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Abstract— Reduced-reference image quality assessment
(RR-IQA) provides a practical solution for automatic image
quality evaluations in various applications where only partial
information about the original reference image is accessible.
In this paper, we propose an RR-IQA method by estimating
the structural similarity index (SSIM), which is a widely used
full-reference (FR) image quality measure shown to be a good
indicator of perceptual image quality. Specifically, we extract
statistical features from a multiscale multiorientation divisive
normalization transform and develop a distortion measure by
following the philosophy in the construction of SSIM. We find
an interesting linear relationship between the FR SSIM measure
and our RR estimate when the image distortion type is fixed. A
regression-by-discretization method is then applied to normalize
our measure across image distortion types. We use six publicly
available subject-rated databases to test the proposed RR-SSIM
method, which shows strong correlations with both SSIM and
subjective quality evaluations. Finally, we introduce the novel
idea of partially repairing an image using RR features and use
deblurring as an example to demonstrate its application.

Index Terms— Divisive normalization transform, image deblur-
ring, image repairing, natural image statistics, reduced-reference
image quality assessment (RR-IQA), structural similarity.

I. INTRODUCTION

OVER the past years, there has been an exponential
increase in the demand for image and video services.

Nevertheless, the networks in service are not designed to
accommodate the current trends of traffic. In practice, the
multimedia content delivered over the networks suffers from
various kinds of distortions on its way to the destination. It
is important for the service providers to be able to identify
and quantify the quality degradations in order to maintain
the required quality of service. This gives rise to the desire
of accurate and efficient perceptual image quality assessment
(IQA) algorithms that can estimate the subjective quality of
the image content under various kinds of distortions.

Much work has been done in the recent past to develop
objective quality assessment measures which can automati-
cally measure the perceived distortion in the visual content.
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The most prominent ones include the structure similarity index
(SSIM) [1] and its derivatives [2], [3], visual information
fidelity [4], visual signal-to-noise ratio [5], and the most
apparent distortion [6]. Among these methods, SSIM has often
been preferred because of its good tradeoff between accuracy,
simplicity, and efficiency [7].

√
1 − SSIM has been shown

to be a valid distance metric (that satisfies the identity and
symmetry axioms as well as the triangle inequality) and has
a number of useful local and quasi-convexity and distance-
preserving properties [8]. Besides IQA, SSIM has also found
a wide variety of applications, ranging from image coding,
restoration, and fusion to watermarking and biometrics [9]–
[14]. The success of SSIM motivated us to use it for visual
communication applications. The difficulty is that SSIM is
a full-reference IQA (FR-IQA) scheme that requires full
availability of the reference image in order to estimate the
quality of the distorted image. This makes it impractical in
visual communication applications, where we have no access
to the reference image at the receiver side. No-reference IQA
(NR-IQA) is highly desirable because it does not require
access to the reference image. In the literature, most NR-
IQA algorithms were designed for specific and limited types
of distortions [15]–[21]. They may not be good choices in
modern communication networks, where the distortions could
be a combination of lossy compression, scaling in bit rate and
spatial/temporal resolution, network delay and packet loss, and
various types of pre- and postprocessing filtering (e.g., error
concealment, deblocking filtering, sharpening). On the other
hand, general-purpose NR-IQA is still at an immature stage.

The reduced-reference IQA (RR-IQA) method only requires
a limited number features extracted from the reference for the
IQA task [22]. It provides an interesting compromise between
FR and NR approaches in terms of both quality prediction
accuracy and the amount of information required to describe
the reference. A general framework for the use of RR-IQA in
visual communications along with image-repairing capability
is shown in Fig. 1. An image x is transmitted to the receiver
via a transmission channel, which introduces distortions in
the received image y. Meanwhile, RR features X extracted
at the transmitter side are sent to the receiver through an
ancillary channel. The feature extraction unit at the receiver
side calculates the features Y from the received image y in a
similar fashion as in the transmitter side. X and Y are com-
pared at the quality assessment unit, which creates a quality
score S of the distorted image y. A good RR-IQA approach
should achieve a good tradeoff between the rate and accuracy.
In general, the larger the rate of the RR features, the more

1057–7149/$31.00 © 2012 IEEE



REHMAN AND WANG: REDUCED-REFERENCE SSIM ESTIMATION 3379

Fig. 1. General framework for the deployment of RR-IQA systems with image repairing capability.

accurate the RR-IQA measure can achieve. In the extreme,
when the rate is enough to fully reconstruct the reference,
RR-IQA converges to FR-IQA. The performance gap between
RR-IQA and FR-IQA may be reduced by selecting RR features
that are efficient, perceptually relevant, and sensitive to various
kinds of distortions. In addition, since the RR features provide
information about what the “correct” image is supposed to
look like, they may also be used as side information to repair
the received distorted image, as illustrated in Fig. 1.

