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Surface Reconstruction in Gradient-Field Domain
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Abstract— Surface reconstruction from measurements of
spatial gradient is an important computer vision problem
with applications in photometric stereo and shape-from-shading.
In the case of morphologically complex surfaces observed in
the presence of shadowing and transparency artifacts, a rela-
tively large dense gradient measurements may be required for
accurate surface reconstruction. Consequently, due to hardware
limitations of image acquisition devices, situations are possible
in which the available sampling density might not be sufficiently
high to allow for recovery of essential surface details. In this
paper, the above problem is resolved by means of derivative
compressed sensing (DCS). DCS can be viewed as a modification
of the classical CS, which is particularly suited for reconstructions
involving image/surface gradients. In DCS, a standard CS setting
is augmented through incorporation of additional constraints
arising from some intrinsic properties of potential vector fields.
We demonstrate that using DCS results in reduction in the
number of measurements as compared with the standard (dense)
sampling, while producing estimates of higher accuracy and
smaller variability as compared with CS-based estimates. The
results of this study are further supported by a series of numerical
experiments.

Index Terms— Photometric stereo, shape-from-shading,
3D surface reconstruction, derivative compressed sensing,
Poisson equation.

I. INTRODUCTION

RECONSTRUCTION of a 3D surface from its gradient
field is an important problem in computer vision with

areas of applications including photometric stereo (PS) [2], [3],
shape-from-shading (SFS) [4], and surface inspection [5].
In these applications, a 3D surface of interest (x, y, z(x, y)),
is recovered from the measurements of the spatial gradient
of a (surface) depth function z(x, y). Existing algorithms
generally follow a two stage procedure [6]. First, the gradient
field (zx , zy) is measured/calculated at each point (x, y)
and then the depth information z(x, y) is obtained through
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integration of the gradient field. In particular, under some
reasonable assumptions on the light source and object
reflection properties, the unit normal to such a surface can be
calculated from its grey-scale representation [7]. Subsequently,
the normal can be used to recover its corresponding partial
derivatives, followed by reconstructing an approximation of
the original surface through the solution of a Poisson equation
using either calculus of variation [8], direct integration [9],
or frequency-domain algorithms [10].

A practical difficulty in implementation of the above-
mentioned techniques stems from the necessity to deal with
relatively large sets of gradient data which can be computa-
tionally expensive. Typically, such dense data sets are required
to allow for accurate reconstruction of fine surface details,
which are often occluded due to shadowing and transparency
artifacts [11], [12]. In such cases, improving the acquisition
requirements of the hardware in use through reducing the
sampling density would unavoidably produce aliasing artifacts,
while improving hardware sampling rate might not be viable.
Fortunately, advances in computational harmonic analysis
offer a means to overcome the above limitation, while allowing
for accurately recovering digital signals from their sub-
critical measurements. This method – known as compressed
sensing (CS) [13], [14] – has already revolutionized vast areas
of applied sciences, and computer vision in particular [15].
In the current manuscript we propose to solve the problem
of surface reconstruction within the framework of CS so
as to improve reconstruction quality without increasing the
sampling rate. The resulting estimates of the gradient field can
be subsequently used to reconstruct the original 3D surface.

It should be noted that the original CS formulation does not
incorporate arbitrary a priori information on the interrogated
signals, apart from requiring them to be sparsely representable
in a predefined basis. In particular, at the case at hand, it seems
natural to reconstruct the surface gradient using the fact that
the latter constitutes a potential vector field. When subjected
to such side information, the classical CS setup transforms
into its specific instance – known as derivative compressed
sensing (DCS) [16] – which is in the heart of the present study.
In this paper, we use DCS as a tool for 3D surface recovery.
We improve the accuracy of 3D surface recovery and provide
some justification why DCS outperforms classic CS. We then
use an efficient method for reconstruction of 3D surfaces from
the sub-critical (incomplete) measurements of their spatial
gradients [17]. In addition to detailing a computationally
efficient algorithm for practical implementation of DCS [17],
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it is shown how the latter can be used to improve the
reconstruction quality of the standard CS [13], [14], while
resulting in substantial reduction in sampling density.
Furthermore, our results indicate that DCS can be used used
to improve resolution of surface recovery data acquisition
devices.

