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Robust Multi-Exposure Image Fusion: A Structural
Patch Decomposition Approach

Kede Ma, Student Member, IEEE, Hui Li, Student Member, IEEE, Hongwei Yong, Zhou Wang, Fellow, IEEE,
Deyu Meng, Member, IEEE, and Lei Zhang, Senior Member, IEEE

Abstract— We propose a simple yet effective structural patch
decomposition approach for multi-exposure image fusion (MEF)
that is robust to ghosting effect. We decompose an image patch
into three conceptually independent components: signal strength,
signal structure, and mean intensity. Upon fusing these three
components separately, we reconstruct a desired patch and place
it back into the fused image. This novel patch decomposition
approach benefits MEF in many aspects. First, as opposed to
most pixel-wise MEF methods, the proposed algorithm does not
require post-processing steps to improve visual quality or to
reduce spatial artifacts. Second, it handles RGB color channels
jointly, and thus produces fused images with more vivid color
appearance. Third and most importantly, the direction of the
signal structure component in the patch vector space provides
ideal information for ghost removal. It allows us to reliably
and efficiently reject inconsistent object motions with respect
to a chosen reference image without performing computationally
expensive motion estimation. We compare the proposed algorithm
with 12 MEF methods on 21 static scenes and 12 deghosting
schemes on 19 dynamic scenes (with camera and object motion).
Extensive experimental results demonstrate that the proposed
algorithm not only outperforms previous MEF algorithms on
static scenes but also consistently produces high quality fused
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images with little ghosting artifacts for dynamic scenes. Moreover,
it maintains a lower computational cost compared with the state-
of-the-art deghosting schemes.!

Index Terms— Multi-exposure image fusion, high dynamic
range imaging, structural patch decomposition, deghosting.

I. INTRODUCTION

ATURAL scenes often span greater dynamic ranges of

luminance values than those captured by commercial
imaging products [2]. High dynamic range (HDR) imaging
techniques overcome this limitation by first capturing multiple
pictures with different exposure levels and then reconstruct-
ing an HDR image through inverting the camera response
function (CRF). The main challenge is the estimation of
CRF, which is an ill-posed problem. Additional information
(e.g., exposure time) and constraints (e.g., assuming some
particular parametric forms for CRF) are needed in order to
break the self-similar and exponential ambiguities [3], [4].
After acquiring HDR images, a tone mapping process is
needed to compress the dynamic range of HDR images for
display purpose, since most standard displays currently in
use are of low dynamic range (LDR) [5]. Multi-exposure
image fusion (MEF) provides a cost-effective alternative to
circumvent the gap between HDR imaging and LDR displays.
Taking the source image sequence with different exposure
levels as input, it directly synthesizes an LDR image that is
expected to be more informative and perceptually appealing
than any of the input images [6], [7].

Since first introduced in 1980’s [6], MEF has been attracting
considerable interest from both academia and industry. Most
existing MEF algorithms are pixel-wise methods [8]-[13],
which however suffer from a main drawback: the weight-
ing map is often too noisy and may result in various arti-
facts if directly applied to the fusion process. Thus, ad-hoc
remedies have been proposed to post-process the weight-
ing map by either smoothing [8]-[10] or edge preserv-
ing filtering [11]-[13]. To fairly compare these algorithms,
Ma et al. [7] made one of the first attempts to develop an
objective quality measure for MEF by combining the prin-
ciple of the structural similarity (SSIM) index [14] with a
patch consistency measure. We will refer to this measure as
MEF-SSIM in the rest of the paper.

Despite the demonstrated success, typical MEF algorithms
require the input source image sequence to be perfectly aligned

IThe MATLAB code of the proposed algorithm will be made available
online. Preliminary results of Section III-A [1] were presented at the IEEE
International Conference on Image Processing, Canada, 2015.
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Fig. 1. Demonstration of MEF in the presence of camera and object motion.
Source image sequence is aligned by SIFT feature matching to compute an
affine transformation matrix with an /51-norm loss. (a) Source image sequence
by courtesy of Sing Bing Kang [42]. (b) Mertens09 [9]. (c) SPD-MEF.
and there is little object motion in the scene. In practice, how-
ever, a small displacement due to hand-held cameras or object
motion (such as ripples and human movement) would neutral-
ize the advantages brought by MEF and cause artifacts referred
to as “ghosting”, as exemplified in Fig. 1. Similar problem
would occur in HDR reconstruction if the displacement is not
taken good care of [2]. The difference is that HDR reconstruc-
tion works in the radiance domain (where the value is linear
w.r.t. the exposure time), while MEF works in the intensity
domain (after applying CRF to the radiance value). Compared
with object motion, camera motion is relatively easy to tackle
via either setting a tripod or employing some registration
techniques [15]-[17]. As a result, substantial efforts have been
put to develop ghost removal algorithms with an emphasis on
object motion. Many existing deghosting algorithms require
pixel- or patch-level motion estimation [18]-[21], and their
performance is highly dependent on the motion estimation
accuracy. Some other methods [22], [23] impose a low rank
constraint on the input sequence using a non-convex iterative
optimization framework, which typically require more than 3
input images to provide a reasonable low rank structure. One
problem shared by these design principles is that they suffer
from high computational burden, which may not be affordable
by mobile devices.

In this paper, we propose a simple yet robust MEF method,
which we name structural patch decomposition (SPD) based
MEF (SPD-MEF). Different from the commonly used pixel-
wise MEF methods in the literature, we work on image
patches. Specifically, we first decompose an image patch into
three conceptually independent components: signal strength,
signal structure and mean intensity, and process each com-
ponent based on patch strength, exposedness and structural
consistency measures. This novel patch decomposition brings
many benefits to the fusion process. First, the weighting maps
generated by SPD-MEF are free of noise. As a result, the pro-
posed method does not need post-processing steps to improve
the perceived quality or to suppress the spatial artifacts of
fused images. Second, it makes use of color information
more naturally by treating RGB color channels of an image
patch jointly. More importantly, the direction information of
the signal structure component enables us to easily check
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the structural consistency of multi-exposure patches so as to
produce a high quality fused image with little ghosting arti-
facts. We conduct comprehensive experiments by comparing
SPD-MEF with 12 MEF methods on 21 static scenes and
12 ghost removal schemes on 19 dynamic scenes (in the pres-
ence of camera and object motion). The proposed SPD-MEF
method consistently produces better quality fused images for
static scenes qualitatively and quantitatively (in terms of the
MEF-SSIM index [7]). It also provides significant perceptual
gains for dynamic scenes while keeping the computational
complexity manageable as verified by our complexity analysis
and execution time comparison.

