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Abstract— We propose a perceptual video coding framework
based on the divisive normalization scheme, which is found to
be an effective approach to model the perceptual sensitivity of
biological vision, but has not been fully exploited in the context
of video coding. At the macroblock (MB) level, we derive the
normalization factors based on the structural similarity (SSIM)
index as an attempt to transform the discrete cosine transform
domain frame residuals to a perceptually uniform space. We fur-
ther develop an MB level perceptual mode selection scheme and
a frame level global quantization matrix optimization method.
Extensive simulations and subjective tests verify that, compared
with the H.264/AVC video coding standard, the proposed method
can achieve significant gain in terms of rate-SSIM performance
and provide better visual quality.

Index Terms— Divisive normalization, H.264/AVC coding,
perceptual video coding, rate distortion optimization, structural
similarity (SSIM) index.

I. INTRODUCTION

OVER the past decade, there has been an exponential
increase in the demand for digital video services such

as high-definition television, web-based television, video con-
ferencing and video-on-demand. To facilitate these services,
it demands to significantly reduce the storage space and
bandwidth of visual content production, storage and delivery.
Therefore, there has been a strong desire of powerful video
coding techniques beyond H.264/AVC.

The main objective of video coding is to minimize the
perceptual distortion D of the reconstructed video with the
number of used bits R subjected to a constraint Rc. This can
be expressed as

min{D} subject to R ≤ Rc. (1)
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Central to such an optimization problem is the way in
which the distortion D is defined because the quality of
video can only be as good as it is optimized for. Since the
ultimate receiver of video is the Human Visual System (HVS),
the correct optimization goal should be perceptual quality.
However, existing video coding techniques typically use the
sum of absolute difference (SAD) or sum of square difference
(SSD) as the model for distortion, which have been widely
criticized in the literature for the lack of correspondence
with perceptual quality [1]–[3]. For many years, there have
been numerous efforts in developing subjective-equivalent
quality models in an attempt to generate quality scores close
to the opinions of human viewers. The more accurate the
model is, the more distortion can be allowed without gen-
erating perceivable artifact, and the better compression can be
achieved.

It is well known that the distortion introduced by quan-
tization in lossy coding is content-dependent due to visual
masking effects. By exploiting these effects, it is possible
to design video coding algorithms which are able to reduce
the coding bitrate for a given target perceptual quality. Many
perceptual rate allocation techniques are developed based on
human visual sensitivity models. The basic idea of these
techniques is to allocate fewer bits to the areas or image
components that can tolerate more distortions. In [4], [5],
the authors exploited non-uniform spatial-temporal sensitivity
characteristics and developed visual sensitivity models which
are based on the visual cues such as motion and textural struc-
tures. In [6], motion attention, position, and texture structure
models were used in the rate distortion optimization (RDO)
process to adapt the Lagrange multiplier based on the content
of each MB. In [7], a content complexity based RDO scheme
was proposed for scalable video coding that also considers
object-based features such as human subject and skin color to
adjust the Lagrange multiplier.

Since the distortion in video coding mainly originates from
quantization, many recent methods attempt to incorporate
the properties of the HVS into the quantization process
[8]–[13]. Because HVS has different sensitivities to different
frequencies, the concept of frequency weighting has been
incorporated in the quantization process in many picture
coding standards from JPEG to H.264/AVC high profile
[9]–[12]. In [8], [14], foveated vision models were employed
for optimizing the quantization parameter and Lagrange mul-
tiplier. However, these methods are based on near thresh-
old perceptual models, but practical video coding typically
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works in a suprathreshold range [15]–[17], where the percep-
tual quality behavior is poorly predicted from the threshold
level.

The structural similarity (SSIM) index [18] has become
a popular image quality measure in recent years in various
image/video processing areas due to its good compromise
between quality evaluation accuracy and computation
efficiency. For example, it has been incorporated into
motion estimation, mode selection and rate control schemes
[19]–[30]. For intra frame coding, SSIM-based RDO schemes
were proposed in [19]–[21]. In [22]–[24], the authors devel-
oped SSIM-based RDO schemes for inter frame prediction
and mode selection. One major advantage of utilizing SSIM
index in RDO is that, unlike MSE, the SSIM index is totally
adaptive according to the reference signal [18] and therefore
the RDO will be automatically adapted to the properties
of the video content. However, in these RDO schemes
[19]–[24], the properties of video frames are not directly
accounted for in determining the Lagrange multiplier. To
address this issue, content-adaptive Lagrange multiplier
selection schemes were proposed in [25]–[28]. These
algorithms employed an adaptive rate-SSIM curve to describe
the relationship between SSIM and rate to approximate the
R-D characteristics. In [31], adaptive SSIM and rate models
are established to develop an SSIM based RDO scheme,
where the SSIM model is derived from a reduced-reference
image quality assessment algorithm.