Based on the underlying design philosophy, existing
RR-IQA algorithms may be loosely classified into three cat-
egories. The first type of methods are primarily built upon
models of the image source. Since the reference image is
not available in the deterministic sense, these models are
often statistical that capture a priori the low-level statistical
properties of natural images. The model parameters provide
a highly efficient way to summarize the image information,
and thus these methods often lead to RR-IQA algorithms
with low RR data rate. In [23] and [24], the marginal dis-
tribution of wavelet subband coefficients is modeled using
a generalized Gaussian density (GDD) function, and GGD
model parameters are used as RR features are employed
to quantify the variations of marginal distributions in the
distorted image. The model was further improved in [25]
by employing a nonlinear divisive normalization transform
(DNT) after the linear wavelet decomposition, which resulted
in enhanced quality prediction performance, especially when
images with different distortion types are mixed together.
The second category of RR-IQA methods are oriented to
capture image distortions. These methods provide useful and
straightforward solutions when we have sufficient knowledge
about the distortion process that the images underwent, e.g.,
standard image or video compression [26]–[29]. The limitation
of such approaches is in their generalization capability. Gen-
erally, it is inappropriate to apply these methods beyond the
distortions they are designed to capture. The third category
of RR-IQA algorithms are based on models of the image
receiver [i.e., the hierarchical visualisation system (HVS)]
[30], [31], where computational models from physiological
and/or psychophysical vision studies may be employed. These
methods have demonstrated good performance for JPEG and
JPEG2000 compression [30], [31]. Among the three classes
of RR-IQA approaches, the first and third ones, i.e., methods

based on modeling the image source and the receiver, have
more potential to be extended for general-purpose applications
because the statistical and perceptual features being employed
are not restricted to any specific distortion process. There
are also interesting conceptual connections between these two
types of approaches, because it is a general belief in biological
vision science that the HVS is highly tuned for efficient
statistical encoding of the natural visual environment [32],
[33].

This paper focuses on a general-purpose RR-IQA based on
natural image statistics modeling. In addition, motivated by
the success of the FR SSIM index, we develop our method
as an attempt to estimate SSIM rather than directly predicting
subjective quality. The benefits of this approach are twofold.
First, the successful design principle in the construction of
SSIM can be naturally incorporated into the development of
the RR algorithm. Second, when the algorithm design involves
a supervised learning stage, it is much easier to obtain training
data, because SSIM can be readily computed, as opposed to
the expensive and time-consuming subjective evaluations. In
[34], an interesting RR video quality measure based on SSIM
estimation was proposed for quantifying visual degradations
caused by channel transmission errors. It is based on local
spatial statistical features and uses distributed source coding
techniques to reduce the required bandwidth to transmit RR
features. Our method differs from this approach in three
ways. First, our method is based on natural image statistical
modeling and makes use of the perceptually and statistically
motivated DNT transform. Second, instead of decomposing
the problem of SSIM estimation into many local problems
and estimating each component in SSIM expression separately,
our method uses global statistics to estimate global SSIM
value. This allows for a much more efficient description of the
image content, and thus significantly lowers the number of RR
features. Third, our approach aims for a general-purpose RR-
IQA that can be applied to assess images with a wide variety
of distortion types.

The value of RR-IQA measures is beyond quality evalu-
ations. As illustrated in Fig. 1, they may also be employed
to partially “repair” the distorted image. In this paper, we
attempt to repair an image by matching the subband statistical
properties of the distorted image with those of the reference,
and use deblurring as an example to demonstrate the idea.
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The interesting feature of this method is that it requires no
knowledge about the blur kernel. Instead, the same repairing
procedure is successful in correcting images of not only
homogeneous blur (e.g., out-of-focus blur) but also directional
blur (e.g., motion blur).

II. RR-SSIM ESTIMATION

The proposed RR-SSIM estimation algorithm starts with a
feature extraction process of the reference image based on a
multiscale multiorientation DNT. Divisive normalization was
found to be an effective mechanism to account for many
neuronal behaviors in biological perceptual systems [35]–[37].
It also provides a useful model to describe the psychophysical
visual masking effect [38], [39]. DNT is typically applied after
a multiscale linear transform (loosely referred to as wavelet
transform) that decomposes the image into transform coef-
ficients representing localized structures in space, frequency
(scale), and orientation. The DNT-domain representation of
the image is then calculated by dividing each coefficient by
a local energy measure based on its neighboring coefficients.
It was found that the histogram of DNT coefficients within
a wavelet subband can often be well fitted with a zero-mean
Gaussian density function [40], [41], which is a one-parameter
function that allows efficient summarization of the statistics of
the reference image.

In [25], the effect of image distortions on the statistics of
DNT coefficients was studied. It was found that different types
of distortions modify the statistics of the reference image in
different ways, and the levels of statistical differences may
be used to quantify image distortions. In order to estimate
FR SSIM, we desire the variations of the statistics of the
DNT coefficients with respect to different types and levels
of distortions to be coherent with the corresponding effects on
FR SSIM.

The Gaussian scale mixture (GSM) model provides a conve-
nient framework to define a DNT [40]. A vector Y of length N
is regarded as a GSM if it can be represented as the product of
two independent components: i.e., Y =̇zU , where z is a scalar
random variable called the mixing multiplier, and U is a zero-
mean Gaussian-distributed random vector with covariance CU .
In image processing applications, GSM may be used to model
a cluster of wavelet coefficients that are neighbors in space,
scale, and orientation. If we assume that z takes a fixed value
for each cluster but varies across the image, then putting all z
values together constitutes a variance field. DNT can then be
accomplished by ν = Y/z, which produces a random vector
that is Gaussian. This had been observed in empirical studies
in [40], where z is replaced by a local estimation ẑ using a
maximum-likelihood estimator [40]

ẑ = arg max
z

{log p(Y |z)} =
√

Y T C−1
U

Y

N
. (1)

The Gaussianization produced by the DNT process largely
reduces the complication in describing the distribution of the
subband coefficient x

pm(x) = 1√
2πσ

exp

(
− x2

2σ 2

)
(2)

where only a single parameter σ needs to be recorded for each
subband.