The rest of the paper is organized as follows. Section II
summarizes some basic technical preliminaries on compressed
sensing. In Sections III and IV, we explain the proposed
scheme and describe a reconstruction algorithm for practical
solution of the problem. Experimental results for both syn-
thetic and real world data are presented in Section V, while
Section VI finalizes the paper with a discussion on algorithm
limitations and conclusions.

II. CLASSIC COMPRESSIVE SENSING

Compressed sensing (CS) is a technique used for
reconstruction of signals-of-interest from their sub-critical
(incomplete) measurements [13], [14]. This technique has been
been applied to improve many challenging problems in image
processing [18]–[20] and computer vision [12], [21]–[23].
CS can be used to improve data acquisition in imaging
devices. Surface meteorology is a particular case of surface
reconstruction which deals with measuring small–scale
features on surfaces and thus a dense sampling rate is
required. CS has been applied to improve data acquisition in
this application [12]. In addition, CS not only can improve
data acquisition, but also can be used to incorporate sparsity
as side information about the source signal. In [23], authors
have used sparsity as prior information to improve robustness
of surface recovery against outliers and noise. These potential
benefits motivates us to apply DCS for surface recovery.

At a fundamental level, CS exploits sparsity as a prior
on the signal to be estimated and recovers an approximation
to the signal as a unique solution to a convex optimization
problem. Let x ∈ R

n be a source signal which has a sparse
representation with respect to some discrete basis W ∈ R

n×n ,
that is x = Wc, where c is a sparse signal with ‖c‖0 = k,
k < n.1 One of the central results of the theory of
CS states that a k–sparse signal x can be reliably recovered
from m > k log(n/k) measurements acquired according to

y = �x + n, (1)

where y ∈ R
m, m < n [13], [14]. Here, � ∈ R

m×n is a
full-rank matrix known as the sensing matrix and n denotes
measurement noise, which is usually assumed to be additive
Gaussian noise.

Finding the sparsifying transform W is a critical task. Thus,
for instance, for a broad class of signals, W can be chosen to
represent a discrete wavelet transform (DWT), while for other
signal classes, W can be obtained using dictionary learning
algorithms [24]. It should be noted that, successful signal
recovery by means of CS is not a priori guaranteed for an
arbitrary choice of matrices W and � . For this to happen,

1Here ‖·‖0 denotes the �0-norm that counts the number of non-zero
elements of c.

the matrix � = �W has to obey the restricted isometry
property (RIP) of order k, which requires

1 − δk ≤ ‖� c‖2
2

‖c‖2
2

≤ 1 + δk, (2)

to hold ∀c ∈ R
n , with ‖c‖0 = k [13], [14]. Moreover, if this

is the case, then a unique approximation c to the true vector
of signal representation coefficients can be obtained through
solving the following convex optimization problem

c = arg min
c′ ‖c′‖1 + λ‖�c′ − y‖2

2, (3)

where λ > 0 is a regularization parameter which depends
on the level of noise n. Numerous algorithms have been
developed in the literature for solving (3) [25]–[27].

Note that although RIP condition has been used to derive
numerous results in the theory of CS, it is only a sufficient
condition on �, not necessary. That is, cases exist in which a
useful approximation to x in (1) can be obtained with � that
does not satisfy RIP. For instance, multiplication of both sides
of (1) by an invertible matrix B will clearly have no effect on
the set of possible solutions, while the “new” sensing matrix
might start violating the RIP. In fact, it can be shown that one
can always find such a B which will result in violation of
RIP for any sensing matrix [28]–[30]. For the above reasons,
we do not use RIP to analyze our results.

In the noiseless case, the feasible region of (3) is defined
by S�,y = {c | � c = y}, which is isomorphic to the null-
space null(�) of �, and this is where the optimal solution is
located. Thus, intuitively, if the number of measurements m
decreases (i.e., the dimension of null(�) increases), the search
for the optimal solution would become more challenging
and time-consuming. One might therefore suggest that
studying null(�) can be rather beneficial in the context of CS.
Consequently, using this line of arguments, an alternative
approach to the analysis of CS problems have been recently
developed, which provides results similar to these obtained
based on RIP [28]–[30]. This approach uses the notion of
spherical section property. Formally, a subspace C ⊂ R

n of
dimension dim(C) = n − m is said to have spherical section
property (SSP) with distortion � if

∀c �= 0 ∈ C → ‖c‖1

‖c‖2
≥

√
m

�
. (4)

A small � suggests that the intersection of null(�) and the
unit ball looks spherical.