The rest of the paper is organized as follows. Section II
reviews existing MEF and ghost removal algorithms.
Section III presents in detail the robust SPD-MEF algorithm
that is resistant to ghosting effect. Section IV compares the
proposed SPD-MEF algorithm with representative MEF and
deghosting methods, followed by the computational complex-
ity analysis. We conclude the paper in Section V.

II. RELATED WORK
A. MEF Algorithms for Static Scenes

Most existing MEF algorithms are pixel-wise methods that
typically follow a weighted summation framework

K
X(@i) = D Wi)Xe (), (1)
k=1

where K is the number of input images in the multi-exposure
source sequence, Wy (i) and Xy (i) indicate the weight and
intensity values at the i-th pixel in the k-th exposure image,
respectively; X represents the fused image. A straightforward
extension of this approach in transform domain is to replace
Xi (i) with transform coefficients. The weighting map Wy
often bears information regarding structure preservation and
visual importance of the k-th input image at the pixel level.
With specific models to quantify this information, existing
MEF algorithms differ mainly in the computation of Wy and
how it may adapt over space or scale based on image content.
In 1980’s, Burt and Adelson proposed the well known
Laplacian pyramid decomposition for binocular image
fusion [24]. This decomposition was later adopted by other
MEF algorithms [9], [25], [26] to refine W so as to reduce the
spatial distortions in the fused image. Edge preserving filters
such as bilateral filter [27], guided filter [28] and recursive
filter [29] had been applied to retrieve edge information
and/or refine Wy in [11], [30], [12], [31], and [13]. Box
and Gaussian filters were also common choices for MEF
algorithms to damp Wy [8]-[10]. Song et al. [32] incorporated
MEF into a MAP framework. Since no explicit refinement
of W; was introduced, the fused images tend to be noisy
on many test sequences. Another MAP based approach used
perceived local contrast and color saturation to construct Wy,
whose smoothing was done within a hierarchical multivariate
Gaussian framework [33]. A variational approach for MEF was
proposed in [34] by combining color matching and gradient
direction information. The noise problem of Wy is less salient
because only two input images are required, one serving as the
base layer and the other as the detail layer. Hara et al. [35]
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determined the global and local weights via gradient-based
contrast maximization and image saliency detection. The work
in [36] divided input images into several non-overlapping
patches and selected the ones with the highest entropy as the
winners. The blocking artifacts were reduced by a blending
function.

The above mentioned pixel-wise MEF methods need to
deliberately take into account the noisy characteristics of Wy.
Post-processing is a must to produce a reasonable fused image,
which is a main drawback of this type of methods. Moreover,
most existing MEF algorithms are only verified using limited
examples, without comprehensive verifications on databases
that contain sufficient variations of image content.

B. Ghost Removal Algorithms for Dynamic Scenes

As shown in Fig. 1, the MEF methods may produce ghost-
ing artifacts in the presence of camera and object motion.
To reduce such artifacts during fusion, a variety of ghost
removal algorithms have been proposed. In the radiance
domain,” the linearity between the sensor radiance and the
exposure time have been well exploited either directly [37]
or through some mathematical models such as energy mini-
mization [18], [38] and low rank minimization [22], [23]. The
assumption here is that the linearity should only be broken
when the scene changes due to moving objects, provided that
the alignment and CRF estimation are perfect. In addition,
Eden et al. selected one radiance value from one of the input
images for each spatial location as an attempt to eliminate
ghosting artifacts. However, moving object duplication or
deformation may appear [39].

In the intensity domain, the intensity mapping func-
tion (IMF) [3] has been heavily used to map between
intensity values of any two exposures, which makes the
motion estimation [40], [41] and the inconsistent motion
detection [19], [42], [43] easier. Exposure invariant features
also play an important role in detecting motion pixels,
which include image gradient and structure [21], [30], [44],
entropy [45] and median threshold bitmap [16], [46]. The
proposed ghost removal scheme takes advantage of the above
two strategies. We adopt an exposure invariant feature, namely
the structural consistency measure, to reject inconsistent
motions and refine the procedure with the help of IMF. Some
other algorithms also assume that the background dominates
the scene and moving objects only appear in one expo-
sure [13], [47] in order to simplify the ghost removal process.

Most existing ghost removal algorithms that deliver state-of-
the-art performance require motion estimation in an iterative
optimization framework, which suffers from substantial com-
putational complexity and is not suitable for mobile devices.
Moreover, deformation of objects often appears as a conse-
quence of inaccurate motion estimation.

III. STRUCTURAL PATCH DECOMPOSITION FOR MEF
In this section, we detail the proposed structural patch
decomposition (SPD) approach for MEF. We first describe a

2This type of methods assume the availability of CRF or raw radiance values
as in the case of in-camera image processing.
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baseline version that works for static scenes, and then extend
it to dynamic scenes by adding a structural consistency check,
resulting in the robust SPD-MEF algorithm.