In this work, we aim to transform the optimization process
in (1) into a perceptually uniform domain by incorporating
the divisive normalization framework. It has already been
shown that the main difference between SSIM and MSE
lies in the locally adaptive divisive normalization process
[32]. In general, divisive normalization transform is recog-
nized as a perceptually and statistically motivated non-linear
image representation [33], [34]. It is shown to be a use-
ful framework that accounts for the masking effect in the
HVS, which refers to the reduction of the visibility of an
image component in the presence of neighboring compo-
nents [35], [36]. It has also been found to be powerful
in modeling the neuronal responses in the human percep-
tual systems [37]–[39]. Divisive normalization has been suc-
cessfully applied in image quality assessment [40], [41],
image coding [42], video coding [43] and image denoising
[34], [44].

The main contributions of our work are as follows:

1) We propose a divisive normalization scheme to trans-
form the discrete cosine transform (DCT) domain
residuals which are obtained after prediction to a per-
ceptually uniform space based on a DCT domain SSIM
index.

2) Following the divisive normalization scheme, we define
a new distortion model and propose a novel perceptual
RDO scheme for mode selection.

3) In the divisive normalized domain, we propose a frame-
level quantization matrix selection approach so that the
normalized coefficients of different frequencies share the
same R-D relationship.

II. SSIM-INSPIRED DIVISIVE NORMALIZATION

Block motion compensated inter-prediction technique plays
an important role in existing hybrid video codecs. In this work,
we follow this framework, where previously coded frames
are used to predict the current frame and only residuals after
prediction are coded.

A. Divisive Normalization Scheme

Assume C(k) to be the kth DCT transform coefficient of a
residual block, then the normalized coefficient is computed as
C(k)′ = C(k)/ f (k), where f (k) is a positive normalization
factor for the kth subband that will be discussed later.

The quantization process of the normalized residuals for a
given predefined quantization step Qs can be formulated as

Q(k) = sign{C(k)′}round

{ |C(k)′|
Qs

+ p

}

= sign{C(k)}round

{ |C(k)|
Qs · f (k)

+ p

}
(2)

where p is the rounding offset in the quantization.
At the decoder, the de-quantization and reconstruction of

C(k) is performed as

R(k) = R(k)′ · f (k) = Q(k) · Qs · f (k)

= sign{C(k)}round

{ |C(k)|
Qs · f (k)

+ p

}
· Qs · f (k). (3)

The purpose of the divisive normalization process is to
convert the transform residuals into a perceptually uniform
space. Thus the factor f (k) determines the perceptual impor-
tance of each of the corresponding transform coefficient. The
proposed divisive normalization scheme can be interpreted
in two ways. An adaptive normalization factor is applied,
followed by quantization with a predefined fixed step Qs .
Alternatively, an adaptive quantization matrix is defined for
each MB and thus each coefficient is quantized with a different
quantization step.

In the context of computational neuroscience as well as
still image processing and coding, several different approaches
have been used to derive the normalization factor, which may
be defined as the sum of the squared neighboring coefficients
plus a constant [42], or derived from a local statistical image
model [45]. In this work, our objective is to optimize the
SSIM index, therefore, we employ a model based on the DCT
domain SSIM index.

The DCT domain SSIM index was first presented in [46]:

SSIM(x, y) =
(

1 − (X (0) − Y (0))2

X (0)2 + Y (0)2 + N · C1

)

×
⎛
⎝1 −

∑N−1
k=1 (X (k)−Y (k))2

N−1∑N−1
k=1 (X (k)2+Y (k)2)

N−1 + C2

⎞
⎠ (4)

where X (k) and Y (k) represent the DCT coefficients of the
input signals x and y, respectively. C1 and C2 are used to
avoid instability when the means and variances are close to
zero and N denotes the block size. The DCT domain SSIM
index is composed of the product of two terms, which are the
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normalized squared errors of DC and AC coefficients, respec-
tively. Moreover, the normalization is conceptually consistent
with the light adaptation (also called luminance masking) and
contrast masking effect of the HVS [47]–[49]. Eq. (4) can be
re-written as

SSIM(x, y) =
(

1 −
(

X (0)√
ηdc

− Y (0)√
ηdc

)2
)

×
(

1 − 1

N − 1

N−1∑
k=1

(
X (k)√

ηac
− Y (k)√

ηac

)2
)

(5)

where

ηdc = X (0)2 + Y (0)2 + N · C1 (6)

ηac =
∑N−1

k=1 (X (k)2 + Y (k)2)

N − 1
+ C2. (7)

Eq. (5) suggests that the DCT domain SSIM index can be
computed from normalized MSE of DC and AC coefficients.
This inspires us to use SSIM-based divisive normalization for
perceptual video coding.

