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On the Mathematical Properties of
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Abstract—Since its introduction in 2004, the structural simi-
larity (SSIM) index has gained widespread popularity as a tool to
assess the quality of images and to evaluate the performance of
image processing algorithms and systems. There has been also a
growing interest of using SSIM as an objective function in opti-
mization problems in a variety of image processing applications.
One major issue that could strongly impede the progress of such
efforts is the lack of understanding of the mathematical properties
of the SSIM measure. For example, some highly desirable proper-
ties such as convexity and triangular inequality that are possessed
by the mean squared error may not hold. In this paper, we first
construct a series of normalized and generalized (vector-valued)
metrics based on the important ingredients of SSIM. We then
show that such modified measures are valid distance metrics
and have many useful properties, among which the most signif-
icant ones include quasi-convexity, a region of convexity around
the minimizer, and distance preservation under orthogonal or
unitary transformations. The groundwork laid here extends the
potentials of SSIM in both theoretical development and practical
applications.1

Index Terms—Cone metrics, normalized metrics, perceptually
optimized algorithms and methods, quality metrics and assessment
tools, quasi-convexity and convexity, structural similarity (SSIM)
index.

I. INTRODUCTION

I MAGE similarity (or dissimilarity) assessment is a funda-
mental issue in many signal processing applications. Tradi-

tionally, mean squared error (MSE), or the metric, has been
the standard measure not only for the evaluation of signal fi-
delity and quality but also for the design and optimization of
signal processing algorithms and systems [1]. MSE is easy to
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compute and understand. It also has many desirable mathemat-
ical properties [1], i.e., its square root is a valid distance metric
in ; it is convex, symmetric, and differentiable; it is distance
preserving under orthogonal and unitary transformations; and
it is additive for statistically independent sources of distortions.
All of these make MSE an ideal choice for optimization pur-
poses, where analytic linear solutions can be often found. Even
when closed-form solutions are difficult, it is often convenient
to formulate iterative numerical optimization algorithms as the
gradient and the Hessian matrix of the MSE are also easy to
compute.

Unfortunately, MSE (as well as any other metric) turns
out to be an extremely poor measure when the purpose is to
predict perceived signal fidelity or quality [1]. A research topic
that has attracted a great deal of attention in the past decade is to
design novel objective image similarity/dissimilarity measures
that correlate well with perceptual image fidelity/distortion [2].
The progress has been exciting as a handful of objective mea-
sures such as the structural similarity (SSIM) index [3], [4] and
its derivatives, multiscale SSIM (MS-SSIM) [5] and informa-
tion content-weighted SSIM (IW-SSIM) [6], the visual infor-
mation fidelity [7], the visual signal-to-noise ratio [8], the most
apparent distortion measure [9], and the feature similarity index
[10] significantly and consistently outperformed MSE and its
direct derivative, the peak signal-to-noise ratio, in terms of cor-
relations with subjective image quality evaluations in extensive
tests using a number of independent large-scale subject-rated
image databases [6], [10]. While such achievement is remark-
able and these new perceptual measures are satisfying in image
quality assessment tasks, we are often faced with major difficul-
ties when it comes to applying them to optimization problems
because they lose most (if not all) of the useful mathematical
properties possessed by MSE. There is an exception to this, i.e.,
measures based on divisive normalization, which are originally
introduced in [11], have been formulated as Riemannian metrics
in [12] and [13] and shown to have good geometric properties
in [14].

Among the recent objective perceptual measures, the SSIM
index has the simplest formulation and has gained widespread
popularity in a broad range of practical applications [1]. There
have been also several attempts to incorporate SSIM in opti-
mization frameworks in order to improve perceived image/video
quality in a number of image processing problems, which in-
clude image denoising [15], [16], image restoration [17], [18],
equalizer design [19], contrast enhancement [20], watermarking
[20], image approximation [21], image quantization and coding
[22]–[24], and rate–distortion optimization in standard video
compression [25]–[27]. Some mathematical aspects of SSIM
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have been also investigated. For example, the gradient of SSIM
with respect to the image has been derived and used in iterative
optimization procedures [28], [29]. Some aspects of the con-
vexity and quadratic properties of SSIM have been also studied
[19], [30]. However, in general, deep analysis of the mathemat-
ical properties of SSIM is seriously lacking. In practice, SSIM is
often used as a black box in optimization tasks as merely an ad-
hesive control unit outside the main optimization module. Con-
sequently, the potentials of SSIM optimization cannot be fully
exploited, far behind its widespread usage as purely an assess-
ment or comparison tool in other applications.