In addition to σ , the Kullback–Leibler divergence (KLD)
[42] between model Gaussian distribution, pm(x), and the true
probability distribution of the DNT-domain coefficients, p(x),
denoted by d(pm||p) is extracted as the second feature for
each subband

d(pm||p) =
∫

pm(x) log
pm(x)

p(x)
dx . (3)

This improves model accuracy when the probability distribu-
tion is not exactly Gaussian.

The subband distortion of the distorted image can be
evaluated by the KLD between the probability distribu-
tion of the original image, p(x), and that of the distorted
image, q(x)

d(p||q) =
∫

p(x) log
p(x)

q(x)
dx . (4)

Direct computation of this quantity requires full access to
p(x), which would require a large number of RR features
to be described. Fortunately, the Gaussian model of the DNT
coefficients (2) provides a good approximation. Therefore, we
can estimate p(x) by

d̂(p||q) =
∫

pm(x) log
p(x)

q(x)
dx (5)

= d(pm||q) − d(pm ||p) (6)

where d(pm||q) is the KLD between the model Gaussian
distribution and the distribution computed from the distorted
image. Although different types of distortions affect the
statistics of the reference image in different manners, they
are all summarized in (6) to a single distortion measure.
An added nice feature of this measure is that it equals
zero when the two distributions p(x) and q(x) are
identical.

At the receiver side, the KLD between the subband coef-
ficient probability distributions of the original and distorted
images is calculated as in (6). By assuming independence
between subbands, the subband-level distortion measure of (6)
can be combined to provide an overall distortion assessment
of the whole image by

D = log

(
1 + 1

D0

K∑
k=1

∣∣∣d̂k(pk ||qk)
∣∣∣
)

(7)

where K is the total number of subbands, pk and qk are the
probability distributions of the kth subband of the reference
and distorted images, respectively, d̂k represents the KLD
between pk and qk , and D0 is a constant to control the scale
of the distortion measure.

The limitation of the measure in (7) is that it does not
take into account the relationship (or structures) between the
distortions across different subbands. Such distortion struc-
ture is a critical issue behind the philosophy of the SSIM
approach [43], which attempts to distinguish structural and
nonstructural distortions. To understand this better, let us look
at the FR SSIM algorithm [1], which is based on measuring
the similarities of luminance, contrast, and structure between
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Fig. 2. Equal-distortion contours with respect to the central reference vectors.
(a) MSE measure. (b) SSIM measure.

local image patches x and y extracted from a reference and a
distorted images

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
(8)

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
(9)

s(x, y) = 2σxy + C3

σxσy + C3
(10)

where μ, σ , and σ represent the mean, standard derivation, and
covariance of the image patches, respectively, and C1, C2, and
C3 are positive constants used to avoid instability when the
denominators are close to zero. Subsequently, the local SSIM
index is defined as the product of the three components, which
gives

SSIM(x, y) = [
l(x, y)

]α[
c(x, y)

]β[
s(x, y)

]γ
. (11)

The SSIM index of the whole image is obtained by averaging
(or weighted averaging) the local SSIM indices obtained using
a sliding window that runs across the image.

Fig. 2 gives a graphical explanation in the vector space
of image components, where the image components can be
pixels, wavelet coefficients, or extracted features from the
reference image. For the purpose of illustration, 2-D diagrams
are shown here. However, the actual dimensions may be equal
to the number of pixels or features being compared. The
three vectors represent three reference images and the contours
around them represent the images with the same distortion
level using (a) MSE and (b) SSIM as the distortion/quality
measures, respectively. The critical difference is in the shapes
of the contours. Unlike MSE (where all three contours have
the same size and shape), SSIM is adaptive according to the
reference image. In particular, if the “direction” of distortion
is consistent with the underlying reference (aligned with the
direction of the reference vector), the distortion is nonstruc-
tural and is much less objectionable than structural distortions
(the distortions perpendicular to the reference vector direc-
tion). The formulation of SSIM in (11) provides a flexible
framework to adjust the relative importance between structural
(last term) and nonstructural (first two terms) distortions.

Here we borrow the design philosophy of FR SSIM, but
apply it to a completely different domain of image repre-
sentation. In particular, we attempt to distinguish structural
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Fig. 3. Relationship between Dn and SSIM for blur, JPEG compression,
JPEG2000 compression, and noise contamination distortions.

and nonstructural changes of the cluster of statistical features
extracted from the DNT coefficients from different subbands.
This is intuitively sensible because the distortion that is con-
sistent with the underlying signal in the feature vector space
needs to be treated differently as compared to nonstructural
distortions. For example, in the case where the distorted
image is a globally contrast-scaled (contrast reduction or
enhancement) version of the reference image, then the standard
deviations of all subbands should scale by the same factor,
which is considered consistent nonstructural distortion and is
less objectionable than the case where the subband standard
deviations change in different ways.

Let σ r and σ d represent the vectors containing the standard
deviation σ values of the DNT coefficients from each subband
in the reference and distorted images, respectively. We define
a new RR distortion measure as

Dn = g(σ r , σ d) log

(
1 + 1

D0

K∑
k=1

∣∣∣d̂k(pk ||qk)
∣∣∣
)

. (12)

Compared with (7), the key difference here is the added
function g(σ r , σ d) in the front. This function should serve the
purpose of differentiating nonstructural from structural distor-
tion directions in the feature vector space of subband σ values,
so as to scale the distortion measure D in a way that penalizes
more on structural than nonstructural distortions. Motivated
by the successful normalized correlation formulation in SSIM
[43], we define

g(σ r , σ d) = ‖σ r‖2 + ‖σ d‖2 + C

2(σ r · σ d ) + C
(13)

where a positive constant C is included to avoid instability
when the dot product σ r · σ d is close to 0. This function is
lower-bounded by 1 when σ r and σ d are fully correlated, or in
other words, when their directions in the feature vector space
are completely aligned (corresponding to nonstructural distor-
tions). With the decrease of correlation, g(σ r , σ d) increases,
and thus imposes more penalty to structural distortions.

