusion rules include choose maximum absolute coef-
ficient (CM), weighted average (WA), and choose maximum
with consistency verification (CMCV). Table I summarizes the
decomposition methods and the fusion rules employed by the
six fusion algorithms, which include (1) pixel average (AVG),
(2) Laplacian pyramid decomposition followed by
CM fusion (LAP-CM), (3) contrast pyramid decomposition
followed by CMCV fusion (COP-CMCV), (4) ratio
pyramid decomposition followed by WA fusion (RAP-WA),
(5) discrete wavelet transform decomposition followed by
CM fusion (DWT-CM), and (6) generalized random walk
based probabilistic weighted fusion (GRW-PW) [31]. The
implementation of Algorithm (1) is straightforward and
that of Algorithm (6) was provided by the authors of [31]
using author recommended parameters σw = 0.1, γ = 1.0,
and η = 4. The rest of the algorithms all follow a multi-
resolution framework, and our implementations were based
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TABLE I

FUSION RULES AND DECOMPOSITIONS IN THE IMAGE FUSION ALGORITHMS

Fig. 5. Fused images and their corresponding FQI values for the input image pairs shown in Fig. 1 using (a) GRW-PW, (b) LAP-CM, (c) AVG, and
(d) RAP-WA algorithms.

on Rockingers’ MATLAB toolbox [32]. Figure 5 shows
examples of the fusion results for the input images in Fig. 1,
together with their FQI values.

We conducted a subjective test using the multi-exposure
multi-focus image fusion database described above. Twenty
naive subjects, including 11 males and 9 females, aged
between 19 and 30, participated in the study. A 30-inch
LCD monitor with 2560 × 1600 resolution was employed,
which allowed us to display on the same screen a full set
of 6 fused images created by the aforementioned fusion
algorithms, together with the corresponding pair of
multi-exposure multi-focus input images. The positions
of the fused images were placed in random order to avoid
any positional selection bias. The test environment had no

reflecting ceiling walls or floors and was kept constant
during the test. Before the test, a brief instruction session
was performed where the subjects were shown sample
images and the experiment process was explained. For
each set of test images, the subjects were asked to give a
ranking score between 1 and 6 to each fused image on the
screen, where “1” stands for the best perceptual quality, and
“6” denotes the worst quality. The subject performed the
tests individually with no time limit. After the subjective test,
a statistical analysis was performed and two subjects are
identified as outliers and their corresponding scores were
removed. The subjective rankings for the remaining
18 subjects for each image is averaged, resulting in its
mean ranking score within the set. The ranking scores were
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TABLE II

KRCC AND SRCC PERFORMANCE OF AVERAGE SUBJECT

also converted into linear quality scores using Thurstone’s
statistical model [33], [34] based on maximum-a-
posterior (MAP) estimation. This was done by first
computing a winning frequency matrix C from all possible
paired comparisons for all fusion results. The probability
P(A > B) is then estimated by using the empirical
proportion of people preferring option A over option B , given
as CA,B = (CA,B + CB,A). Finally, the linear quality scores
are estimated by maximizing the inverse of cumulative density
function of the Gaussian random quality difference A − B .
The converted linear quality scores preserve the mean ranking
scores in each image set and are employed as the mean
opinion scores (MOSs) in the subsequent evaluations.

Three criteria are employed to evaluate the level of
agreement between the subjective opinions and the predictions
by quality assessment models. These include Kendall’s rank-
order correlation coefficient (KRCC), Spearman’s rank-order
correlation coefficient (SRCC), and Pearson’s linear correla-
tion coefficient (PLCC) between the subjective scores and the
quality measures. All three criteria range between −1 to 1,
which represent perfect disagreement or agreement between
model prediction and subjective opinion, respectively.

To provide a reference point in evaluating the performance
of FQI, we evaluate how an average subject would behave in
such a test. To do this, for each image set, we compute the
KRCC and SRCC values between the MOSs and the ranking
scores given by each of the individual subjects. When this
is done for all 18 subjects, we compute the mean (μ) and
standard deviation (σ ) of the KRCC and SRCC values over
all subjects. The average subject performance is summarized
in Table II. Generally, an average subject’s opinions are well
correlated with the mean opinions of all subjects. Meanwhile,
there still exists substantial variations between different sub-
jects, reflected by the significant std values in Table II. These
results give a useful baseline to evaluate how an objective
quality prediction model behaves relative to a typical human
subject.