The purpose of this paper is to study the important mathemat-
ical properties of SSIM. We are particularly interested in seeing
whether the pleasing properties of MSE also hold for SSIM (or
its direct variants). During our derivation, the potential appli-
cation in our minds is the general optimal image reconstruc-
tion problem, which may be formulated as follows: Assume that
there exists an original image that is unknown to us, but for
which we have some prior knowledge. What we observe is some
partial or distorted information generated by an operator
applied upon , i.e., . The goal is to design a re-
construction function that, when applied to observed data ,
creates a reconstructed image , which is desired
to be a good approximation of . The problem to be solved is to
find the optimal function such that some error energy func-
tion (e.g., expected value of squared distance) defined by the
distance

is minimized. Depending on the operator , this general frame-
work covers a wide range of practical problems. For example,
when is an image compression operator, then is a coded
bitstream of image , and this is an image decompression
problem; when represents noise contamination, then
is an observed noisy image, and this is an image denoising
problem; when denotes a blur process, it becomes a de-
blurring problem; when is a downsampling operator based
on a predefined sampling lattice, it corresponds to an image
interpolation problem; when denotes a “blotching” operator
that damages some regions in an image, this is an image in-
painting problem; when is a quantization operator, this is
a dequantization problem; when is a compressive sensing
matrix, then this becomes a problem of image reconstruction
from compressed sensing data.

What we are concerned about here is the definition of dis-
tance , which should not only reflect perceptual image distor-
tions (since, in most applications, human eyes are the ultimate
consumers of images) but should also possess good mathemat-
ical properties (so that finding optimal solutions is a manageable
task). We assert that this is a problem of fundamental importance
because a different distance function could lead to substantial
progress in all the aforementioned practical applications.

The division of this paper is as follows: In Section II, we de-
fine the SSIM index and show the metric space properties of its
modifications. Then, in Section III, we show more basic proper-
ties of the SSIM and focus particularly on its convexity proper-
ties. We conclude this paper by summarizing all the properties

in tables and citing some research avenues in Section IV. The
principal contribution of this paper resides in the proofs of two
important properties of SSIM, but due to their technical nature,
they are left in the Appendix.

II. SSIM, NORMALIZED, AND GENERALIZED METRICS

For the remainder of this paper, we let denote the nonneg-
ative real line, i.e., , and denote the first orthant, i.e.,
the set of -dimensional vectors with nonnegative components.

Given two images and to be compared,
the SSIM index [4] combines three components, namely, a lu-
minance (mean) distortion term, a contrast (variance) distortion
term, and a correlation term as follows:

(1)

(2)

(3)

where , , , , and represent, respectively, the local
mean of and , the local variance of and , and the local
covariance between and . Constants , , and are small
constants that aim to characterize the saturation effects of the
visual system at low luminance and contrast regions and that
assure numerical stability when the denominators are close to
zero. The universal image quality index [3], an earlier version of
the SSIM index, corresponds to the case that .
The first two terms account for nonstructural distortion of the
image, whereas the last term accounts for structural distortion
(absence of correlation) of the image.

An SSIM map is produced by computing the SSIM on a local
window. A single index is then obtained by pooling all the local
errors computed. Note that, for the purpose of optimizing the
image quality measure, a single SSIM index is generally not
relevant, unless we are dealing with a bit budget as in image
compression.

If we choose , then the SSIM index can be then
written as

SSIM (4)

where

(5)

(6)

For , , one can show that SSIM
and SSIM . In other words, the closer
that and are to each other, the closer SSIM is to 1.

Clearly, the SSIM index is not a metric. In what follows, we
show that and are normalized metrics. We
then combine them to form a vector-valued metric or find a way
to “scalarize” them to form a metric.
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A. Normalized Metrics

Observing that if and only if and that
if and only if leads to the question

whether

(7)

is a metric. It is not a metric since the triangular inequality does
not hold. However, we will show that metrics are obtained if the
square root of is used, i.e.,

(8)

(9)

The very similar forms of and can be written as a root
mean-squared-error (RMSE) normalized by a modification of
power mean .