Fig. 3 plots the Dn values computed using distorted images
from the LIVE database [44] for four common distortion
types at different distortion levels, and compares them with
the corresponding FR SSIM values. Interestingly, for each
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fixed distortion type, Dn exhibits a nearly perfect linear
relationship with SSIM. We regard this as a consequence of
the similarity between their design principle, even though the
principle is applied to completely different domains of signal
representation. The clean linear relationship helps in reducing
the SSIM estimation problem to the estimation of the slope
factor. Once the slope is determined, we can then use the
following straight-line relationship to estimate SSIM:

Ŝ = 1 − αDn . (14)

The slope factor α in (14) varies across distortion types
and needs to be learned from examples. Specifically, we
adopt a regression-by-discretization approach [45], which is
a regression scheme that employs a classifier on a copy of the
data that has the class attribute discretized, and the predicted
value is the expected value of the mean class value for each
discretized interval. The training images were obtained from
six image databases described in Section III. The classification
is performed using random forests [46], which are built using
|σr − σd | and |kr − kd | values in each subband as the
attributes, where kr and kd are the kurtosis values of the DNT
coefficients computed from the reference and distorted images,
respectively. It has been observed with the help of ground-truth
data that the values of α tend to lie in various closely packed
clusters. Each cluster may contain images belonging to one
distortion type. It provides a natural order to the distortion
types and therefore does not require an undesirable distortion
classification stage which limits the generalization capability
of the proposed method. Therefore, the proposed method has
the potential to extrapolate to extended distortion types that
may not be included in the training samples.

The specification of our implementation is as follows. To
extract RR features, the reference image is first decomposed
into 12 subbands using a three-scale four-orientation steerable
pyramid decomposition [47], which is a type of redundant
wavelet transform that avoids aliasing in subbands. DNT is
then performed using 13 neighboring coefficients, including
9 spatial neighbors from the same subband, 1 from parent
subband, and 3 from the same spatial location in the other
orientation bands at the same scale. The value of the constant
C in (13) is set to 0.1, which is found to be an insensitive
parameter in terms of the performance of the proposed IQA
measure. Three features, σr , kr , and d(pm ||p), are extracted
for each subband, resulting in a total of 36 scalar RR features
for a reference image.

III. VALIDATION OF RR-IQA ALGORITHM

Six databases were used to test the proposed algorithm
and compare its performance with other IQA algorithms. The
databases include.

1) The LIVE database [44] contains seven datasets of 982
subject-rated images, including 779 distorted images
with five types of distortions at different distortion
levels. The distortion types include: a) JPEG2000
compression (2 sets); b) JPEG compression (2 sets);
c) white noise contamination (1 set); d) Gaussian blur (1
set); and e) fast fading channel distortion of JPEG2000

compressed bitstream (1 set). The subjective test was
carried out with each dataset individually, and a cross-
comparison set that mixes images from all distortion
types is then used to align the subject scores across
datasets. The alignment process is rather crude, but the
aligned subjective scores (all data) are still useful ref-
erences for testing general-purpose IQA algorithms, for
which cross-distortion comparisons are highly desirable.

2) The Cornell-A57 database [48] contains 54 distorted
images with six types of distortions: a) quantization
of the LH subbands of a five-level discrete wavelet
transform, where the subbands were quantized via uni-
form scalar quantization with step sizes chosen such
that the RMS contrast of the distortions was equal;
b) additive Gaussian white noise; c) baseline JPEG
compression; d) JPEG2000 compression without visual
frequency weighting; e) JPEG2000 compression with the
dynamic contrast-based quantization algorithm, which
applies greater quantization to the fine spatial scales
relative to the coarse scales in an attempt to preserve
global precedence; and f) blurring by using a Gaussian
filter.

3) The IVC database [49], [50] includes 185 distorted
images with four types of distortions, which are:
a) JPEG compression; b) JPEG2000 compression:
c) local adaptive resolution (LAR) coding: and
d) blurring.

4) The Toyama-MICT database [51] contains 196 images,
including 168 distorted images generated by JPEG and
JPEG2000 compression.

5) The Tampere Image database 2008 (TID2008) [52],
[53] includes 1700 distorted images with 17 distortion
types at four distortion levels. The types of distortions
are: a) additive Gaussian noise; b) additive noise in
color components more intense than additive noise in
the luminance component; c) Spatially correlated noise;
d) masked noise; e) high-frequency noise; f) impulse
noise; g) quantization noise; h) Gaussian blur; i) image
denoising; j) JPEG compression; k) JPEG2000 Com-
pression; l) JPEG transmission errors; m) JPEG2000
transmission Errors, n) Non-eccentricity pattern noise;
o) local block-wise distortions of different intensity;
p) mean shift (intensity shift); and q) contrast change.

6) The Categorical Image Quality (CSIQ) database [54]
contains 866 distorted images of six types of distortions
at 4 and 5 distortion levels. The distortion types include
JPEG compression, JPEG2000 compression, global con-
trast decrements, additive pink Gaussian noise, and
Gaussian blurring.