A. Baseline SPD-MEF

Let {xx} = {xx|1 <k < K} be a set of color image patches
extracted at the same spatial location of the source sequence
that contains K multi-exposure images. Here x; for all k are
column vectors of CN? dimensions, where C is the number
of color channels of the input images and N is the spatial size
of a square patch. Each entry of the vector is one of the three
intensity values in RGB channels of a pixel in the patch. Given
a color patch, we first decompose it into three components:
signal strength, signal structure, and mean intensity

Xr — /uXk
X = |IXk — pxg I - ————— + Ux;
Xk — tx;
- Xj
= IXell - —— + ux,
Xl
= ck - Sk + I, 2
where || - || denotes the /> norm of a vector, ux, is the mean

value of the patch, and X; = x; — ux, denotes a mean-removed
patch. The scalar ¢y = |Xi||, the unit-length vector s; =
X« /|IXkll, and the scalar [y = ux, represent the signal strength,
signal structure, and mean intensity components of xj, respec-
tively. Any patch can be uniquely decomposed into the three
components and the process is invertible. As such, the problem
of constructing a patch in the fused image is converted to
processing the three components separately and then inverting
the decomposition.

We first process the component of signal strength. The
visibility of the local patch structure largely depends on local
contrast, which is directly related to signal strength. Usually,
the higher the contrast, the better the visibility. Considering
that all input source image patches as realistic capturing of
the scene, the patch that has the highest contrast among them
would correspond to the best visibility. Therefore, the desired
signal strength of the fused image patch is determined by the
highest signal strength of all source image patches

(oM

= max ¢y = max |[[Xgl. 3)
1<k<K 1<k<K

Different from signal strength, the unit-length structure
vector s; points to a specific direction in the CN? dimen-
sional space. The desired structure of the fused image patch
is expected to best represent the structures of all source
image patches. A simple implementation of this relationship
is given by

5 and 5o T SGOs
IIsll > et S (Xe)
where S(-) is a weighting function that determines the contri-
bution of each source image patch in the structure of the fused
image patch. Intuitively, the contribution should increase with
the strength of the image patch. A straightforward approach
that conforms with such an intuition is to employ a power
weighting function given by

S&i) = 1% 17, Q)

“)

S= —
s
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Fig. 2. Making use of color contrast. ¢; is the average signal strength of the k-th inset patch computed from RGB channels separately. ¢ is the corresponding
signal strength by treating RGB channels jointly. Source image sequence by courtesy of Tom Mertens [9]. (a) c; = 0.1, ¢; = 0.2. (b) ¢ = 0.3, co = 0.3.
(©) ¢3=03,c3=7.5.(d) ¢4 =0.0, cg = 0.0. (¢) Gul2 [8]. (f) Shutaol2 [13]. (g) SPD-MEF.

where p > 0 is an exponent parameter. With various choices
of the value of p, this general formulation leads to a family
of weighting functions with different physical meanings. The
larger the p is, the more emphasis is put on the patches that
have relatively larger strength.

Due to the construction of x; that stacks RGB channels
of a patch into one vector, Eq. (3) and Eq. (4) inherently
take into account color contrast and structure. An example
is shown in Fig. 2. For smooth patches (such as the door
frames in the middle of the image) that contain little structure
information, SPD-MEEF prefers the ones in the 3-rd image that
contain strong color information than grayish ones that usually
result from under/over-exposure. By contrast, MEF algorithms
that treat RGB channels separately may not make proper use
of color information and give patches across exposures similar
perceptual importance for fusion.

With regard to the mean intensity of the local patch, we
take a similar form of Eq. (4)

S L (i ) Ik
> L (s )

where L(-) is a weighting function that takes the global mean
value uy of the color image Xj and the local mean value of the
current patch x; as inputs. L(-) quantifies the well exposedness
of x; in X so that large penalty is given when Xj and/or xi
are under/over-exposed. We adopt a two dimensional Gaussian
profile to specify this measure

_ 2 _ 2
(e — p)® U —Lo) ) -

2 2
20, 20;

= (6)

L (uk, ) = CXP(—

where o, and o, control the spreads of the profile along
and [; dimensions, respectively. u. and /. are constants for
the mid-intensity values. For example, both uj and /. are 0.5
for source image sequences normalized to [0, 1].

Once &, § and [ are computed, they uniquely define a new
vector

X=¢-§+1. )
We extract patches from the source sequence using a moving
window with a fixed stride D. The pixels in overlapping
patches are averaged to produce the final output. By determin-
ing the desired patch using the proposed SPD approach, we
make full use of perceptually meaningful information scattered
across exposures in the same spatial location.

B. Robust SPD-MEF

We extend the baseline SPD-MEF to account for dynamic
scenes in the presence of camera and object motion.
We assume that the input source sequence is aligned, for
example by setting a tripod or some image registration algo-
rithms [15]-[17], [48]. This assumption is mild because the
camera motion is usually small and relatively uniform. In this
paper, we implement image registration by first performing
SIFT [17] matching and then computing an affine transfor-
mation matrix from matched points with an l1-norm loss.
It works well on all test sequences that need to be aligned.
The use of l;-norm loss is because it is robust to mis-
matched points and can be efficiently solved using iteratively
reweighted least squares. Similar to the methods in [37] and
[43], we also pick one exposure as the reference to determine
the motion appeared in the fused image and reject inconsistent
motions in the rest images w.r.t. it. Throughout the paper,
we select the one with normal exposure if the source image
sequence contains three input images. Otherwise, we choose
the one that has the least number of under- or over-exposed
patches, as suggested in [19], [20], [37], and [43].

Within the framework of the proposed SPD, it is very
convenient to detect inconsistent motions across exposures
by making use of the structure vector s;. To be specific,
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(b)

Demonstration of the structural consistency map. The girl in the source sequence is walking slowly from left to right. The 4-th exposure image is

chosen as the reference. (a) Source image sequence by courtesy of Zhengguo Li [43]. (b) Structural consistency maps corresponding to the above sequence.
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Fig. 4. The histograms of the structural consistency ratio p on the darkest regions of 19 test source sequences computed by Eq.(9) and Eq.(10), respectively.