In the video coding scenario, let P(k) be the prediction
signal of the kth subband in DCT domain, then the SSIM
index can be rewritten as in (8)

SSIM(x, y) =
{

1 − ((C(0) + P(0)) − (R(0) + P(0)))2

X (0)2 + Y (0)2 + N · C1

}

×
⎧⎨
⎩1 −

∑N−1
k=1 ((C(k)+P(k))−(R(k)+P(k)))2

N−1∑N−1
k=1 (X (k)2+Y (k)2)

N−1 + C2

⎫⎬
⎭

=
{

1 − (C(0) − R(0))2

X (0)2 + Y (0)2 + N · C1

}

×
⎧⎨
⎩1 −

∑N−1
k=1 (C(k)−R(k))2

N−1∑N−1
k=1 (X (k)2+Y (k)2)

N−1 + C2

⎫⎬
⎭ . (8)

SSIM(x, y) =
{

1 − (C(0)′ · fdc − R(0)′ · fdc)
2

X (0)2 + Y (0)2 + N · C1

}

×
⎧⎨
⎩1 −

∑N−1
k=1 (C(k)′· fac−R(k)′· fac)

2

N−1∑N−1
k=1 (X (k)2+Y (k)2)

N−1 + C2

⎫⎬
⎭

≈
{

1 − (C(0)′ − R(0)′)2

E(
√

X (0)2 + Y (0)2 + N · C1)2

}

×

⎧⎪⎪⎨
⎪⎪⎩

1 −
∑N−1

k=1 (C(k)′−R(k)′)2

N−1

E(

√∑N−1
k=1 (X (k)2+Y (k)2)

N−1 + C2)2

⎫⎪⎪⎬
⎪⎪⎭

. (9)

Since the local statistics do not change significantly within
each MB, we divide each MB into l sub-MBs for DCT
transform and Xi (k) denotes the kth DCT coefficient in the
i th sub-MB. As the SSIM index differentiates between the DC
and AC coefficients, we use separate normalization factors for

AC and DC coefficients, which are defined as

fdc =
1
l

∑l
i=1

√
Xi (0)2 + Yi (0)2 + N · C1

E(
√

X (0)2 + Y (0)2 + N · C1)
(10)

fac =
1
l

∑l
i=1

√∑N−1
k=1 (Xi (k)2+Yi (k)2)

N−1 + C2

E(

√∑N−1
k=1 (X (k)2+Y (k)2)

N−1 + C2)

(11)

where E(·) denotes the mathematical expectation operator. The
expectations are over the whole frame, and thus do not affect
the relative normalization factors across space within the same
frame.

As a result of the use of fdc and fac, the normalized DCT
coefficients for residuals can be expressed as

C(k)′ =
⎧⎨
⎩

C(0)
fdc

, k = 0

C(k)
fac

, otherwise
(12)

R(k)′ =
{

R(0)
fdc

, k = 0
R(k)
fac

, otherwise.
(13)

Therefore, the SSIM index in the divisive normalization
framework can be expressed as in (9), which implies that in
the divisive normalization space, the SSIM index is dependent
on the difference of the normalized signals but not adaptive to
the local normalized signals themselves and therefore all the
MBs can be treated as perceptually identical. Since the clearly
visible distortion regions will be perceptually more apparent
[50], transforming all the coefficients into the perceptually
uniform domain is also a convenient approach to improve
the perceptual quality according to the philosophy behind
distortion-based pooling scheme [51].

The divisive normalization factor is spatially adaptive and
dependent on the content of the MB and determines the relative
perceptual importance of each MB. The MBs which are less
important are quantized more coarsely as compared to the
more important MBs. The expected values of DC and AC
energy are used as the reference point to determine the impor-
tance of each MB. The MBs with higher energy than the mean
value have effectively larger quantization step and vice versa.
By doing so, we are borrowing bits from the regions which
are perceptually less important and using them for the regions
with more perceptual relevance, as far as SSIM is concerned,
so that all the regions in the frame conceptually have uniform
perceptual distortion. It is important to note that the reference
point, mean AC and DC energies, is highly dependent on the
content of the video frame. The frames with significant texture
regions are likely to get more perceptual improvement because
the texture regions are the main beneficiaries of the spatially
adaptive normalization process.

The calculation of divisive normalization factors for DC and
AC coefficients are demonstrated in Fig. 1, where darker MBs
indicate smaller normalization factors. As the flower textures
can mask more distortions, we assign larger normalization
factors to the AC coefficients in these regions. However, since
the luminance values in these regions are relatively lower, we
assign smaller normalization factors to the DC coefficients.
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(a) (b) (c)

Fig. 1. Visualization of spatially adaptive divisive normalization factors for Flower@CIF. (a) Original frame. (b) Normalization factors for DC coefficients
for each MB. (c) Normalization factors for AC coefficients for each MB.

These are conceptually consistent with the light adaptation
and contrast masking effects of the HVS.