To validate the proposed RR-SSIM algorithm, we first test
how well it predicts FR SSIM. Fig. 4 shows the scatter plots
obtained using all six databases, where each point in the plots
represents one test image, and the vertical and horizontal axes
are FR-SSIM and RR-SSIM, respectively. If the prediction is
perfect, then the point should lie on the diagonal line. To pro-
vide a quantitative measure, Table I shows the mean absolute
error (MAE) and Pearson linear correlation coefficient (PLCC)
between FR SSIM and our RR-SSIM estimate. It can be
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Fig. 4. Scatter plots of SSIM versus RR-SSIM estimation Ŝ for six test databases. (a) LIVE Image Database. (b) Cornell A57 Database. (c) CSIQ Database.
(d) IVC Database. (e) Toyama-MICT Database. (f) TID 2008 Database.

TABLE I

MAE AND PLCC COMPARISONS BETWEEN SSIM AND

RR SSIM ESTIMATION FOR SIX DATABASES

Database MAE PLCC
LIVE [44] 0.0317 0.9432

Cornell A57 [48] 0.0266 0.9299
IVC [49], [50] 0.0244 0.9211

Toyama-MICT [51] 0.0119 0.9405
TID2008 [52], [53] 0.0303 0.9004

CSIQ [54] 0.0339 0.9243

observed that, for all databases, the points are scattered close to
the diagonal lines in Fig. 4 and the correlation coefficients are
above 0.9, indicating good prediction accuracy of the proposed
method. The breakdown prediction performance for individual
distortion types in different databases are provided in Table II.

The ultimate goal of RR-IQA algorithms is to predict
subjective quality evaluation of images. Therefore, the more
important test is to evaluate how well they predict subjective
scores. For this purpose, we use five evaluation metrics to
assess the performance of IQA measures.

1) PLCC after a nonlinear mapping between the subjective
and objective scores. For the i th image in an image
database of size N , given its subjective score oi [mean
opinion score (MOS) or difference of MOS (DMOS)
between reference and distorted images] and its raw
objective score ri , we first apply a nonlinear function
to ri given by [55]

q(r) = a1

{
1

2
− 1

1 + exp [a2(r − a3)]

}
+a4r +a5 (15)

where a1–a5 are model parameters found numeri-
cally using a nonlinear regression process in MATLAB

optimization toolbox to maximize the correlations
between subjective and objective scores. The PLCC
value can then be computed as

PLCC =
∑

i (qi − q̄) ∗ (oi − ō)√∑
i (qi − q̄)2 ∗ ∑

i (oi − ō)2
. (16)

2) MAE is calculated using the converted objective scores
after the nonlinear mapping described above

MAE = 1

N

∑
|qi − oi |. (17)

3) Root mean-squared (RMS) error is computed similarly
as

RMS =
√

1

N

∑
(qi − oi )2. (18)

4) Spearman’s rank correlation coefficient (SRCC) is
defined as

SRCC = 1 − 6
∑N

i=1 d2
i

N(N2 − 1)
(19)

where di is the difference between the i th image’s ranks
in subjective and objective evaluations. SRCC is a non-
parametric rank-based correlation metric, independent of
any monotonic nonlinear mapping between subjective
and objective scores.

5) Kendall’s rank correlation coefficient (KRCC) is another
nonparametric rank correlation metric given by

KRCC = Nc − Nd
1
2 N(N − 1)

(20)

where Nc and Nd are the number of concordant and
discordant pairs in the dataset, respectively.
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TABLE II

DISTORTION TYPE BREAKDOWN FOR MAE AND PLCC COMPARISONS

BETWEEN SSIM AND RR-SSIM ESTIMATION

Distortion type Database MAE PLCC

Additive Gaussian noise
LIVE 0.0340 0.9903

TID2008 0.0185 0.9522
CSIQ 0.0274 0.9771

Noise in color comp. TID2008 0.0080 0.8978
Spatially corr. noise TID2008 0.0331 0.9580
Masked noise TID2008 0.0057 0.5982
High frequency noise TID2008 0.0227 0.9621
Additive pink noise CSIQ 0.0212 0.9712
Impulse noise TID2008 0.0222 0.9667
Quantization noise TID2008 0.0316 0.7584

Gaussian blur

LIVE 0.0412 0.8973
IVC 0.0342 0.9288

TID2008 0.0416 0.8892
CSIQ 0.0260 0.9783

Image denoising TID2008 0.0444 0.8721

JPEG compression

LIVE (Set 1) 0.0214 0.9867
LIVE (Set 2) 0.0235 0.9840

IVC 0.0141 0.9476
Toyama-MICT 0.0144 0.9007

TID2008 0.0253 0.9325
CSIQ 0.0490 0.8895

JPEG2000 compression

LIVE (Set 1) 0.0197 0.9820
LIVE (Set 2) 0.0229 0.9792

IVC 0.0296 0.9321
Toyama-MICT 0.0093 0.9472

TID2008 0.0482 0.9009
CSIQ 0.0452 0.9223

LAR compression IVC 0.0227 0.9426
JPEG trans. error TID200 0.0420 0.8990

JPEG2000 trans. error
LIVE 0.0434 0.9138

TID2008 0.0601 0.9074
Non-ecc. patt. noise TID2008 0.0149 0.8863
Local blockwise dist. TID2008 0.0117 0.8837
Mean shift TID2008 0.0367 0.8205

Contrast change
TID2008 0.0485 0.7085

CSIQ 0.0372 0.9486

Among the above metrics, PLCC, MAE, and RMS are
adopted to evaluate prediction accuracy [56], and SRCC
and KRCC are employed to assess prediction monotonicity
[56]. A better objective IQA measure should have higher
PLCC, SRCC, and KRCC, with lower MAE and RMS val-
ues. All these evaluation metrics are adopted from previous
IQA studies [55]–[57]. Only the distorted images in the six
databases were employed in our tests (i.e., reference images
are excluded). This avoids several difficulties in computing
the evaluation metrics. Specifically, the reference images have
infinite peak signal-to-noise-ratio (PSNR) values, making it
hard to perform nonlinear regression and compute PLCC,
MAE, and MSE values. In addition, since all reference images
are assumed to have perfect quality, there are no natural
relative ranks between them, resulting in ambiguities when
computing SRCC and KRCC metrics.