(a) Using Eq.(9). (b) Using Eq.(10).

we compute the inner product between the reference signal
structure s, and the signal structure s; of another exposure

oo =sTs, = x — 1) (xx = 2
" Xy — LNl Xk — Ll
pi lies in [—1, 1] with a larger value indicating higher con-
sistency between sy and s,. Since s; is constructed by mean
removal and strength normalization, it is robust to exposure
and contrast variations. We make an additional modification
on Eq. (9) by adding a small constant € to both the numerator
and the denominator
_(x = IV (x — k) + €
1% — L llIxe — Il + €
The constant € is to ensure the robustness of the structural
consistency to sensor noise. More specifically, in the darkest
areas where signal strengths are weak, when the structure
vector s, is scaled to unit length, it will mainly contain
amplified noise structures, making the structural consistency
check in Eq. (9) unreliable. Fortunately, this issue can be
well addressed by adding € to both the denominator and the
numerator as in Eq. (10). In those regions, the noise strength

©)

Pk 10)

is small as compared to € and thus the consistency ratio pi
will be close to 1, regardless of the noise structure. To justify
our claim, we collect all the darkest regions of the reference
images in the 19 test source sequences used in the paper and
plot histograms of the structural consistency ratio p computed
by Eq. (9) and Eq. (10), respectively. As can be observed
in Fig. 4, adding € boosts p to be close to 1, which allows for
retrieving faithful structures from co-located regions in other
exposures.

To reject inconsistent patches, we binarize p; with a pre-
defined threshold T

~ 1 if pp > T

By = 1
“Tlo ifpe <7y (i

The corresponding binary map generated for each exposure
(including the reference which is uniformly one) is referred to
as the structural consistency map, as shown in Fig. 3. From
the figure, we observe that the inconsistent motions across
exposures are reliably identified with minimal false positive
detection, and the structure vectors of over-exposed areas in
the reference image (e.g., the clouds in the left part of the
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4-th image) are consistent with the same regions in other
exposures, which verifies our claim of properly handling
under- or over-exposed regions.

Although we leave open the possibility of filling in the
under- or over-exposed regions of the reference image with
structures from other exposures, we add another constraint
to check whether those structures are proper for fusion in
order to minimize ghosting artifacts by invoking IMF, which
is capable of mapping between intensity values of any two
exposures. For example, we can easily create a latent image
that contains the same motion as the 4-th image of Fig. 3(a)
but has an exposure level like the 2-nd image of Fig. 3(a)
by mapping the intensity values of the former to the latter
using IMF. We first create K — 1 latent images by mapping the
intensity values of the reference image to the rest K — 1 expo-
sures and compute the absolute mean intensity difference of
co-located patches in the k-th exposure and its corresponding
latent image. We again threshold the difference

_ 1 if |l —1| <T,
B:[ il =L < Tm (12)

0 if |l —Ifl = Ty .

where [, is the mean intensity of the co-located patch in
the k-th latent image created from the reference image and
T,, is a pre-defined threshold. We define the final structural
consistency measure w.r.t. a reference patch by multiplying
Bk and Bk

By :Bk«Bk. (13)
In general, By mainly works as a supplement to By to more
conservatively fill in the under- or over-exposed regions of the
reference image.

The remaining work is to incorporate By into our baseline
SPD-MEF. Specifically, for patches in other exposures that
are rejected through By, we compensate for them by choosing
the corresponding patches in their latent images generated by
IMF and the fusion process remains the same. By doing so,
we save substantial computation by avoiding explicit motion
estimation to find the corresponding patch in the original
image that may be in different intensities, orientations and
scales. Moreover, we are able to adjust the mean intensity
of the moving object in the reference image to adapt it to
the neighborhood environment, which avoids abrupt intensity
changes in a much cheaper way.

C. Implementation Details

We summarize the proposed SPD-MEF approach in
Algorithm 1. SPD-MEF has eight parameters in total, includ-
ing 1) a small positive constant € in Eq. (10), 2) the exponent
parameter p to determine the weight of the structure vector
component, 3-4) two Gaussian spread parameters o, and o;
to determine the weight of the mean intensity component,
5-6) two thresholds 7y and T,, that binarize the structural
consistency map, and 7-8) the patch size N and its associated
stride D. The details of how the parameters are set can be
found in the supplementary file to this paper. In the following,
we briefly present the parameter setting.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 5, MAY 2017

Algorithm 1 SPD-MEF

Input: Source image sequence {X;} = {X;|1 <k < K}
1: Select the reference image X, and create K — 1 latent
images {X} } = {X}.|k # r} of X, using IMF
2: for each reference patch x, do

3 Extract its co-located patches {xy, X} |k # r}

4: Check the structural consistency of {xj} using By,
5: Reject inconsistent x;, compensated by x|,

6 Compute ¢, § and I separately

7: Reconstruct the fused patch x = ¢-§ + [

8: end for

9: Aggregate fused patches into X
Output: Fused image X

The value of ¢ is inherited from the corresponding normal-
ization term of SSIM [14] and is equal to %(O.O3Ld)2, where
Ly is the maximum intensity value of the source sequence
(For a normalized sequence, L; = 1). It turns out that
SPD-MEEF is insensitive to €. The exponent parameter p and
two Gaussian spread parameters o, and o; in the baseline
SPD-MEF algorithm are jointly determined by maximizing
MEF-SSIM [7] on 5 held-out static source sequences using
a grid search method. The possible values of p, o, and oy
are chosen to be p € {1,2,.--,10}, 6, € {0.1,0.2,---,1}
and o7 € {0.1,0.2, - - - , 1}, respectively. In other words, there
are 1,000 possible parameter combinations and the one that
achieves the highest MEF-SSIM value on average is selected,
which turns out to be {p =4, o, =0.2, 0; = 0.5}.

The two thresholds Ty and T, are crucial for SPD-MEF
to work with dynamic scenes in the presence of camera
and object motion. Both 7y and 7, have the same range
[0, 1]. Ideally, the structural consistency map should be able to
reject inconsistent motions w.r.t. the reference exposure while
incorporating as many consistent patches as possible to make
full use of all valid information for fusion. Empirically, we find
that 7y = 0.8 and 7, = 0.1 make a good balance between
reliably identifying inconsistent motions across exposures and
having a low rate of false positive detection.