IV. PERFORMANCE EVALUATION AND COMPARISON

To validate the proposed FQI measure, we first examine how
each of its three components, Qc, Qsh and Qs , contributes to

the quality prediction performance. Table III shows the KRCC,
SRCC and PLCC performances of each component, along with
the performance of FQI that combines all three components.
These include the results for each image set as well as the
average result over all image sets. It can be seen that all
three components provide significant positive correlations with
subjective opinions, while the overall FQI delivers substantial
and consistent performance improve over all three compo-
nents. Comparing Table III with Table II, we also observe
that FQI often outperforms an average subject, though the
improvements are typically within 1 std of the variations
between human subjects.

To further evaluate the performance of the proposed
FQI method, we compare it against seven state-of-the-art
image fusion quality measures (where parameters in all these
measures are set as their default values). These measures
include: (1) normalized mutual information (NMI) [11], which
quantifies the amount of information transferred from the
source images to the fused images by summing the mutual
information between the fused and two input images; (2) edge
dependent weighted SSIM (EW-SSIM) [16], where SSIM [14]
between the fused and two input images are computed, fol-
lowed by edge dependent weighting; (3) edge information
preservation (EIP) [12], which measures the amount of edge
information in terms of edge strength and orientation that
is transferred from the input images to the fused image;
(4) selective weighted SSIM (SW-SSIM) [17], which not
only compute SSIM measures between the input and fused
images, but also the SSIM between the input images. These
are followed by adaptively selecting between local averaging
and taking the maximum of local SSIM values; (5) edge
strength (ES) [18], which applies human visual contrast sen-
sitivity function (CSF) in the frequency domain and then
create an edge strength maps for the input and fused images,
followed by salience weighted pooling; (6) multiscale edge
preservation (MEP) [13], which decomposes the input and
fused images using a two-level Haar wavelet transform and
estimates edge preservation in horizontal, vertical and diag-
onal directions at each scale, followed by energy weighted
pooling across space and scale; (7) saliency weighted contrast
preservation (SWCP) [27], which filters the input and fused
images by a CSF and computes local contrast maps, followed
by contrast preservation evaluation and saliency weighted
pooling.

Table IV shows the KRCC, SRCC and PLCC analysis
results of all 14 image sets for all eight quality prediction
models (including the 7 existing models described above
and FQI). The recommended algorithm parameters for the
7 fusion assessment measures were used to obtain the results of
comparison. The parameters used in fusion measures are given
in Table V. The average performance over all image sets are
also given. Among the existing models, EW-SSIM [16] and
EIP [12] produce quite competitive results, while the
proposed FQI measure results in the best performance in
all three criteria.

To better understand the relationships between the fusion
quality measures under study, a visual representation of the
similarities between the fusion quality models is created using
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TABLE III

KRCC, SRCC AND PLCC PERFORMANCE EVALUATION OF FQI AND ITS THREE COMPONENTS

Fig. 6. Similarity dendrogram of MOS and objective image fusion quality
measures.

a dendrogram plot shown in Fig. 6. Specifically, KRCCs
between the eight fusion quality models are first computed
and averaged across image sets. The dendrogram then trans-
forms the KRCC values into distances and clusters them
using the unweighted pair group method with arithmetic
mean (UPGMA) algorithm [35], [36], where Euclidean dis-
tance is used as a distance metric for data clustering. In Fig. 6,
the horizontal axis represents the fusion quality models (along
with MOS), which are referred to as the leaf nodes. The
vertical axis is labeled by distances between the nodes.
The height of the node can be thought of as the distance
between the right and left sub-branch clusters. As in earlier
correlation studies (Table IV), this dendrogram suggests that
EW-SSIM and EIP are the most competitive measures in pre-
vious algorithms, and the proposed FQI measure outperforms
all existing algorithms and is the closest to MOS.

We also carried out a statistical significance analysis using
the approach introduced in [37]. The goal of the analysis is to

look at the quality prediction residuals between MOS values
and the predictions from two competing objective quality
assessment models, and then perform a hypothesis testing on
whether the residuals are coming from the same distribution
and are statistically indistinguishable. Table VI summarizes the
results by comparing every pair of objective image fusion qual-
ity assessment models mentioned above, where a symbol “−”
denotes that the two models are statistically indistinguishable,
“1” denotes the model of the row is statistically better than that
of the column, and “0” denotes that the model of the column
is better than that of the row. The results generally agree
with the dendrogram in Fig. 6. FQI appears to be statistically
better than almost all other models, except for EW-SSIM. This
might be due to the underlying assumptions made by this
analysis approach, where the quality prediction residuals need
to be Gaussian distributed, an assumption that are not strictly
satisfied by the quality assessment models being tested.