B. Perceptual Rate Distortion Optimization for Mode Selection

The RDO process in video coding can be expressed by
minimizing the perceived distortion D with the number of
used bits R subject to a constraint Rc. This can be converted
to an unconstrained optimization problem by

min{J } where J = D + λ · R (14)

where J is called the Rate Distortion (RD) cost and λ is known
as the Lagrange multiplier that controls the trade-off between
R and D.

Here we replace the conventional SAD and SSD with a
new distortion model that is consistent with the residual nor-
malization process. As illustrated in Fig. 2, for each MB, the
distortion model is defined as the SSD between the normalized
DCT coefficients, which is expressed as

D =
l∑

i=1

N−1∑
k=0

(Ci (k)′ − Ri (k)′)2

=
l∑

i=1

(Xi (0) − Yi (0))2

f 2
dc

+
∑N−1

k=1 (Xi (k) − Yi (k))2

f 2
ac

. (15)

Based on (14), the RDO problem is given by

min{J } where J =
l∑

i=1

N−1∑
k=0

(Ci (k)′ − Ri (k)′)2

+λH.264 · R (16)

where λH.264 indicates the Lagrange multiplier defined in
H.264/AVC coding with the predefined quantization step Qs .

From the residual normalization point of view, the distortion
model calculates the SSD between the normalized original and
distorted DCT coefficients, as shown in Fig. 2. Therefore, we
can still use the Lagrange multiplier defined in H.264, λH.264,
in this perceptual RDO scheme.

C. Sub-Band Level Normalization Factor Computation

In this sub-section, we show that the proposed method in
section II-A can be improved further by fine tuning the DCT
normalization matrix so that each AC coefficient has a different
normalization factor. Motivated by the fact that the normalized
DCT coefficients of residuals of different frequencies have
different statistical distributions, we propose a frame level
quantization matrix selection algorithm considering the per-
ceptual quality of the reconstructed video. To begin with, we
model the normalized transform coefficients x with Laplace
distribution, which has been proved to achieve a good trade-
off between model fidelity and complexity [52]:

fLap(x) = �

2
· e−�·|x | (17)

where � is called the Laplace parameter.
From (14), the Lagrange parameter is obtained by calculat-

ing the derivative of J with respect to R, then setting it to
zero, and finally solving for λ

d J

d R
= d D

d R
+ λ = 0 (18)

which yields

λ = −d D

d R
= −

d D
d Qs

d R
d Qs

. (19)

In [52], Laplace distribution based rate and distortion mod-
els were established to derive λ for each frame dynamically.
However, all the transform coefficients were modeled with a
single distribution and the variation in the distribution between
DCT sub-bands was ignored. Here we model the distortion
and rate in a similar way as in [52], where D is obtained
by summing the perceptual distortion in each quantization
interval and R is calculated with the help of the entropy of the
normalized coefficients. Let cm

i, j be the DCT coefficient in the
(i, j)th sub-band of the mth block and ĉm

i, j the reconstructed
coefficient of the same position in the decoder, the perceptual
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Fig. 2. Framework of the proposed scheme.

0
0.5

1
1.5

2

0
50

100
150

200
0
50
100
150
200
250
300
350

Qstep

λ
op
t

Λ

Fig. 3. Relationship between the optimal λ and (�, Qstep).

distortion for this sub-band Di, j is defined as

Di, j = 1

NB

NB∑
m=1

(
cm

i, j

f m
i, j

− ĉm
i, j

f m
i, j

)2

= 1

NB

NB∑
m=1

(
cm′

i, j − ĉm′
i, j

)2
(20)

where NB is the number of DCT blocks in each frame and f m
i, j

represents the normalization factor for the (i, j)th sub-band of
the mth block; cm′

i, j and ĉm′
i, j are the normalized coefficients of

cm
i, j and ĉm

i, j , respectively.
More specifically, the perceptual distortion defined in (20)

is equivalent to the MSE in the divisive normalization domain.
If xi, j denotes the normalized coefficient in the (i, j)th sub-
band, then Di, j can be modeled in the divisive normalization
domain according to the quantization process in H.264/AVC,
which is given by

Di, j ≈
∫ (Qs−γ Qs)

−(Qs−γ Qs)
x2

i, j fLap(xi, j )dxi, j + 2
∞∑

n=1

∫ (n+1)Qs−γ Qs

nQs−γ Qs

×(xi, j − nQs)
2 fLap(xi, j )dxi, j (21)

where γ is the rounding offset. Subsequently, we model the
rate of the (i, j)th sub-band by calculating its entropy [53]:

Ri, j = −P0 · log2 P0 − 2
∞∑

n=1

Pn · log2 Pn (22)

where P0 and Pn are the probabilities of the transformed
residuals quantized to the zero-th and n-th quantization levels,
respectively, which can be modeled by the Laplace distribution
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Fig. 4. Laplace distributions for DCT subband coefficients (Bus@CIF).