We now discuss the impact of patch size N on the fusion
performance and computational time. Intuitively, the larger the
N is, the more robust the signal structure vector is in terms of
structural consistency. However, the computational complexity
also increases with N significantly. We find that N = 21
provides a good balance between the performance and the
complexity. The stride of moving window is determined by
D = L%J accordingly.

Lastly, to generate latent images, we adopt IMF proposed
by Grossberg and Nayar [3], which is a non-iterative method,
robust to camera motion and can be efficiently implemented
by histogram matching. Specifically, the MATLAB func-
tion Imhistmatch with the default settings is used in our
implementation.

IV. EXPERIMENTAL RESULTS

In this section, we conduct comprehensive experiments to
verify the performance of SPD-MEF. Throughout the paper,
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(d

Fig. 5. Comparison of SPD-MEF with Shen15 [26] and Songl2 [32]. (a) Source image sequence by courtesy of Erik Reinhard [2]. (b) Songl2. (c) Shenl5.

(d) SPD-MEF.

we apply the proposed robust SPD-MEF algorithm to all
test sequences (both static and dynamic) with fixed para-
meter settings. We compare SPD-MEF with state-of-the-art
and representative MEF and deghosting algorithms that are
specifically designed for static or dynamic scenes. In par-
ticular, we first compare SPD-MEF with 12 existing MEF
methods on 21 static scenes both visually and in terms of
MEF-SSIM [7]. Then, 12 state-of-the-art ghost removal algo-
rithms are compared with SPD-MEF on 19 dynamic scenes
on 19 dynamic scenes (listed in Table III). Finally, we per-
form complexity analysis of state-of-the-art deghosting algo-
rithms and report their average execution time on 12 source
sequences. In order to make a fair comparison, all fusion and
deghosting results are either generated by the original authors
or by the codes that are publicly available with default settings.

A. Comparison With Existing MEF Algorithms

We test SPD-MEF on 21 static natural scenes with differ-
ent exposure levels against 12 existing algorithms. The test
source sequences are selected to span a variety of contents
including day and light, indoor and outdoor, human and still-
life scenes, as listed in Table I. The competing algorithms
are chosen to cover a diversity of types, including two simple
operators that linearly combine the input images using local
and global energy as weighting factors, denoted by LE and
GE, respectively, and sophisticated ones with different per-
ceptual emphasis such as Gul2 [8], Mertens09 [9], Lil2 [10],
Raman09 [11], Lil3 [12], Shutaol2 [13], Shenl5 [26],
Song12 [32], Shenl1 [58], Brucel4 [59].

Fig. 2 compares Gul2 [8], Shutaol2 [13] with SPD-MEF
on the “House” sequence. Based on gradient information,
Gul2 [8] focuses on detail enhancement only and ignores color
information, therefore it fails to preserve the color appearance
in the source sequence. Shutaol2 [13] treats RGB channels
separately, making it difficult to make proper use of color
information. As a result, the color in smooth areas (e.g.,
the walls and window frames) appears dreary. The global

TABLE I

INFORMATION ABOUT STATIC SOURCE SEQUENCES

Source sequence Size Image origin
Arno 339 x 512 x 3 Bartlomiej Okonek [49]
Balloons 339 x 512 x 9 Erik Reinhard [2]
Belgium house 384 x 512 x 9 Dani Lischinski [50]
Cave 384 x 512 x 4 Bartlomiej Okonek [49]
Chinese garden 340 x 512 x 3 Bartlomiej Okonek [49]
Church 512 x 335 x 3 Jianbing Shen [26]
Farmhouse 341 x 512 x 3 HDR projects [51]
House 340 x 512 x 4 Mertens09 [9]
Lamp 384 x 512 x 15 Martin Cadik [52]
Landscape 341 x 512 x 3 HDRsoft [53]
Laurenziana 512 x 356 x 3 Bartlomiej Okonek [49]
Madison capitol | 384 x 512 x 30 | Chaman Singh Verma [54]
Mask 341 x 512 x 3 HDRsoft [53]
Office 340 x 512 X 6 MATLAB [55]
Ostrow 341 x 512 x 3 Bartlomiej Okonek [49]
Room 341 x 512 x 3 Pangeasoft [56]
Set 341 x 512 x 3 Jianbing Shen [26]
Tower 512 x 341 x 3 Jacques Joffre [53]
Venice 341 x 512 x 3 HDRsoft [53]
Window 384 x 512 x 3 Hvdwolf [57]
Yellow hall 339 x 512 x 3 Jianbing Shen [26]

intensity of the fused image also changes drastically, where
the left part of the image is much brighter than the right part.
By contrast, the proposed method better preserves the color
information and the overall appearance of the fused image is
more appealing.

Fig. 5 shows the fused images produced by Shenl5 [26],
Songl2 [32] and SPD-MEF on the “Balloons” sequence.
Compared with Song12 [32], SPD-MEF produces more natural
and vivid color appearance on the sky and the meadow regions.
Moreover, it does a better job on structure preservation around
the sun area. On the contrary, the fused image produced by
Songl2 [32] suffers from color distortions and detail loss.
Shenl5 [26] produces images with sudden intensity changes
and uncomfortable colors which are either saturated or pale.

In Fig. 6, we compare Mertens09 [9] and Lil2 [10] with
SPD-MEF on the “Tower” sequence. In a recent subjective
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(d

Fig. 6. Comparison of SPD-MEF with Mertens09 [9] and Lil2 [10]. (a) Source image sequence by courtesy of Jacques Joffre [53]. (b) Mertens09. (c) Lil2.

(d) SPD-MEF.