An analogous theorem which uses the notion of SSP states
that if null(�) has the �-spherical section property and c is
sparse enough, i.e.

‖c‖0 ≤ m

2�
≤ n

2
, (5)

then the classical results of the theory of CS on the unique-
ness and stability of signal reconstruction apply [28]–[30].
In addition to CS theorems derived using RIP approach, the
SSP-based analysis provides slightly stronger results which
allow a deeper insight into the properties of the solution set
of (3) under the presence of side information.
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Both RIP and SSP are useful tools to derive CS existential
theorems, but unfortunately their direct application in practice
is generally complicated, if at all possible. That is, it is
computationally intractable to calculate RIP or SSP parameters
for an arbitrary matrix � in a general case [28]–[30]. However,
computationally tractable bounds for calculating SSP and RIP
have been developed in the literature [31], [32]. In the current
study we use the upper bounds on SSP to study the effect of
adding side information.

Due to the scale invariance of (4) with respect to ‖c‖2,
� can be found through solving the following problem

� = arg max
c

{‖c‖2
2}

s.t. � c = 0

‖c‖2
1 ≤ 1 (6)

Now if we let C = ccT , then, with I being an identity matrix
and 〈B, C〉 = trace(BCT ) standing for the inner product
of matrices B and C , (6) can be rewritten in an alternative
form as

� = arg max
C

{〈C, I 〉} (7)

s.t. 〈�T �, C〉 = 0, (8)

‖C‖1 ≤ 1,

Rank(C) = 1, (9)

where ‖C‖1 = ∑
i, j Ci j = ‖c‖2

1. By solving (7), one can find
an exact value of �. However, since the rank constraint is
not convex, such a solution is difficult to achieve by using the
methods of convex optimization.

The above practical difficulty can be overcome by means
of convex relaxation. In particular, the problem in (7)
can be convexified by dropping the rank constraint [31].
While amenable to efficient practical treatment, however,
the resulting convex minimization problem can be only used
to solve for an upper boundary �̄ on the SSP distortion
parameter �. Specifically, �̄ can be obtained through

� = arg max
C

{〈C, I 〉} (10)

s.t. 〈�T �, C〉 = 0, (11)

‖C‖1 ≤ 1,

C 
 0. (12)

The problem above is an instance of semidefinite
programming (SDP), for which numerous solution methods
are currently available [33]. In this paper, we solve (10) with
the help of the CVX software package [34].

III. PROPOSED METHOD

Let (x, y, z(x, y)) represent an original 3D surface to be
recovered. For the sake of convenience, z(x, y) is assumed to
be discretized over a finite-dimensional, uniform, rectangular
lattice � = {(i, j) | 0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1} ⊂ Z

2,
so that the samples of its partial derivatives zx ∈ R

n and
zy ∈ R

n can be concatenated into two column vectors by
lexicographic ordering, where n = M N . The measurement
vectors bx ∈ R

m and by ∈ R
m corresponding to zx and zy ,

respectively, are obtained as bx = �x zx and by = �y zy ,

where �x ∈ R
m×n and �y ∈ R

m×n denote subsampling
matrices which account for the effect of partial observation.
It is also assumed that the partial derivatives zx and zy

admit sparse representations with respect to a linear
transformation W , which implies the existence of two sparse
vectors of representation coefficients cx and cy such that
zx = W cx and zy = W cy . Finally, it is assumed that both
null(�x) and null(�y) satisfy SSP.

Under the above conditions, CS-based reconstruction of the
representation coefficients cx and cy can be performed in a
separable fashion according to

c∗
x = arg min

c′
x

{
1

2
‖�x Wc′

x − bx‖2
2 + λ‖c′

x‖1

}
(13)

and

c∗
y = arg min

c′
y

{
1

2
‖�y Wc′

y − by‖2
2 + λ‖c′

y‖1

}
. (14)

Moreover, by allowing c = [cT
x , cT

y ]T , y = [bT
x , bT

y ]T , and
� = diag{�x W,�y W }, one can combine (13) and (14) into
a single optimization problem as given by

c∗ = arg min
c′

{
1

2
‖�c′ − y‖2

2 + λ‖c′‖1

}
. (15)

This problem is equivalent to (3) and hence any CS solver can
be used to find an optimal c∗.