as

P0 =
∫ (Qs−γ Qs)

−(Qs−γ Qs)
fLap(xi, j )dx (23)

Pn =
∫ (n+1)Qs−γ Qs

nQs−γ Qs

fLap(xi, j )dx . (24)

Since the rounding offset can be regarded as a constant value
for each frame, by incorporating (22) into (19), we conclude
that the optimal Lagrange multiplier which controls the trade-
off between R and D is a function of the Laplace parameter
and the quantization step only, which is given by

λopt = f (�, Qs). (25)

The λopt for each (�, Qs) is shown in Fig. 3, which
confirms the idea that λopt increases monotonically with Qs

but decreases monotonically with �. It suggests that for the
same λopt but different �, we will have different Qs values.

Fig. 4 shows that the distribution of the normalized trans-
form coefficients in different sub-bands have similar shape
but different widths [53], [54], thus their optimal Lagrange
multipliers should be different. However, in the current hybrid
video coding framework, directly adjusting λopt for each
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subband is impractical because the Lagrange multiplier needs
to be uniform across the whole frame in RD optimization. To
overcome this, we generate a uniform λopt for each subband
by modifying Qs values. Given the optimal λopt , the optimal
quantization step for the (i, j)th sub-band is calculated as

Qi, j = g(λopt ,�i, j ). (26)

In our implementation, we keep λ of the DC coefficients
unaltered and modify Qs of the AC coefficients. To obtain
the optimal Qi, j , we build a look-up table based on Fig. 3.

D. Implementation Issues

In video coding, the normalization factors defined in (11)
and (11) need to be computed at both the encoder and
the decoder. However, before coding the current frame, the
distorted MBs are not available, which creates a chicken or egg
causality dilemma. Moreover, at the decoder side, the original
MB is not accessible either. Therefore, the normalization
factors defined in (11) and (11) cannot be directly applied in
practice. To overcome this problem, we propose to make use of
the predicted MB, which is available at both the encoder and
the decoder for the calculation of the normalization factors.
As such, we do not need to transmit any additional overhead
information to the decoder.

Edc = 1

l

l∑
i=1

√
Xi (0)2 + Yi (0)2 + N · C1

E ′
dc = 1

l

l∑
i=1

√
2Zi (0)2 + N · C1

Eac = 1

l

l∑
i=1

√∑N−1
k=1 (Xi (k)2 + Yi (k)2)

N − 1
+ C2

E ′
ac = 1

l

l∑
i=1

√∑N−1
k=1 (2 · Zi (k)2)

N − 1
+ C2. (27)

The relationship between Edc and E ′
dc as well as Eac and

E ′
ac are illustrated in Fig. 5, where Edc, E ′

dc, Eac and E ′
ac

are defined in (27). In these equations, Zi (k) is the kth DCT

coefficient of the i th prediction sub-MB for each mode. We can
observe dependency between the DC and AC energy values
of the original and predicted MBs. Therefore, the DC and
AC energy of the original MB can be approximated with
the help of the corresponding energy of the prediction MB.
Consequently, the approximation of the normalization factors
can be determined by

f ′
dc =

1
l

∑l
i=1

√
2Zi (0)2 + N · C1

E(
√

2Z(0)2 + N · C1)
(28)

f ′
ac =

1
l

∑l
i=1

√∑N−1
k=1 (Zi (k)2+s·Zi (k)2)

N−1 + C2

E(

√∑N−1
k=1 (Z(k)2+s·Z(k)2)

N−1 + C2)

. (29)

For intra mode, we use the MB at the same position in the
previously coded frames.

In order to compensate for the loss of AC energy, we use
a factor s to bridge the difference between the energy of AC
coefficients in the prediction MB and the original MB, which
can be defined as

s = E(
∑N−1

k=1 X (k)2)

E(
∑N−1

k=1 Z(k)2)
. (30)

As depicted in Fig. 6, we can approximate s by a linear
relationship with Qs , which can be modeled empirically as

s = 1 + 0.005 · Qs . (31)

In order to compute the normalization factors for DC
and AC coefficients, as defined in (28) and (29), the DC
and AC energy of the prediction MB should firstly be cal-
culated. The DCT is an orthogonal transform that obeys
Parseval’s theorem. Thus we will have the following relations
between the DCT coefficients and the spatial domain mean and
variance:

μx =
∑N−1

i=0 x(i)

N
= X (0)√

N
(32)

σ 2
x =

∑N−1
i=1 X (i)2

N − 1
(33)



1424 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

1 3

1.4

1.5

1.6

1.7

1.8
s

Flower@CIF
Foreman@CIF
Bus@CIF
Akiyo@CIF

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 20 40 60 80 100 120

s

Qs

Flower@CIF
Foreman@CIF
Bus@CIF
Akiyo@CIF

Fig. 6. Relationship between s and Qs for different sequences.