Definition 2.1: We define the normalized root mean-squares-
error (NRMSE) with stability constant to be the metric of the
form

NRMSE (10)

This is an example of a normalized metric, which is a special
kind of metric that measures a relative error.

Definition 2.2: Let be a normed space. Given
, a normalized metric or relative distance is a metric of the

form

(11)

where is a function chosen so that is
a metric. By convention, we set .

In this paper, we are interested in case with the
-norm. A few authors have studied normalized metrics in this

space. Klamkin and Meir [31] showed that, for

(12)

is a metric for and for all . Hästö [32] general-
ized the proof for and for .
He also showed isometries, quasi-convexity, and region of con-
vexity properties for these metrics [33]. Finally, in [34], Yianilos
showed that

(13)

is a metric for . In addition, worthy of mention is the work
of Li et al. [35] on normalized metrics for binary strings using

Kolmogorov complexity. However, none of these authors have
covered the case of interest for our application.

It remains to be shown that the NRMSE, hence and , are
metrics. We need two lemmas.

The first lemma is Ptolemy’s inequality, an important geo-
metric identity for points in Euclidean space . This is a gen-
eralization of the well-known geometric identity due to Ptolemy
that states that, if a quadrilateral is inscribed in a circle, then the
sum of the products of the lengths of its opposed edges is equal
to the product of the length of its diagonals.

Lemma 2.3 (Ptolemy’s Inequality for ): Let , , , and
be the four points of . Then

(14)

Various proofs of this lemma can be found in the literature, e.g.,
[36], but it seems that not all authors are aware of the following
simple proof outlined in [37].

Proof: Let , , and denote the inversion of , , and
, respectively, around a sphere centered at and of radius .

By the triangular inequality, we have

(15)

One can verify the following circle inversion property:

(16)

Substituting (16) into (15), we obtain

(17)

A rearrangement yields Ptolemy’s inequality (14).
In general, a metric space is called Ptolemaic if

(18)

for all .
The second lemma asserts that, under certain conditions, it

suffices to study normalized metrics on . Before stating the
result, we need to define moderately increasing functions.

Definition 2.4: A function is moderately
increasing (nondecreasing) if

1 is increasing (nondecreasing);
2 is decreasing (nonincreasing) for .

For example, one can easily verify that

(19)

is moderately increasing.
Lemma 2.5: Let be a Ptolemaic normed space, and

let be a moderately nondecreasing function with
respect to , then

(20)

is a metric on if and only if it is a metric on .
Proof: See [32].

We are now ready to state the main result of this section.
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Theorem 2.6: The NRMSE

NRMSE (21)

is a metric on for all .
Proof: See the Appendix.

B. Metric Spaces Arising From SSIM: From a “Scalarized”
Metric to a “Cone Metric Space”

From the previous section, each of the components
and of the SSIM function in (4) gives rise
to a distance function of the form ,

. The natural question is what to do with these distance
functions. The first step is to consider them as components of a
vector , as done in [38]. First of all, it is useful to recall
the following classical theorem.

Lemma 2.7 (Orthogonal Decomposition Theorem): Let
be an orthogonal decomposition of , i.e.,

for all

Then, each element of can be uniquely written as

(22)

where are the projections of on .
From (8) and (9), we are now motivated to decompose

into the following direct sum:

(23)

where span span and . A
given signal will be decomposed into a 1-D mean
component and an -dimensional zero-
mean component . Our resulting vector of metrics
becomes

(24)

where and are defined in (8) and (9), respectively.
We now form a metric from a combination of the two com-

ponents and of the vector of metrics. The goal is to find
a suitable approximation of SSIM that will belong to a metric
space. For this, we will need the following property.

Definition 2.8: A norm in is said to satisfy the increasing
property if for any and

(25)

The increasing property in (25) holds for suitably weighted
norms, e.g.,

(26)

where and for . It also holds
for the -norm, e.g.,

(27)

However, one can show that (25) does not hold for all norms.
The following theorem shows that, in general, if possesses

the increasing property, then the norm of the vector of metrics
such as (24) is also a metric.