The test results are given in Tables III and IV. To provide
background comparisons, we have also included in the tables
four other objective IQA algorithms, among which two are FR-
IQA measures, i.e., PSNR and SSIM, and three are RR-IQA
measures, i.e., wavelet marginal-based method [23], [24] and

DNT marginal-based method [25]. Other RR-IQA methods are
not included in the comparison because they are not designed
and tested for general-purpose applications. Although it is
unfair to compare RR-IQA with FR-IQA measures, the PSNR
and SSIM results supply useful references on the current status
of RR approaches. To provide an overall evaluation of the IQA
algorithms, we also calculate the direct and weighted average
of PLCC, SRCC, and KRCC values across all six databases
(where the weight assigned to a database is determined by the
number of test images in a database). The average results are
given in Table IV. It can be seen that, in general, the proposed
RR-SSIM method performs slightly inferior to SSIM (which
is as expected) but significantly outperforms PSNR and the
other RR-IQA methods under comparison.

Statistical significant analysis has been carried out based on
variance-based hypothesis testing, which follows the approach
introduced in [55] and subsequently adopted by many later
papers in the literature. Specifically, the residual difference
between the DMOS and the predicted quality given by each
objective IQA algorithm is assumed to be Gaussian-distributed
and F-statistic is employed to compare the variances of two
sets of sample points. With such a test, we can make a
statistically sound judgment of the superiority or inferiority
of one IQA algorithm over another. A statistical significance
matrix is calculated and given in Table V. Each entry in the
table consists of six characters which correspond to the six
publicly available databases in the order of {LIVE, A57, CSIQ,
IVC, Toyama, TID2008}. The symbol “-” denotes that the two
IQA methods are statistically indistinguishable, “1” denotes
that the IQA method of the row is statistically better than that
of the column, and “0” denotes that the IQA method of the
column is better than that of the row. It can be observed that
FR-SSIM performs the best among the IQA algorithms under
comparison and the performance of the proposed RR-SSIM
algorithm is quite close to that of SSIM and is superior to all
other IQA methods being compared.

The assumption of Gaussianity is verified with the help
of kurtosis values obtained from the prediction residuals. As
in [55], the residual values are considered to be Gaussian-
distributed if the kurtosis value lies between 2 and 4. The
results of Gaussianity tests are given in Table VI, where
“1” means the distribution is considered Gaussian and “0”
otherwise. It can be observed that the assumption is met in
most cases with only a few exceptions.

To examine how the proposed RR-SSIM method performs
for different distortion types, we compare it with five other
recently proposed RR-IQA algorithms using individual distor-
tion types as well as the “All data” case of the LIVE database.
The results are given in Table VII, where the best results
for each distortion type are highlighted in bold. It can be
observed that the proposed method exhibits highly competitive
performance in most cases.

Finally, we compare the computational complexity of the
proposed RR-SSIM method with five other RR-IQA algo-
rithms. The results are reported in Table VIII, where we
present the average time taken per image, over all the
images in the LIVE database, using a computer with Intel i7
processor at 2.67 GHz (the only exception is the method by
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TABLE III

PERFORMANCE COMPARISONS OF IQA MEASURES USING SIX DATABASES

LIVE database (779 Images) [44] Cornell A57 database (54 Images) [48]
IQA measure Type PLCC MAE RMS SRCC KRCC PLCC MAE RMS SRCC KRCC

PSNR FR 0.8721 10.5248 13.3683 0.8755 0.6863 0.6346 0.1606 0.1899 0.6188 0.4309
SSIM [1] FR 0.9448 6.9324 8.9455 0.9479 0.7962 0.8017 0.1209 0.14688 0.8066 0.6058

Wavelet marginal [24] RR 0.8226 10.5248 13.3683 0.8755 0.6863 0.5125 0.1971 0.2317 0.31398 0.2210
DNT marginal [25] RR 0.8949 9.7321 11.7862 0.8882 0.7126 0.5474 0.1659 0.2057 0.5058 0.3638

RR-SSIM RR 0.9194 9.1889 11.3026 0.9129 0.7349 0.7044 0.1433 0.1744 0.7301 0.5345

IVC database (185 Images) [49], [50] Toyama-MICT database (168 Images) [51]
IQA measure Type PLCC MAE RMS SRCC KRCC PLCC MAE RMS SRCC KRCC

PSNR FR 0.6719 0.7190 0.9023 0.6884 0.5217 0.6329 0.7817 0.9688 0.6131 0.4442
SSIM [1] FR 0.9119 0.3776 0.4999 0.9018 0.7223 0.8886 0.4385 0.5738 0.8793 0.6939

Wavelet marginal [24] RR 0.5311 0.8550 1.0322 0.4114 0.2907 0.6542 0.7742 0.9464 0.6322 0.4570
DNT marginal [25] RR 0.6316 0.7842 0.9446 0.6099 0.4364 0.6733 0.7507 0.9253 0.6521 0.4764