TABLE I

PERFORMANCE COMPARISON OF SPD-MEF WITH EXISTING MEF ALGORITHMS USING MEF-SSIM [7]. THE QUALITY VALUE RANGES FROM 0 TO 1
WITH A HIGHER VALUE INDICATING BETTER PERCEPTUAL QUALITY. LE AND GE STAND FOR TWO NAIVE METHODS THAT LINEARLY COMBINE
THE INPUT IMAGES USING LOCAL ENERGY AND GLOBAL ENERGY AS WEIGHTING FACTORS, RESPECTIVELY

Raman09 Gul2 Shenll Shenl5 Brucel4 Mertens09  Lil3

Source sequence LE GE (1] (8] 58] [26] (59] 9] [12] SPD-MEF
Arno 0.846  0.960 0.946 0.890 0.955 0.846 0.946 0.991 0.969 0.984
Balloons 0.771  0.862 0.768 0.913 0.940 0.776 0.801 0.969 0.948 0.969
Belgium house 0.732  0.874 0.810 0.896 0.935 0.709 0.832 0.971 0.964 0.973
Cave 0.861  0.837 0.694 0.934 0.946 0.788 0.910 0.975 0.978 0.985
Chinese garden 0917 0.928 0911 0.927 0.964 0.767 0.941 0.989 0.984 0.991
Church 0911 0.948 0.898 0.866 0.959 0.878 0.931 0.989 0.992 0.993
Farmhouse 0942 0916 0.877 0.932 0.966 0.944 0.930 0.981 0.985 0.984
House 0.657 0.836 0.770 0.876 0.925 0.396 0.888 0.964 0.957 0.960
Lamp 0.577 0.836 0.729 0.875 0.917 0.539 0.758 0.969 0.929 0.956
Landscape 0.901 0.962 0.954 0.941 0.955 0.880 0.979 0.976 0.942 0.993
Laurenziana 0.881  0.940 0.934 0.873 0.956 0.881 0.950 0.988 0.987 0.987
Madison capitol | 0.780  0.886 0.763 0.864 0.940 0.542 0.804 0.977 0.968 0.983
Mask 0.876  0.940 0.918 0.879 0.964 0.827 0.939 0.987 0.979 0.988
Office 0.831  0.955 0.907 0.900 0.958 0.756 0.943 0.985 0.967 0.990
Ostrow 0.793  0.952 0.930 0.877 0.950 0.786 0.931 0.974 0.967 0.978
Room 0.904 0.932 0.916 0.853 0.945 0.729 0.938 0.974 0.986 0.978
Set 0.856  0.980 0.979 0911 0.974 0.873 0.975 0.986 0.960 0.988
Tower 0.898 0.912 0.895 0.932 0.946 0.779 0.948 0.986 0.986 0.986
Venice 0.846 0913 0.892 0.889 0.930 0.765 0.933 0.966 0.954 0.984
Window 0.884  0.941 0.922 0.876 0.959 0.879 0.937 0.982 0.971 0.982
Yellow hall 0.963  0.989 0.988 0.869 0.983 0.866 0.990 0.995 0.990 0.995
Average 0.839 0919 0.876 0.894 0.951 0.772 0914 0.980 0.970 0.982

user study [60], Mertens09 [9] performs the best on aver-
age among eight MEF algorithms [60]. Lil2 [10] is a
detail enhanced version of Mertens09 [9]. Compared with
Mertens09 [9], we can clearly observe perceptual gains on
the fused image produced by SPD-MEF. For example, the
structures of the tower at the top and the brightest cloud
area are much better preserved. Also, the color appearance
of the sky and the meadow regions is more natural and
consistent with the source sequence. Lil2 [10] is not able to
recover such structures lost by Mertens09 [9] but overshoots
the details of flowers that look artificial. Another comparison
of Mertens09 [9] with SPD-MEF can be found in Fig. 1.

SPD-MEF better recovers the details inside the stable and
makes the overall appearance brighter and warmer.

In order to evaluate the performance of MEF algorithms
objectively, we adopt MEF-SSIM (specifically designed for
MEF) that well correlates with subjective judgments [7].
MEF-SSIM [7] is based on the multi-scale SSIM framework
and a patch consistency measure. It keeps a good balance
between local structure preservation and global luminance
consistency. The quality value of MEF-SSIM ranges from
0 to 1 with a higher value indicating better quality. The
comparison results of SPD-MEF with 9 MEF algorithms
on 21 source sequences are listed in Table II, from which
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Fig. 7.

we observe that SPD-MEF is comparable to Mertens09 [9],
whose quality values are higher than other MEF algorithms
by a large margin. Note that MEF-SSIM [7] works with the
luminance component only and may underestimate the quality
gain of SPD-MEF since producing a natural and vivid color
appearance is one of its main advantages. In addition, the
differentiability of MEF-SSIM is relatively low at very high
image quality levels, a phenomenon similar to SSIM [14].
Nevertheless, in most testing cases, Mertens09 [9] and
SPD-MEF give the best performance compared to all other
methods (confirmed by visual inspection), but between the
two algorithms, the winner is not always clear. So overall the
MEF-SSIM results are reasonable.

B. Comparison With Existing Ghost Removal Algorithms

We then compare SPD-MEF with 12 state-of-the-art
ghost removal algorithms, including methods that require
motion estimation: Senl2 [18], Hul2 [19], Hul3 [20], and
Qinl5 [21]; methods that exploit low rank property of input
sequences: Leel4 [22] and Ohl5 [23]; and methods that

2527
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Comparison of SPD-MEF with Zhang12 [30], Shutaol2 [13], Pecel0 [46], Photomatix [61], and Lil4 [43]. (a) Source image sequence taken by us.
(b) Zhang12. (c) Shutaol2. (d) PecelO. (e) Photomatix. (f) Lil4. (g) SPD-MEF.

make use of other prior information about the sequences:
Shutaol2 [13], Zhangl2 [30], Gallo09 [37], Lil4 [43],
Pecel0 [46], and Photomatix [61]. For deghosting methods
that follow the HDR pipeline, Gallo09 [37], Senl2 [18],
Leel4 [22] and Gallo09 [37] recover the CRF using Debevec
and Malik’s method [62]. Ohl5 [23] utilizes the method
in Lee ef al. [4]. To generate an LDR image for display,
Gallo09 [37] tone maps the HDR image with the algo-
rithm proposed by Lischinski et al. [63]. Sen12 [18] fuses the
aligned LDR sequence using Mertens09 [9]. Lee14 [22] adopts
the MATLAB function tonemap. Ohl15 [23] applies the tone
mapping using the local adaptation method in Photoshop CS6.