Theorem 2.9: Let be an orthogonal decomposi-
tion of and for be the
projection of to with . Let
be metrics on, respectively, . Define

(28)

Let be a norm in that satisfies the increasing property
(25) in . Then, for defined in (28)

(29)

is a metric in .
Proof: It is clear that implies that . Now, if

, then for all ; thus,
for all since is a metric. By the

Orthogonal Decomposition Theorem (see Lemma 2.7), this im-
plies that . Therefore, by the property of norms, we have

. The symmetry property is straight-
forward. It remains to prove that satisfies the triangle in-
equality. Since are metrics, every component of
satisfies the triangular inequality. From the assumption that the

norm satisfies the increasing property, we conclude that

(30)

The above procedure represents a “scalarization,” producing
a single real number, e.g., the distance in (33), from
the two-component metric. This is analogous to scalarization
of (4) in which the two components and are multiplied
to produce a single real number. Indeed, one of the attractive
features of using real numbers for quantities such as distances is
that they are totally ordered, i.e., given two real numbers

, one of the following properties must hold: 1) ; 2) ;
or 3) .

However, it may be desirable, and this is still an open question
in image processing, to keep the metric in vector form, i.e., as
an element in , or , in general. In this case, we
lose the ordering property of the real numbers, i.e., the spaces

for are partially ordered sets. The most convenient
example of a partial ordering on is the following. Given

, we write that “ ” if the following
conditions hold:

(31)
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If one or more of the above conditions do not hold, then partial
ordering is not applicable and we say that and cannot
be ordered.

It is not difficult to show that the above partial ordering de-
fines a vector-valued metric on a space

(32)

satisfying the following conditions for all :
1) .
2) .
3) .
The above is a particular example of a partial ordering in .

It can be replaced by a more general condition involving cones.
Definition 2.10: Let . A cone obeys the

following set of conditions.
1) is closed, nonempty, and .
2) If , then for all (i.e.,

),
3) and imply that .

A partial ordering may be then defined with respect to a given
cone as follows: For , we write if and
only if . This is also symbolically written as .

Example: Positive orthant is an example of a
cone. In addition, (31) is the partial ordering associated with
this cone.

In general, a cone may be then used to define a cone
metric that will satisfy the three properties of a vector-valued
metric above, particularly the triangle inequality with respect
to the partial ordering defined by . Here, we mention that the
mathematical definition of a cone metric is actually more gen-
eral in form: A cone metric is a mapping from to a
Banach space [39].

C. Perceptual Validation of the Modification of SSIM

For practical applications, the metric obtained from the mod-
ification of SSIM is essentially equivalent to the original SSIM
index. This assertion is shown in two ways, i.e., theoretically
and with a perceptual experiment.

We can apply Theorem 2.9 to the particular case of the vector
of metrics given in (24). Taking a weighted norm, as shown
in (26), with and leads to

(33)

Metric can be seen as a low-order estimation of
SSIM. Indeed, we have

SSIM

(34)

If either or , then or
and we have

SSIM (35)

Fig. 1. Comparison of the SSIM index and metric � �
�
�� � � � for

the distorted images of the TID2008 database. It is observed that
�
����� fol-

lows the data very closely.

In fact, most typical image distortions , e.g., ad-
ditive noise, blur, and image compression, roughly preserve the
local mean of images so that . This explains the obser-
vation by Rouse and Hemami [40] on the Laboratory for Image
and Video Engineering (LIVE) database [41] that the second
(2) and third (3) components of SSIM are the most important to
predict the human perception of image distortion and justify the
use of as an approximation of SSIM. However, in
the case that there exist significant changes in the mean image
intensity, as shown in the TID2008 database [42], [43], such an
approximation is no longer valid. Indeed, the full SSIM mea-
sure with all three components included performs the best for
the full data set in the TID2008 database [9].

To illustrate this fact, in Fig. 1, the SSIM index is compared
with the score given by on the 1700 distorted
images of the TID2008 database. As shown in [4], the quality
maps were computed on 11 11 local patches with circular
Gaussian weighting (standard deviation of 1.5 pixels) of a down-
sampled image and then pooled into a single index by averaging.
The resulting Pearson’s correlation coefficient between and

SSIM is 0.967, showing a very strong relationship. If only
the images distorted with the most commonly encountered dis-
tortions are considered (see [42, Table IV], for details), then a
nearly perfect correlation of 0.994 is obtained. As expected, the
same experiment with the LIVE database also gives a very high
correlation of 0.997.