Therefore, to calculate the normalization factors in (28)
and (29), in the actual implementation for both the encoder
and decoder, it is not necessary to perform the actual DCT
transform. Instead, we only need to compute the mean and
variance of the prediction block in spatial domain.

In our implementation, we combine the frame-level quan-
tization matrix selection and divisive normalization together
and employ one quantization matrix to achieve two goals.
Analogous to [10], the quantization matrix for 4 × 4 DCT
transform is defined as

W Sij = 16 ·

⎡
⎢⎢⎣

f ′
dc · ω0,0 f ′

ac · ω0,1 f ′
ac · ω0,2 f ′

ac · ω0,3
f ′
ac · ω1,0 f ′

ac · ω1,1 f ′
ac · ω1,2 f ′

ac · ω1,3
f ′
ac · ω2,0 f ′

ac · ω2,1 f ′
ac · ω2,2 f ′

ac · ω2,3
f ′
ac · ω3,0 f ′

ac · ω3,1 f ′
ac · ω3,2 f ′

ac · ω3,3

⎤
⎥⎥⎦ (34)

where

ωi, j = Qi, j /Qs . (35)

The Laplace parameter �i, j and the expectation of the
energy (as indicated in (11)) should be available before coding
the current frame. However, these quantities can only be
obtained after coding it. As they are approximately constants
during a very short period of time, we estimate them by
averaging their corresponding values from previous frames
coded in the same manner

�̂t
i, j = 1

N f

N f∑
n=1

�t−n
i, j (36)

where t indicates the frame number and N f represents the
number of previous frames used. Practically, N f is set to be
3 in this paper.

At the decoder, the Laplace distribution parameters of the
normalized coefficients in each sub-band are not available. To
address this issue, we transmit the frame-level quantization
matrix to the decoder. As the statistics of frames in a short time
do not change considerably, we empirically define a threshold
to determine whether to refresh the quantization matrix, which
is expressed as

ωt =
{

ωt−1 ∑
(ωt

i, j − ωt−1
i, j )2 < Tr

ωt otherwise
(37)
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where

ω = 16 ·

⎡
⎢⎢⎣

ω0,0 ω0,1 ω0,2 ω0,3
ω1,0 ω1,1 ω1,2 ω1,3
ω2,0 ω2,1 ω2,2 ω2,3
ω3,0 ω3,1 ω3,2 ω3,3.

⎤
⎥⎥⎦ (38)

We set the threshold Tr to be 100 to balance the transmitted
bits and the accuracy of the matrix. Empirically, we find this
to be a non-sensitive parameter as the quantization matrix of
each frame is very stable and the transmission of the matrix
takes only a small number of bits.

III. VALIDATIONS

To validate the proposed scheme, we integrate it into
H.264/AVC reference software JM15.1 [55]. All test video
sequences are in YCbCr 4:2:0 format. The common coding
configurations are set as follows: all available inter and intra
modes are enabled; five reference frames; one I frame followed
by all P frames; high complexity RDO and fixed quantization
parameters (QP).

A. Objective Performance Evaluation of the Proposed Scheme

The RD performance is measured in two cases: SSIM of
Y component only and SSIM of Y, Cb and Cr components,
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TABLE I

PERFORMANCE OF THE PROPOSED ALGORITHMS (COMPARED WITH H.264/AVC VIDEO CODING)