To verify the proposed FQI measure, we test it on
multi-exposure multi-focus images captured in real scenes.
A set of 8 images were acquired using Nikon D5200 with
AF-S DX NIKKOR 35mm f/1.8G lens. Two images were cap-
tured for the same scene, with different near far focus points
and with different exposure levels to show all foreground
and background details. Sample images are shown in Fig. 7,
where the images in the first row have low exposure value
and far focus point to show details outside of the windows,
while the complementary images in the second row have near
focus point on the indoor objects and high exposure level. The
same six fusion algorithms were used to fuse the pair of real
multi-exposure multi-focus images. A new subjective test was
carried out using the new fusion results. 19 subjects were asked
to rank the images using the same procedure described before.
One outlier was excluded and the mean opinion scores are
computed after removing the outlier. The SRCC performance
of the 8 fusion assessment measures evaluated using the
subjective data on real images is summarized in Table VII.
Again, the proposed FQI method delivers the most competitive
performance among all fusion quality assessment measures.
On the other hand, the SRCC values are significantly lower
than the simulated fusion test case (as in Table IV). This may
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TABLE IV

KRCC, SRCC AND PLCC PERFORMANCE EVALUATION OF IMAGE FUSION QUALITY MODELS

TABLE V

LIST OF ALGORITHM PARAMETERS USED IN FUSION QUALITY MEASURES

be because the complication in the depth information in the
real scene, which degrades the performance of the fusion algo-
rithms and cast more challenges to fusion quality assessment
measures as well.

The main computational cost of the proposed FQI algorithm
is in the computation of LPC sharpness map, where an
image is decomposed using L-scale M-orientation filtering
with a total of one forward and L M inverse 2D fast Fourier
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Fig. 7. Sample real multi-exposure multi-focus images captured using Nikon D5200 with AF-S DX NIKKOR 35mm f/1.8G lens.

TABLE VI

STATISTICAL SIGNIFICANCE ANALYSIS BASED

ON QUALITY PREDICTION RESIDUALS

transforms (2D-FFTs). All other computations are linear with
respect to the number of pixels N in the image. Therefore,
the computational complexity of the FQI is determined by the
complexity of 2D-FFT and is thus on the order of O(N log N).
When FQI is calculated for an image with 1120 × 1120
resolution using a computer configured with Intel Core i7
CPU at 2.40 GHz, 8GB RAM, Windows 7 64-bit, and unopti-
mized MATLAB code, the overall computation time is about
20 seconds. This gives a rough estimate of the current speed,
and we expect that further algorithm, software and hardware
optimizations could significantly improve the speed. Given its
competitive quality prediction performance and reasonably fast
speed, we believe that FQI has good potentials in real-world
applications.

V. APPLICATION: PARAMETER TUNING IN

IMAGE FUSION ALGORITHMS

The application scope of objective image fusion quality
measures is not limited to the validation and comparison
of image fusion algorithms only. The area that has even
greater potentials is to use the fusion quality models in
the design and optimization of novel image fusion algo-
rithms, which exhibit substantial variabilities in a broad
range of applications in remote sensing, medical imaging,

and high dynamic range imaging. Here we demonstrate
this by applying the proposed FQI model in automatic
parameter tuning of an image fusion algorithm, where the
quality of the resulting fused image is highly sensitive to
the image content and the parameters being tuned,
making it difficult to pick the right parameters without human
interactions.

In this work, we developed a wavelet domain spatially
adaptive fusion algorithm. Given two input images A and B ,
we first decompose the images using a discrete wavelet
transform. This results in an approximation subband (low-low
frequency band) and a series of detail subbands. Two different
approaches are applied to fuse the coefficients in the detail and
approximation subbands, respectively. In the detail subbands,
for a pair of coefficients cA and cB at the same spatial
location in the same wavelet subband of the two images,
we first compute the standard deviations of their neighboring
wavelet coefficients, denoted by σA and σB , respectively.
Presumably, the coefficient associated with larger value of
local standard deviation contains more structural informa-
tion and is of higher importance. To quantify their relative
importance, we compute

λ = σA

σA + σB
. (9)