Central to DCS is the idea to augment the CS approach
in (15) with side information which arises from the fact
that, for a twice differentiable surfaces z(x, y), the following
relation always takes place [16]

∂2z

∂x ∂y
= ∂2z

∂y ∂x
. (16)

This side information can be incorporated in the form
of an additional, cross-derivative constraint. In particular,
let Dx and Dy denote the matrices of discrete partial
differences in the direction of x and y, respectively. Then,
the cross-derivative constraint suggests that

Dx zy = Dyzx . (17)

Intuitively the constraint in (17) can be viewed as
“additional measurements”, whose inclusion can be reasonably
expected to improve the accuracy of surface recovery.

To analyze the effect of adding the side information, let
B := Dy W Tx − Dx W Ty , with Tx and Ty being the operators
of coordinate projections, defined as cx = Tx c and cy = Ty c.
Then, one can amalgamate the actual data and the cross-
derivative constraint Bc = 0 into an equivalent measurement
model as given by

y′ = �′c + n′, (18)

where �′ := [�T , BT ]T , y′ = [yT , 0T ]T , and n′ = [nT , 0T ]T .

Note that �′ ∈ R
(2m+n)×2n and thus we set 2m < n in order

to perform CS on (18).
Since the equivalent measurement model in (18) has the

same format as (1), it is reasonable to conclude that the effect
of adding the cross-derivative constraint can be assessed
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Fig. 1. Upper-bounds on SSP of different sensing matrices as a function of
the sampling ratio (n = 32). Here, the solid and dashed lines correspond to
the cases of DCS and CS, respectively.

through analyzing null(�′). Moreover, as adding the cross-
derivative constraint decreases the dimension of null(�′),
it can be expected to decrease the distortion of the sensing
matrix �′. Consequently, (5) suggests that, for a fixed error
rate, the same signal c could be recovered from a smaller num-
ber of measurements 2m. Alternatively, keeping the number
of measurements 2m fixed, one could expect to successfully
recover signals characterized by a lower degree of sparsity.

The above intuitive considerations can be further supported
in a more formal way as follows. First, we note that

null(�′) = null(�) ∩ null(B) → null(�′) ⊂ null(�). (19)

Thus, since null(�) satisfies SSP with parameters m and
�, null(�′) should also satisfy SSP with (at least) the same
parameters. Equivalently, it follows from (4), that
m′ = 2m + n and �′ ≤ �(1 + n/m), while m′/�′ = m/n.
Now, since (18) has a unique solution and any feasible
solution of (1) satisfies (18) as well, we conclude that (18)
should share the same unique solution with (1). This fact
ensures that adding the cross-derivative constraint is unlikely
to result in a violation of the uniqueness of the solution to (1).
However, to validate the beneficial effect of incorporating
this additional constraint, we need to check whether or not it
leads to a reduced distortion of the new sensing matrix �′.

In this work, the above question is addressed through a
numerical experiment. To this end, for n = 32, we let �
be a random matrix with i.i.d. entries drawn from a normal
distribution, while W is defined to be an overcomplete discrete
cosine transform dictionary [35]. Subsequently, we use (7) to
estimate the upper-bounds on SSP for the sensing matrices
� and �′ as a function of the sampling ratio r = m/n. The
results of our simulations are depicted in Fig. 1. Note that
here we have plotted �

m because according to (4) and (5),
normalized � must be compared. This shows an expected
behavior with ��′ ≤ ��. Thus, this numerical example can be
viewed as an empirical confirmation of the fact that adding the
cross-derivative constraint indeed holds potential to improve
the accuracy of signal reconstruction.