Sequence
QP1={18, 22, 26, 30} QP2={26, 30, 34, 38}

�SS I M �R �SS I Mω �Rω �SS I M �R �SS I Mω �Rω

Akiyo (QCIF) 0.0038 –20.5% 0.0044 –23.0% 0.0091 –14.0% 0.0084 –14.6%

Bridge-close (QCIF) 0.0066 –33.1% 0.0069 –28.3% 0.0289 –42.5% 0.0241 –42.6%

Carphone (QCIF) 0.0022 –12.9% 0.0027 –14.1% 0.0040 –8.2% 0.0042 –9.2%

Coastguard (QCIF) 0.0034 –7.0% 0.0027 –6.6% 0.0094 –9.0% 0.0075 –8.7%

Container (QCIF) 0.0024 –10.5% 0.0007 –3.9% 0.0046 –12.3% 0.0034 –10.9%

Grandma (QCIF) 0.0063 –20.0% 0.0066 –21.5% 0.0131 –14.6% 0.0119 –15.0%

News (QCIF) 0.0033 –15.7% 0.0034 –15.1% 0.0078 –13.2% 0.0077 –13.4%

Salesman (QCIF) 0.0041 –12.6% 0.0050 –14.3% 0.0136 –12.2% 0.0127 –12.7%

Akiyo (CIF) 0.0029 –20.5% 0.0032 –23.4% 0.0043 –12.5% 0.0042 –13.4%

Bus (CIF) 0.0048 –17.1% 0.0041 –14.6% 0.0205 –23.7% 0.0170 –23.2%

Coastguard (CIF) 0.0033 –7.4% 0.0028 –7.4% 0.0119 –11.7% 0.0097 –11.7%

Flower (CIF) 0.0036 –23.0% 0.0052 –24.7% 0.0092 –19.2% 0.0111 –22.1%

Mobile (CIF) 0.0014 –9.2% 0.0020 –9.7% 0.0056 –14.0% 0.0058 –13.8%

Paris (CIF) 0.0036 –15.0% 0.0025 –10.1% 0.0109 –17.9% 0.0091 –15.9%

Tempete (CIF) 0.0023 –13.4% 0.0035 –15.9% 0.0084 –14.7% 0.0084 –15.2%

Waterfall (CIF) 0.0038 –13.1% 0.0042 –12.7% 0.0132 –10.5% 0.0118 –10.5%

BigShip (720P) 0.0040 –11.8% 0.0036 –12.10% 0.0051 –7.3% 0.0044 –7.5%

Night (720P) 0.0030 –13.0% 0.0031 –14.1% 0.0064 –11.5% 0.0060 –12.0%

Spincalendar (720P) 0.0046 –19.9% 0.0024 –11.60% 0.0035 –13.8% 0.0017 –9.1%

Parkrun (720P) 0.0084 –3.9% 0.0066 –15.2% 0.0317 –36.5% 0.0257 –35.4%

Average 0.0039 –15.0% 0.0038 –14.9% 0.0111 –16.0% 0.0097 –15.8%

respectively. To apply SSIM to all three color components, we
combine the SSIM indices of these components by [56]

SSI Mω = WY · SSI MY + WCb · SSI MCb + WCr · SSI MCr

(39)

where WY = 0.8, WCb = 0.1 and WCr = 0.1 are the weights
assigned to Y, Cb and Cr components, respectively. These
quantities for the whole video sequence are obtained by simply
averaging the respective values of individual frames. The
method proposed in [57] is used to calculate the differences
between two RD curves.

We use two different sets of QP values in the experiments:
QP1 = {22, 26, 30, 34} and QP2 = {26, 30, 34, 38}, which
represent high bit-rate and low bit-rate coding configurations,
respectively. From Table I, it can be observed that over a
wide range of test sequences with resolutions from QCIF to
720P, the proposed scheme achieves average rate reduction of
15.0% for QP1 and 16.0% for QP2 for fixed SSIM values and
the maximum coding gain is 42.5%. It can also be observed
that our scheme performs better when there exist significant
statistical differences between different regions in the same
frame, for example, in the cases of Bus and Flower . This
is likely because these frames allow us to borrow bits more
aggressively from the regions with complex texture or high
contrast (high normalization factor) and allocating them to
the regions with relatively simple textures (low normalization
factor).

The R-D performances for sequences with various resolu-
tions are shown in Figs. 7 and 8. It can be observed that the
proposed scheme achieves better R-D performance over the

TABLE II

COMPLEXITY OVERHEAD OF THE PROPOSED SCHEME

Sequences �T in Encoder �T in Decoder

Akiyo (QCIF) 1.20% 8.97%

News (QCIF) 1.17% 11.30%

Mobile (QCIF) 1.34% 5.3%

Bus (CIF) 1.16% 9.16%

Flower (CIF) 1.11% 8.75%

Tempete (CIF) 0.96% 7.38%

Average 1.16% 8.48%

full range of QP values. Moreover, the gains become more
significant at middle bit-rates. The reason may be that at high
bit rate, the quantization step is small and thus the differences
of quantization steps among the MBs are not significant, while
at low bit rate, since the AC coefficients are severely distorted,
the normalization factors derived from the prediction frame do
not precisely represent the properties of the original frame.

When evaluating the coding complexity overhead, we cal-
culate �T as

�T = Tpro − TH.264

TH.264
× 100% (40)

where TH.264 and Tpro indicate the total coding time for
the sequence with H.264/AVC and the proposed schemes,
respectively. Table II shows the computational overhead for
both encoding and decoding. The coding time is obtained by
encoding 100 frames of IPPP GOP structure with Intel 2.83
GHz Core processor and 4GB random access memory. As
indicated in Section II-D, we do not need to perform DCT
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TABLE III

SSIM INDICES AND BIT RATES OF TESTING SEQUENCES USED IN THE

SUBJECTIVE TEST I. (SIMILAR BIT RATE BUT DIFFERENT SSIM VALUES)

Sequences
H.264/AVC Proposed

SSIM Bit Rate SSIM Bit Rate

Bridge-close (QCIF) 0.8892 29.56 0.9216 29.07

Bus (CIF) 0.8259 273.7 0.8531 262.03

Flower (CIF) 0.9121 317.8 0.9170 296.43

Mobile (CIF) 0.9462 631.89 0.9532 630.69

Paris (CIF) 0.8825 144.2 0.8902 142.59

Parkrun (720P) 0.7921 4311.6 0.8527 3768.34

transform at either the encoder or the decoder. Therefore, it
is observed that the encoding overhead is negligible (1.16%
on average). The complexity of the decoder is increased by
8.48% on average.