We can then create a fused coefficient cF by a weighted sum
of cA and cB based on their importance:

cF = wAcA + (1 − wA)cB, (10)

where the weighting factor wA is bounded between 0 and 1,
and is determined by λ using

wA =

⎧
⎪⎪⎨

⎪⎪⎩

0 if λ < α

λ−α
1−2α if α ≤ λ ≤ (1 − α)

1 if (1 − α) < λ

, (11)
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TABLE VII

SRCC PERFORMANCE EVALUATION OF IMAGE FUSION QUALITY MODELS USING MULTI-EXPOSURE

MULTI-FOCUS IMAGES CAPTURED IN THE REAL SCENES

Fig. 8. FQI as a function of parameters α and β in the wavelet domain adaptive fusion algorithm. Sample fused images are given for different selections
of α and β values.

where α is a parameter that can be adjusted within the
range of [0, 0.5], producing different fusing results. In the
approximation subband, every pair of coefficients cA and
cB are fused to a new coefficient cF by a weighting
factor β:

cF = βcA + (1 − β)cB, (12)

where β is another parameter that could affect the final
outcome of the fusion algorithm. Finally, when all fused coef-
ficients in all approximation and detail subbands are created
using the above fusion methods, an inverse wavelet transform
is applied to produce the final fused image F . A closely related
pattern selection fusion approach can be found in [38], where a
gradient-of-Gaussian pyramid was used to construct a pyramid
transform for each source image and the fusion step is guided
by two measures: a match measure based on normalized cor-
relation between the source pyramids and a salience measure
based on local energy. A weighted average combination rule
is then used to construct the composite fused pyramid. It was

demonstrated that this method is effective for diverse fusion
applications of multi-sensor, multi-exposure, and multi-focus
images.

In our experiment, we find that the above two-parameter
(α and β) fusion algorithm could create fused images
with drastically different quality. Without human interaction,
it becomes extremely difficult to find the best parameters,
which largely depend on the image content. A quality assess-
ment measure such as FQI is highly desirable to replace the
role of humans, especially when the volume of images to
be processed is large. Examples are given in Figs. 8 and 9,
which plot FQI as a function of α and β for two sets of
source images, together with sample images corresponding
to different selections of α and β values. There are several
observations from these figures. First, the quality of the fused
images varies significantly with α and β. Second, the sub-
stantial difference in the 2D functions shown in Figs. 8 and 9
suggests that the best values of α and β are sensitive to image
content. Third, in both figures, the peak of the FQI function
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Fig. 9. FQI as a function of parameters α and β in the wavelet domain adaptive fusion algorithm. Sample fused images are given for different selections
of α and β values.

corresponds to the images with the highest quality, indicating
that FQI provides a useful index to automatically pick the best
parameters for the fusion algorithm.

VI. CONCLUSIONS

The major contributions of this work are as follows. Firstly,
we propose an FQI algorithm for objective quality assessment
of multi-exposure multi-focus image fusion by incorporating
contrast preservation, sharpness, and structural preservation as
the key factors; Secondly, we create a multi-exposure multi-
focus image fusion database, based on which a subjective
quality assessment experiment is conducted. The database and
the associated subjective test scores provide a useful test bed,
probably the first of its kind, for image fusion quality assess-
ment research. Based on KRCC, SRCC, PLCC, similarity den-
drogram, and statistical significance analysis carried out on the
database, the proposed FQI method outperforms seven state-
of-the-art image fusion quality measures. Third, we captured
real multi-exposure multi-focus image data set and carried out
a subjective test on the real images. The real data set and the
subjective scores were used to verify the performance of the
proposed FQI method, which outperforms existing measures.
Finally, we demonstrate the potential applications of FQI by
employing it for parameter tunings of image fusion algorithms,
where we show FQI is a powerful tool in selecting the optimal
parameters that are highly sensitive to image content.

In general, the research area of image fusion quality assess-
ment is still at a premature stage and the future work can
be extended in many directions. The case of 2 input images
tested in the current work often corresponds to the worst case
scenario for image fusion algorithms and provides a strong
test that differentiates both image fusion algorithms and fusion

quality assessment models. If a fusion quality assessment
algorithm does not work properly in 2-input image cases, then
one would not expect it to work well in multiple input image
cases. Conducting subjective tests on more than 2-input images
and using more fusion algorithms would be natural extensions
of the current work. Further extensions also include assessing
the quality of images created by combing multiple images
that are not perfectly aligned with each other; images fused
from hyperspectral images in remote sensing applications; and
images generated by merging different imaging modalities in
medical imaging applications.
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