RR-SSIM RR 0.8177 0.5619 0.7014 0.8154 0.6164 0.8051 0.5648 0.7423 0.8003 0.6090

TID 2008 database (1700 Images) [52], [53] CSIQ database (866 Images) [54]
IQA measure Type PLCC MAE RMS SRCC KRCC PLCC MAE RMS SRCC KRCC

PSNR FR 0.5232 0.8683 1.1435 0.5530 0.4027 0.7512 0.1366 0.1732 0.8058 0.6083
SSIM [1] FR 0.7731 0.6546 0.8510 0.7749 0.5767 0.8612 0.0991 0.1334 0.8756 0.6906

Wavelet marginal [24] RR 0.5891 0.8666 1.0843 0.5119 0.3589 0.7124 0.1492 0.1842 0.7431 0.5457
DNT marginal [25] RR 0.5964 0.8287 1.0772 0.5722 0.4188 0.7009 0.1535 0.1872 0.7027 0.5176

RR-SSIM RR 0.7231 0.7190 0.9270 0.7210 0.5236 0.8426 0.1092 0.1413 0.8527 0.6540

TABLE IV

AVERAGE PERFORMANCE OF IQA MEASURES OVER SIX DATABASES

Direct average Database-size weighted average
IQA measure Type PLCC SRCC KRCC PLCC SRCC KRCC

PSNR FR 0.6811 0.6924 0.5157 0.6622 0.6887 0.5172
SSIM [1] FR 0.8636 0.8643 0.6809 0.8416 0.8455 0.6615

Wavelet marginal [24] RR 0.6371 0.5813 0.4266 0.6651 0.6383 0.4691
DNT marginal [25] RR 0.6741 0.6552 0.4876 0.6870 0.6724 0.5053

RR-SSIM RR 0.8021 0.8054 0.6121 0.7995 0.7996 0.6061

TABLE V

STATISTICAL SIGNIFICANCE MATRIX BASED ON IQA − DMOS RESIDUALS

Model PSNR SSIM Wavelet marginal [24] DNT marginal [25] RR-SSIM
PSNR - - - - - - 0 - 0 0 0 0 1 - - - - 0 0 - 1 - - 0 0 - 0 0 0 0
SSIM 1 - 1 1 1 1 - - - - - - 1 1 1 1 1 1 1 1 1 1 1 1 1 - - 1 - -

Wavelet Marginal [24] 0 - - - - 1 0 0 0 0 0 0 - - - - - - 0 - - - - - 0 0 0 0 0 0
DNT Marginal [25] 1 - 0 - - 1 0 0 0 0 0 0 1 - - - - - - - - - - - 0 - 0 0 0 0

RR-SSIM 1 - 1 1 1 1 0 - - 0 - - 1 1 1 1 1 1 1 - 1 1 1 1 - - - - - -

Ma et al. [60], which was tested on a slightly faster computer).
This measurement provides a rough estimate of the relative
computational complexity between different RR-IQA algo-
rithms, as no code optimization has been done. It can be seen
that the proposed method takes only slightly more time than
most of the other methods under comparison, mainly due to the
computation of the DNT. The additional computational cost is
compensated by the improved quality prediction performance,
as shown in Table VII.

IV. IMAGE REPAIRING USING RR FEATURES

Since the RR features reflect certain properties about the
reference image and these properties may be altered in the
distorted image, they may be employed to partially “repair”
the distorted image. Here we provide an example that uses
DNT-domain RR features to correct blurred images without
any knowledge about the blur kernel.

Since blur reduces energy at mid- and high-frequencies,
the subband standard deviation σd of DNT coefficients in the
distorted image is smaller than that of the reference image σr .
A straightforward way to enforce a “corrected” image to have
the same statistical properties as the reference image is to scale
up all DNT coefficients in the subband of the distorted image
by a fixed scale factor, followed by an inverse DNT to create
a reconstructed image. In practice, however, inverting a DNT
transform is a nontrivial issue that requires specific conditions
of the coefficients and may involve computationally expensive
algorithms [61].

Here we propose a different approach that attempts to match
DNT-domain statistics but avoids direct inversion of DNT. The
idea is to use the DNT-domain statistics to estimate the scale
factors and then apply them in the wavelet domain rather than
DNT domain. As a result, only inverse wavelet transform is
necessary, and the remaining question becomes whether the
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TABLE VI

GAUSSIANITY OF IQA−DMOS RESIDUALS

LIVE A57 CSIQ IVC Toyama TID 2008
PSNR 1 1 1 1 1 1
SSIM 1 1 0 0 1 1

Wavelet Marginal [24] 1 1 1 1 1 1
DNT Marginal [25] 1 1 1 1 1 1

RR-SSIM 1 1 1 0 1 1

TABLE VII

PERFORMANCE COMPARISON OF RR-IQA ALGORITHMS USING LIVE DATABASE

Distortion JP2(1) JP2(2) JPG(1) JPG(2) Noise Blur FF All data
PLCC

Wavelet marginal [24] 0.9339 0.9488 0.8278 0.9566 0.8769 0.8395 0.9230 0.8284
DNT marginal [25] 0.9470 0.9625 0.8228 0.9627 0.9598 0.9523 0.9438 0.8949

βW-SCM [58] 0.9514 0.9569 0.8673 0.9568 0.9755 0.9454 0.9243 0.8353
Zhang et al. [59] 0.9087 0.9511 0.9094 0.9777 0.8623 0.9234 0.9392 0.8744

Ma et al. [60] 0.8065 0.8819 0.8180 0.9663 0.8769 0.9092 0.9178 0.8841
RR-SSIM 0.9597 0.9632 0.9448 0.9761 0.9772 0.9154 0.9315 0.9194