B. Subjective Performance Evaluation of the Proposed Scheme

To further validate our scheme, we carried out two sub-
jective quality evaluation tests based on a two-alternative-
forced-choice (2AFC) method. This method is widely used
in psychophysical studies [58], [59], where in each trial, a
subject is shown a pair of video sequences and is asked
(forced) to choose the one he/she thinks to have better quality.
For each subjective test, we selected six pairs of sequences
with different resolutions. In the first test, the sequences were
compressed by H.264/AVC and the proposed method at the
same bit rate but with different SSIM levels. In the second
test, the sequences were coded to achieve the same SSIM
levels (where the proposed scheme uses much lower bit rates).
Tables III and IV list all the test sequences as well as their
SSIM values and bit rates. In the 2AFC test, each pair is
repeated four times with random order. As a result, in each test
we obtained 24 2AFC results for each subject. Eight subjects
participated in the experiments.

The results of the two subjective tests are reported in
Figs. 9 and 10, respectively. In each figure, the percentage
by which the subjects are in favor of the H.264/AVC against
the proposed scheme are shown. We also plot the error bars
(± one standard deviation between the measurements) over
the eight subjects and over the six sequences. As can be
observed in Fig. 9, the subjects are inclined to select the
proposed method for better video quality. On the contrary,
for the second test in Fig. 10, it turns out that for almost all
cases the percentage is close to 50% and nearly all error bars
cross the 50% line. These results provide useful evidence that
the proposed method achieves the same level of quality with
lower bit rates or creates better quality video at the same bit
rates.

C. Comparisons With State-of-the-Art Algorithms

To show the advantage of our divisive normalization
scheme, the performance comparisons of the proposed scheme,
the state of the art SSIM based RDO scheme [31] and standard
quantization matrix based video coding scheme in H.264/AVC

TABLE IV

SSIM INDICES AND BIT RATES OF TESTING SEQUENCES USED IN

THE SUBJECTIVE TEST II. (SIMILAR SSIM VALUES BUT

DIFFERENT BIT RATE)

Sequences
H.264/AVC Proposed

SSIM Bit Rate SSIM Bit Rate

Bridge-close (QCIF) 0.8777 23.35 0.8764 12.76

News (QCIF) 0.9784 102.51 0.9786 86.18

Waterfall (CIF) 0.9619 474.09 0.962 408.79

Mobile (CIF) 0.9462 631.89 0.9467 537.78

Night (720P) 0.9845 18706.85 0.9839 15671.46

Bigship (720P) 0.9018 1552.8 0.9015 1390.08
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Fig. 9. Subjective test 1: Similar bit rate with different SSIM values. (a) Mean
and standard deviation (shown as error-bar) of preference for individual
subject (1∼8: subject number, 9: average). (b) Mean and standard deviation
(shown as error-bar) of preference for individual sequence (1∼6: sequence
number, 7: average).
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Fig. 10. Subjective test 2: Similar SSIM with different bit rates. (a) Mean and
standard deviation (shown as error-bar) of preference for individual subject
(1∼8: subject number, 9: average). (b) Mean and standard deviation (shown
as error-bar) of preference for individual sequence (1∼6: sequence number,
7: average).

are shown in Fig. 11. In this experiment, IPP GOP structure
and CABAC coding techniques are used. The QP values
range from 23 to 38 with an interval of 5. For most of
the sequences, the proposed divisive normalization scheme
achieves better coding performance. As discussed before, our
scheme performs better especially for the sequences with
significant statistical differences in the same frame, such as
Flower and Bus. On average, compared with the SSIM based
RDO scheme [31], the proposed scheme achieves better rate
reduction of –17.7% vs –13.0%.
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Fig. 11. Performance comparisons of the proposed, quantization matrix and the SSIM based RDO coding techniques. (Anchor: conventional H.264/AVC)

IV. CONCLUSION

We propose an SSIM-inspired novel residual divisive nor-
malization scheme for perceptual video coding. The novelty of
the scheme lies in normalizing the transform coefficients based
on the DCT domain SSIM index and defining a new distortion
model for the subsequent rate distortion optimization. We
show two applications based on this divisive normalization
scheme, which are MB-level mode selection and frame-
level quantization matrix selection, respectively. The proposed
scheme demonstrates superior performance as compared to
H.264/AVC video codec by offering significant rate reduction,
while keeping the same level of SSIM values. Visual quality
improvement is also achieved by the proposed scheme.
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