The mean opinion scores (MOSs) of the image quality of both
TID2008 and LIVE databases, release 2, are compared with

and SSIM in Table I. Two kinds of rank correlation were
computed, namely, Spearman’s and Kendall’s correlations. It is
observed that the correlation coefficients match very well for
LIVE and TID2008 databases restricted to realistic distortions
(including only noise distortions, denoising, blurring, and com-
pression). It is when the full database is used that the compar-
ison between and SSIM breaks down, metric performing
slightly worst than SSIM. This problem may be rectified by ad-
justing the weights assigned to and in (24).
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TABLE I
CORRELATION BETWEEN MOS AND IMAGE QUALITY ASSESSMENT MEASURES

III. CONVEXITY PROPERTIES

Here, we are concerned with the mathematical properties of
the normalized MSE (NMSE), because of its connection to the
SSIM function, cf. (8) and (9).

Definition 3.1: The NMSE is defined as the square of the
NRMSE

NMSE (36)

where .
As it is well known, most image processing analysis and al-

gorithms are based on -based methods, namely, RMSE and
MSE. The RMSE function is a metric (in the strict math-
ematical sense). Nevertheless, many optimization routines are
performed with respect to the MSE function, taking ad-
vantage of its convexity. This also applies for the NRMSE and
the NMSE.

One problem of particular interest is to find the region of con-
vexity for the NMSE. For the benefit of the reader, we outline
here the definitions of convexity of a set and of a function.

Definition 3.2: A subset of a vector space is convex if for
all and for all

(37)

Definition 3.3: A function is convex if for all
and for all

(38)

A. Preliminary Properties

We start with some basic invariance properties of the NMSE,
namely, invariance under: 1) multiplication by a scalar; and 2)
isometries (e.g., rotations and reflections). The properties, along
with others that follow, will also hold for each of the two com-
ponents, i.e., and , of SSIM since

NMSE (39)

NMSE (40)

The first property is analog to Parseval’s identity for the
-norm.
Proposition 3.4: NMSE is invariant under

isometries.

Proof: If is an orthogonal or unitary matrix, then

NMSE

NMSE (41)

Proposition 3.5: NMSE is invariant under scaling.
Proof: If , then

NMSE

NMSE (42)

This explains the preserved SSIM measure in the discrete co-
sine transform domain [23].

The scale invariance property is valid only when . For

NMSE NMSE (43)

which is very close to scaling invariance if and are neg-
ligible in comparison to .

The next property will be very useful for analyzing
NMSE when is fixed, reducing the dimensions
of interest to only two.

Proposition 3.6: For with fixed,
NMSE exhibits a rotational symmetry around

the direction of .
Proof: Consider any and

where with and .
In this case

(44)

for all , , and for all .
The last preliminary property of NMSE will be used

in the region of convexity proof.
Proposition 3.7: For with ,

NMSE is monotonically increasing perpendicularly to
the direction of .

Proof: Consider any and
where with and . In this case

NMSE

NMSE (45)

for all , , and for all .
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Fig. 2. Level sets of NMSE��� �� �� with � � � for � � �� � � � and � �
��� ��.

Fig. 3. Cross section of NMSE��� �� �� with � � � for � � �� � � � and
� � ����� along the vertical plane � � �.

We now draw the level sets and one cross section of the graph
of the NMSE for a fixed image . By rotational sym-
metry of around (see Prop. 3.6), we only need to consider
two directions in order to have full knowledge of the shape of
NMSE , namely, and any direction orthogonal to .
Notice also that, by invariance under isometries (see Prop. 3.4),
we can consider, without loss of generality, that .
Finally, notice that for and sufficiently large, constant is
negligible. Therefore, by scale invariance (see Prop. 3.5), we
can, without loss of generality, consider . The level
sets of NMSE are shown in Fig. 2. Its cross section along
the second component of , i.e., in the direction of ,
is shown in Fig. 3.

B. Quasi-Convexity

As it is clear by looking at Fig. 3, NMSE is
not convex. However, a weaker form of convexity called quasi-
convexity can be shown to hold. Quasi-convexity is a useful
property for nonlinear optimization: it assures the existence of
a global minimum on any convex subset of the function domain
(see, e.g., [44]).

Definition 3.8: Given a convex set , a function
is said to be quasi-convex if its -sublevel set, defined as

(46)

is a convex set for all Range .

Theorem 3.9: For fixed, NMSE is quasi-convex on
.