SRCC
Wavelet marginal [24] 0.9370 0.9419 0.8109 0.8936 0.8600 0.8757 0.9212 0.8270

DNT marginal [25] 0.9439 0.9556 0.8246 0.8853 0.9508 0.9599 0.9431 0.8882
βW-SCM [58] 0.9495 0.9517 0.8535 0.8705 0.9715 0.9371 0.9258 0.8391

Zhang et al. [59] 0.9134 0.9495 0.9105 0.9294 0.8417 0.9265 0.9365 0.8832
Ma et al. [60] 0.7945 0.8717 0.8042 0.9100 0.8619 0.9214 0.8866 0.8807

RR-SSIM 0.9555 0.9539 0.9493 0.8978 0.9642 0.8692 0.9137 0.9129

TABLE VIII

COMPARISON OF COMPUTATION TIME USING LIVE DATABASE (SECONDS/IMAGE)

Model Wavelet marginal [24] DNT marginal [25] βW-SCM [58] Zhang et al. [59] Ma et al. [60] RR-SSIM
Time 6.3719 10.3843 6.6258 3.4937 18 11.2309
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Fig. 5. DNT-coefficient histograms of original, distorted, and repaired images.

desired scale ratio in the DNT domain can be well matched
by scaling in the wavelet domain. To ensure this, we apply our
approach in an iterative manner, and the resulting algorithm
is given by Algorithm 1. In our experiment, we find that
this iterative algorithm converges quickly, and typically three
iterations are enough to reconstruct a stable repaired image
(and thus J = 3 in Algorithm 1) that matches the DNT-
domain statistics quite well. This is demonstrated in Fig. 5,
which compares the subband histograms of the reference,
distorted, and repaired DNT coefficients. It can be observed
that the histogram of the scaled DNT coefficients very well
approximates that of the reference image. A similar design
philosophy of iteratively synthesizing images by matching
desirable statistical features has been used before in the
literature for texture synthesis, e.g., [62].

Algorithm 1 Iterative image repairing algorithm

1) Initialization: Let j = 0, x̂(0) = y, where y is the
distorted image

2) Repeat J times

a) Wavelet transform: Compute wavelet transform of
x̂( j ), resulting in wavelet coefficients ω

b) DNT stage: Compute DNT from ω, resulting in
DNT coefficients ν; For all i , in the i th subband,
calculate std of DNT coefficients σ i

ν
c) Scaling factor calculation: For all i , in the i th

subband, compute the scale factor si = σ i
r /σ i

ν ,
where σ i

r is the std of DNT coefficients of the
reference image (obtained as RR features)

d) Wavelet coefficient scaling: For all i , in the i th
subband, let ωnew = siω

e) Image reconstruction: Compute inverse wavelet
transform of ωnew, resulting in x̂( j+1)

f) Increase j by 1

3) Report reconstructed image: x̂ = x̂(J )

An interesting feature of the above image deblurring process
is that it does not require any information about the blur
kernel. Depending on the nature of the blur process, the energy
reductions at different subbands are different. For example,
out-of-focus blur may lead to uniform energy reduction in
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Fig. 6. Repairing homogeneously and directionally burred images using RR features. (a) Original “building” image (cropped for visibility). (b) Homogeneously
blurred image, SSIM = 0.7389, (Ŝ) = 0.7118. (c) Repaired image SSIM = 0.9142, (Ŝ) = 0.9327. (d) Directionally blurred image (0 degree), SSIM = 0.6734,
(Ŝ) = 0.6821. (e) Repaired image SSIM = 0.7991, (Ŝ) = 0.8063. (f) Directionally blurred image (45 degree), SSIM = 0.6612, (Ŝ) = 0.6324. (g) Repaired
image SSIM = 0.7896, (Ŝ) = 0.8135.

all orientation subbands, while motion blur could result in
more significant energy reduction along one orientation against
another. Since the scale factor s in our algorithm is computed
for individual subbands independently, it could automatically
adapt the energy correction factors based on the energy
reduction occurred in individual subbands. Fig. 6 provides
an example, where the homogeneously Gaussian blurred and
directionally motion blurred images at different angles are
deblurred using exactly the same image repairing algorithm
described above. All repaired images appear to be much
sharper and have higher contrast than their blurred versions.
The visual effect is also reflected by both FR-SSIM and the
proposed RR-SSIM evaluations.

One needs to be aware that the RR features only provide
limited amount of additional information about the reference
image and such information is global in the current imple-
mentation (due to the nature of the extracted RR features).
Therefore, the same repairing process may or may not work
as effectively as we observe in Fig. 6 for the types of image
distortions other than linear blur. In the future, more advanced
image repairing methods may be developed that make the
best use of the RR features as side information in the image
repairing process, though these methods are beyond the scope
of this paper.

V. CONCLUSION

We proposed an RR-IQA algorithm in an attempt to
approximate FR-SSIM by making use of DNT-domain image
statistical properties and the design principle of the SSIM
approach. Experimental results using six publicly available

subject-rated image databases showed that the proposed RR-
SSIM method exhibits good correlations with not only FR-
SSIM but also subjective evaluations of image quality over
a wide variety of image distortions. We also demonstrated
the concept of image repairing by iteratively matching the
DNT-domain statistical properties (available as RR features)
of the reference image. The proposed method has a fairly
low RR data rate (36 scalar features per image in the current
implementation) and has good potential to be employed in
visual communications applications for quality monitoring,
streaming, and image repairing tasks.
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