Fig. 7 compares Shutaol2 [13], Zhangl2 [30], Lil4 [43],
Pecel0 [46], Photomatix [61], with SPD-MEF on the source
sequence “Office”. The former three algorithms do not need to
specify a reference image. The latter three methods including
SPD-MEF select the normal exposure one (2-nd) as the refer-
ence for fair comparison. From Fig. 7, one can observe that
Shutaol2 [13] and Zhang1?2 [30] suffer from visible ghosting
artifacts. This is not surprising because both algorithms assume
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Comparison of SPD-MEF with Gallo09 [37], Hul2 [19], Hul3 [20], Leel4 [22], and Photomatix [61]. (a) Source image sequence by courtesy of
Orazio Gallo [37]. (b) Gallo09. (c) Hul2. (d) Hul3. (e) Leel4. (f) Photomatix. (g) SPD-MEF.

TABLE III

INFORMATION ABOUT DYNAMIC SOURCE SEQUENCES

Source sequence Size Image origin
Arch 1024 x 669 x 5 Orazio Gallo [37]
Forrest 683 x 1024 x 4 Orazio Gallo [37]
Noise camera 480 x 640 x 10 Orazio Gallo [37]
Puppets 1024 x 812 x 5 Orazio Gallo [37]
Sculpture garden | 754 x 1024 X 5 Orazio Gallo [37]
Lady 1024 x 686 x 3 Jun Hu [20]
Horse 690 x 1024 x 3 | Sing Bing Kang [42]
Prof. JeonEigth 681 x 1024 x 7 Zhengguo Li [43]
YWFusionopolis | 681 x 1024 x 6 Zhengguo Li [43]
Corridor 768 x 1024 x 3 Us
Office 768 x 1024 x 3 Us
Brunswick 683 x 1024 x 3 Fabrizio Pece [46]
Cliffs1 683 x 1024 x 3 Fabrizio Pece [46]
Llandudno 683 x 1024 x 3 Fabrizio Pece [46]
Russl 683 x 1024 x 3 Fabrizio Pece [46]
Square 683 x 1024 x 3 Fabrizio Pece [46]
Tate3 683 x 1024 x 3 Fabrizio Pece [46]
Wroclav 683 x 1024 x 3 Fabrizio Pece [46]
Campus 648 x 1011 x 6 Wei Zhang [30]

that the background dominates the scene and the moving
objects only appear in one exposure, which is typically not
the case encountered in the real-world. Some areas (e.g., the
wall) of the fused images generated by the two algorithms

also exhibit abrupt intensity changes. Although PecelO [46]
successfully avoids ghost, it generates band distortions near the
person and fails to preserve details in areas such as the letters
of the paper on the table. The results of Lil4 [43] and Pho-
tomatix [61] are comparable to that of SPD-MEF, except for
some detail loss of the black jacket and the chair on the right.
SPD-MEF generates a fused image with vivid color appear-
ance and excellent detail preservation but exhibits some ghost-
ing artifacts.

In Fig. 8, we show the comparison results of Hul2 [19],
Hul3 [20], Leel4 [22], Gallo09 [37], Photomatix [61] together
with SPD-MEF on the source sequence “Forrest”, which
provides an ideal test for the robustness of deghosting schemes
in the presence of both tiny random motion (tree branches
in the wind) and large motion (person). The second image is
selected as the reference for all algorithms for fair comparison.
As can be seen, Leel4 [22] and Photomatix [61] suffer from
ghosting artifacts resulting from the person appearing in the
4-th image. Leel4 [22] also exhibits color speckle noise due to
the inaccurate CRF estimation. Hu13 [20] generates blurry tree
branches due to errors in motion estimation, which is difficult
to avoid in the presence of tiny random motion. Gallo09 [37]
has an overall dim appearance while Hul2 [19] has an overall
dazzling appearance with detail loss in their respective under-
and over-exposed areas. SPD-MEF on the other hand provides
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Fig. 9.
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Comparison of SPD-MEF with Senl2 [18], Hul3 [20], Qinl5 [21], Oh15 [23], and Lil4 [43]. The result of Ohl5 [23] is generated without

human intervention for fair comparison. (a) Source image sequence by courtesy of Orazio Gallo [37]. (b) Hul3. (c) Qinl5. (d) Senl2. (e) Ohl5. (f) Lil4.

(2) SPD-MEF.

a more vivid appearance with sharp edge and little ghost or
blur on tree branches and barks.

The comparison of SPD-MEF with Sen12 [18], Hul3 [20],
Qinl5 [21], Ohl15 [23], and Lil4 [43] on the source sequence
“Noise camera” is shown in Fig. 9. This sequence is captured
in a dark room with a high ISO sensitivity and thus contains
substantial sensor noise. An excellent MEF algorithm should
on one hand reject inconsistent small motions while on the
other hand make full use of all available information in the
source sequence to denoise the static scene areas by averaging
them. Note that the exposure level is set to be constant and
thus the same static scene area of each image should be treated
equally during fusion. Through this example, we observe that
Senl2 [18], Qinl5 [21], and Lil4 [43] rely much on the
reference image to reject inconsistent motions and are reluctant
to make use of information from other images. As a result,
substantial noise still remains in static areas such as the table
and wall. The noise in the fused image produced by Hu13 [20]
is less severe but still visible. Oh15 [23] does a good job in
noise removal in static scene areas but fails to prevent ghosting
artifacts on the person’s head and arm. This may be because
low rank schemes are proved to be effective in denoising
but small motions that do not follow the sparsity assumption

TABLE IV

COMPUTATIONAL COMPLEXITIES OF SPD-MEF AND STATE-OF-THE-ART
DEGHOSTING SCHEMES

Alg Complexity
Pecel0 [46] O(MK)
Sen12 [18] O(I;N2MK?)
Hul3 [20] | O(I;N2(M log M)K)
Leeld [22] O(I,I; MK?)
Lil4 [43] O(MK)
Ohl15 [23] O(I,I; MK?)
Qinl5 [21] O(I; N’ M?K)
SPD-MEF O(N?MK)

may result in artifacts. Overall, SPD-MEF is successful in
denoising static regions by taking advantage of the fusion
scheme and in preventing ghost in dynamic areas. However,
noise may not be removed in dynamic scene areas for all
algorithms.