Proof: We easily see that

NMSE (47)

Therefore, it suffices to show that is convex for all .
To show this, we first examine the inequality

NMSE (48)

For , this inequality becomes

(49)

Completing the square yields

(50)

The set of points for which this inequality holds is a hyper-
sphere, which is a convex set.

In the particular case when , we have the inequality

(51)

which is satisfied for all , as previously defined. Set is
bounded by a hyperplane and, therefore, convex.

The quasi-convexity region of is thus

(52)

and the quasi-convexity region of is

(53)

C. Region of Convexity

For fixed, we wish to find the set of all points where
NMSE is convex. In particular, we shall show

that NMSE is locally convex, i.e., there exists a sphere
around the minimum for which NMSE is convex.
For this, the following technical lemma is needed.

Lemma 3.10: Let be a 2-D convex subset of , and let
. If is convex on , has a rotational symmetry around

the direction of , and is monotonically increasing in a direction
perpendicular to , then is convex on the rotation of around

.
Proof: See the Appendix.

Theorem 3.11: For , NMSE is
convex on

(54)

For with , NMSE is convex
on the region bounded by the rotation of

(55)
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Fig. 4. Boundary of the region where ���� � NMSE��� �� �� is convex with
� � ��� �� and � � �� � � � for � � �, � � ���, and � � �.

, around the direction of , i.e., is convex on
the region bounded by for any perpen-
dicular to (see Fig. 4).

Proof: The 1-D case can be easily verified by finding the
region where the second derivative of is positive. For the
general case, we proceed in three steps.

1) First, consider the 2-D case and denote . For
, we have

NMSE (56)

To determine the region of convexity of , it suffices to
compute the eigenvalues of its Hessian matrix and to deter-
mine when they are nonnegative. One can verify that this
happens when

(57)

(58)

We shall call this region . It is convex since .
2) For any , we can write

, where is the angle be-
tween and (1,0). Vector can be thought as a
transformation of

(59)

By the invariance properties of NMSE (see Prop. 3.4 and
3.5), we have

NMSE NMSE (60)

Therefore, NMSE is convex on , i.e., on
a rotation of by angle and a scaling by factor .

3) Since NMSE is convex on convex re-
gion , by rotational symmetry and monotonicity of (see

Prop. 3.6 and 3.7), it will be also convex in the region con-
sisting of the rotation of around the direction of in
virtue of Lemma 3.10.

• Note 1: Here, we considered case . The general
case is similar, but since we cannot use the scaling prop-
erty, we need to consider in Step 1), which
leads to a complex equation for the region of convexity.
The region with and will look very
similar than the one for , but the region will be
slightly larger: It adds approximately a sausage of diam-
eter increasing with (see Fig. 4). For practical purpose,
is usually very small and the region of con-
vexity of NMSE is almost identical to the region
of convexity of NMSE .

• Note 2: There is another region of convexity for some neg-
ative , but it is not of interest since it is not around , i.e.,
the minimum of NMSE .

• Note 3: An easy estimate of the region of convexity is the
(hyper)sphere centered at and of radius .
Indeed, one can verify that this sphere is inscribed in the
region of convexity.

From Theorem 3.11, we can directly deduce the convexity (in
fact, concavity) region for and .

D. Convexity of Generalized (Cone) Metrics

We show that generalized (cone) metrics carry a generalized
kind of convexity. In particular, it will apply to the metric in
(28).

Theorem 3.12: If is convex on for , then
cone metric is convex on in
the sense that, for all and for all

(61)

where is the product order (31).
Proof: Since projection operator is linear

and is convex on for , we have

(62)

Since the inequality holds for all , we conclude
that is convex on in the sense of (61).

We can also show the convexity of .
Theorem3.13: If is convex on for and

if is a norm with the increasing property [see (25)], then
is convex on .
Proof: From Theorem 3.12, is convex on .

Since is a norm, it is convex as well. Therefore, by the
increasing property, we have that on

(63)
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TABLE II
REGION OF VALIDITY FOR THE PROPERTIES OF THE COMPONENTS OF SSIM

where � � �� � �� � � � �� � ��� � � ��� � ��� ����,� �
���

�
	��
,� : A teardrop shape pointed at � containing the ball centered at

� � �� and of radius �
�
	� ��	� � ��	 (see Theorem 3.11).

For our case of interest, we deduce that the region of
convexity of and of is the
(hyper)cylinder with and with following a
teardrop shape around like it is described in Theorem 3.11.