C. Computational Complexity Comparison

We conduct a comprehensive computational complexity
analysis of state-of-the-art deghosting schemes together with
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TABLE V
AVERAGE EXECUTION TIME IN SECONDS ON 12 SOURCE SEQUENCES OF SIZE APPROXIMATELY 683 x 1024 x 3

Alg Senl2 [18] Hul3 [20] Leel4 [22] Qinl5 [21] Ohl5 [23] Pecel0 [46] SPD-MEF
Env MATLAB+Mex | MATLAB+Mex | MATLAB+Mex MATLAB+Mex MATLAB MATLAB MATLAB
Time (s) 75.28 £ 20.48 114.96 +£45.29 | 36.91 £11.55 | 465.06 +298.87 | 40.93+9.93 | 1.35+0.07 | 13.64£0.81

SPD-MEF in terms of the number of floating point opera-
tions. Here, we only consider the dominant computation for
all algorithms and make conservative estimates because the
details of some algorithms are not precisely clear. Suppose we
have K exposures, each of which contains M pixels, where
K <« M; the patch size used in patch-based methods is N?;
the iteration numbers used in the inner and outer loops for
iterative methods are I; and I,, respectively. For Lil4 [43]
and PecelO [46], all computation is point-wise operations
with a complexity of O(MK). For Senl2 [18], the heaviest
computation lies in computing the cost function through the
multi-source bidirectional similarity measure, which has a
complexity of O(I; N>MK?). The K> term results from the
nested summation over K exposures to compute the cost
function. For Hul3 [20], motion estimation using generalized
PatchMatch contributes to the main computation compared
with updating the latent image and refining the IMF, which
has a complexity of O(I;N>(M log M)K). For low rank
minimization based algorithms Leel4 [22] and Ohl5 [23],
the most costly operation is singular value decomposition
with a complexity of O(I,I;(MK? + K%)) = O(I,[; MK?)
without assuming any special structure of the matrix to be
decomposed. For Qinl5 [21], the most time-consuming step is
to find reliable motion estimation for nearly M patches with
an order of M candidate patches. Therefore, its complexity
is approximately O(I; N>M?K). The proposed SPD-MEF
approach has a complexity O(N>MK), where the N2 term
arises from SPD and the structural consistency check.

The complexities of competing algorithms are summarized
in Table IV, from which we can see that SPD-MEF has
a higher complexity than Lil4 [43] and PecelO [46], but
lower than Senl2 [18], Hul3 [20] and Qinl5 [21], and
Leel4 [22]/Oh15 [23]. It should be noted that the patch size
N? used in different algorithms may vary, and the number
of I, and I; may also vary for different algorithms and
sequences of different contents. To gain a concrete impression,
we report the execution time of the above algorithms (except
for Lil4 [43] whose code is not publicly available) for 12
source sequences of size approximately 683 x 1024 x 3 on a
computer with 4G Hz CPU and 32G RAM. From Table V, we
have several observations. First, the execution time conforms
to the computational complexity analysis. Second, the standard
deviations are relatively large for iterative methods, whose
iteration numbers depend on the image content. Third, our
proposed SPD-MEF algorithm keeps a good balance between
fusion performance and computational complexity.

D. Limitations of SPD-MEF

As can be seen from Fig. 7(g), the proposed SPD-MEF
algorithm may produce some visible halo artifacts around
sharp edges. This is because the mean intensity weights in

Eq. (6) may not create smooth enough transitions across
exposures near strong edges. Such artifact may be reduced
by adding extra constraints that encourage mean intensities
of adjacent exposures to be used for fusion. Another solution
is to extend SPD-MEF to a multi-scale scheme, which has
been used previously to reduce the halo artifacts in HDR
imaging and MEF [43]. On the other hand, the selection of
the reference image is important for SPD-MEF to deliver
satisfactory deghosting results, as in many HDR reconstruction
and MEF methods [18], [43], [64]. In certain extreme cases,
the moving objects in the reference image are under-/over-
exposed, and their structures cannot be properly inferred from
either IMF or other exposures. As a result, ghosting artifacts
would appear (shown in Fig. 7(g)). The problem is common
to most existing deghosting schemes and innovative methods
such as image inpainting [65] may come into play.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel structural patch decom-
position (SPD) approach for MEF. Different from most pixel-
wise MEF methods, SPD-MEF works on color image patches
directly by decomposing them into three conceptually inde-
pendent components and by processing each component sep-
arately. As a result, SPD-MEF generates little noise in the
weighing map and makes better use of color information
during fusion. Furthermore, reliable deghosting performance
is achieved by using the direction information of the structure
vector. Comprehensive experimental results demonstrated that
SPD-MEF produces MEF images with sharp details, vivid
color appearance and little ghosting artifacts while maintaining
a manageable computational cost.

The proposed SPD approach is essentially dynamic range
independent. Therefore, it would be interesting to explore
its potential use in HDR reconstruction to generate high
quality HDR images with little ghosting artifacts. Moreover,
the application of SPD is not limited to MEF. As a generic
signal processing approach, SPD has been found to be useful
in image quality assessment of contrast-changed [66] and
stereoscopic images [67]. It is worth considering whether SPD
offers any insights that can be transferred to other image
processing applications. In addition, although objective quality
models for MEF algorithms begin to emerge, the models for
objectively comparing MEF algorithms for dynamic scenes
are largely lacking. Therefore, it is demanding to switch the
focus from developing MEF algorithms for dynamic scenes to
developing such objective quality models in order to conduct
a fair comparison.
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