Contrary to convex functions, the sum of quasi-convex func-
tions is not necessarily quasi-convex. Nevertheless, we can find
a similar theorem about the quasi-convexity of , but we cannot
establish the same result for .

Theorem 3.14: If is quasi-convex on for
, then is quasi-convex on .

Proof: Since is quasi-convex on for ,
we have that the Cartesian product

(64)

is a convex set for all . By the Orthogonal
Decomposition Theorem 2.7, (64) is equivalent to

(65)

which we know to be convex; hence, that is quasi-convex.
Hence, is quasi-convex in region

, where and are the regions of quasi-convexity
described in (52) and (53), respectively.

IV. CONCLUSION

Several important mathematical properties of the SSIM index
have been investigated in this paper. First, it was shown that
SSIM can be partitioned into two components and , each
of which may be transformed into a valid distance metric via

and , respectively. The two
metrics can be either combined to a single scalar-valued dis-
tance metric applying a norm with the increasing property (see
Theorem 2.9) or be used to form a vector-valued generalized
(cone) metric. We then proved that, like the MSE, the SSIM
index and SSIM-based metrics are preserved under orthogonal
or unitary transformations. Convexity, quasi-convexity, and gen-
eralized convexity have been also shown to locally hold for the
metrics derived from SSIM. It is summarized in Table II.

The properties proved here may find broad applications in
many optimization problems in image processing where objec-
tive functions correlated with perceptual image quality are desir-
able, as described in Section 1. For example, the distance preser-
vation property could be useful in transform-domain algorithm
design and error analysis. The convexity and quasi-convexity
properties are important in the design of efficient optimization

algorithms. The property of being a valid distance metric may
help analyze and prove the convergence properties of many it-
erative algorithms. In particular, it could be useful for fractal
imaging (see [45]). In the general cone metric space setting,
fixed-point theorems were also found [39]. The convexity of the
generalized metric opens the door for multicriteria optimization
and goal programming (see [44] and [46]). Furthermore, the re-
sults of this paper may also expedite the explorations of other
new research directions in image and signal processing, such as
sparse representation and collective sensing [47].

APPENDIX

Proof of Theorem 2.6:: From Lemma 2.3, we know
that is Ptolemaic. As we have already noticed,

is moderately in-
creasing with respect to . Therefore, by Lemma 2.5,

NMRSE will be a metric on if it is a
metric on . It is easy to verify that

(66)

(67)

It remains to prove the triangular inequality. We denote

It must be shown that

(68)

Since is symmetric, we can assume, without loss of gener-
ality, that . There are three cases to consider.
Case 1) .We have

(69)

(70)

These imply that

(71)

Equation (68) follows from the triangular inequality
for the -norm.

Case 2) .For any stability constant and for
any constant , define

(72)

By looking at the sign of the second derivative of the
function, one can verify that it is a convex function.
Therefore, by definition of convexity, we have for all

, with

(73)

Choosing the constant
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and rearranging the terms, we find

(74)

Finally, by taking

we obtain

(75)

Case 3) . We then have

(76)

(77)

These imply that

(78)

From Ptolemy’s inequality for (see Lemma 2.3), the proof
is complete.

Note that this proof could be generalized for any normalized
metric of the form

(79)

with and . The idea is to instead use function
in the argument using the con-

vexity of .
Proof of Lemma 3.10: Consider any two points and
in the region consisting of the rotation of around the

direction of and consider a third point

where (80)

somewhere in the line segment relying these two points. For the
convexity of , we need to show that

(81)

We decompose and as and
, respectively, where and are unit vectors perpen-

dicular to , i.e., and . Now,
consider two points and
and construct two other points and

(see Fig. 5).
Considering

(82)

Fig. 5. Points � � � � � � � � � and � in the proof of Lemma 3.10.

where

(83)

one can check that, in fact, .
By the convexity of in 2-D region and by rotational sym-

metry, we have

(84)

(85)

Now, we show that

(86)

Since and have the same distance to the line generated
by , by rotational symmetry. It remains to
show that . We write

(87)

(88)

with and and

(89)

(90)

with and . From the triangular inequality
for norms, . We then use the fact that is monotoni-
cally increasing in a direction perpendicular to to conclude that

. From rotational symmetry, .
From all of the above

(91)

(92)
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