Algorithm 1 Derivative Compressive Sampling

Next, in order to solve the problem (18) an efficient numer-
ical procedure is required. Clearly, to this end, one can just
use a standard CS solver. However, it is possible to further
improve the numerical efficiency of the reconstruction by
taking advantage of the specific nature of the cross-derivative
constraint. Specifically, the problem at hand can be formulated
as a constrained optimization problem of the form

c∗ = arg min
c′

{
1

2
‖�c′ − y‖2

2 + λ‖c′‖1

}
,

s.t. Bc′ = 0. (20)

This is a classical optimization problem, which can be
efficiently solved by the augmented Lagrangian method [36],
which finds the optimal solution via a series of iterations
computed according to

c(t+1) = arg min
c′

{1

2
‖�c′ − y‖2

2 + λ‖c′‖1 + δ

2
‖Bc′ + p(t)‖2

2

}

p(t+1) = p(t) + Bc(t+1), (21)

where p(t) is a (dual) vector of (weighted) Lagrange
multipliers, δ > 0 is a penalty parameter, and t stands for
the iteration index. Note that in (21), the update of c(t+1)

has the format of a lasso problem [37] which can be solved
by a variety of computational algorithms. In this work, the
solution has been obtained by means of the fast iterative
shrinkage thresholding algorithm (FISTA) of Beck et al [25].

Given the optimal solution c∗, the full measurement set
of partial derivatives can be recovered as zx = W Tx c and
zy = W Ty c, which, in turn, can be used to approximate the
original surface z(·, ·) via solution of a Poisson equation [17].
Algorithm 1 above summarizes all the computational steps of
the proposed algorithm.

IV. SURFACE RECONSTRUCTION IN GRADIENT FIELD

The problem of surface reconstruction is a standard
problem in computer vision, where the goal is to use multiple
2D images to recover a close approximation of a 3D surface,
z(x, y). To simplify hardware design, it is usually found
convenient to reconstruct the surface from its orientations in
the 2D gradient space (zx , zy), while in practice, the gradient
field is determined through a reflectance map R(zx , xy) [7],
which, in turn, is measured empirically. Note that the
reflectance map can be viewed as a 2D image i(x, y), with
the image intensities being a function of zx and zy .
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For a surface z(x, y), the normal vector can be computed
as [zx , zy,−1], thus we can explicitly represent a surface in
gradient space (zx , zy). Because the ratio of the light reflected
from a surface depends on surface gradient [7], a class of
imaging devices measure surface gradients by computing
reflectance map. A simple but, at the same time, the most
conventional model used to describe the observation of 3D sur-
faces is the Lambertian model [7], in which the light reflected
in a given direction depends predominantly on the surface
orientation. Specifically, if the measuring camera is placed at
infinity (a single distant point source) for which the perspective
projection can be approximated as orthographic projection,
the reflectance map based on the Lambertian shading rule is
defined as given by [7]

R(zx , zy) = ρ(1 + zx ps + zyqs)√
1 + z2

x + z2
y

√
1 + p2

s + qs
y

(22)

where ρ is a reflectance coefficient, and ps and qs determine
the direction of light source.

Equation (22) can be used to to determine surface orien-
tation from measured intensity. But it has nonlinearity and
given R(zx , zy), we have two unknowns zx and zy . A basic
idea behind both photometric stereo (PS) [7] and shape-from-
shading (SFS) [8] is to gradually alter the viewing direction
to measure the x and y components of the gradient field of a
surface, z(x, y), followed by integrating these measurements
into a 3D surface reconstruction. Thus, for a known ρ, at least
two views are required for determining zx and zy . However,
due to the nonlinear nature of (22), such a solution would
not be unique, in general. To alleviate this deficiency, at least
three measurements with three different light directions are
required to solve uniquely for zx and zy . In practice, for
improving the robustness of surface reconstruction towards the
effect of measurement noise, it is standard to use N images
i(x, y) = R(zx , zy), with (N > 3) [38]. Subsequently,
for each point (xi , x j ), these images are used to form the
following system of equations⎡

⎢⎣
i1(i, j)

...
iN (i, j)

⎤
⎥⎦ =

⎡
⎢⎣

d1x d1y d1z
...

...
...

dN x dN y dNz

⎤
⎥⎦

⎡
⎣n̂x

n̂y

n̂z

⎤
⎦, (23)

where (dkx , dky , dkz) denotes the kth direction of the light ray
(viewing point) and n̂T = [n̂x , n̂ y, n̂z ]T is the surface normal
vector. In a matrix form, this equation can be written as

I = D n̂, (24)

which admits a closed-form solution in terms of the
Moore-Penrose inverse of D, viz.

n̂ = (DT D)−1 DT I, (25)

Note that n̂ is a unit vector which is parallel to [zx , zy,−1]
([zx , zy,−1] ∝ [n̂x , n̂ y , n̂z]). Thus, having the unit surface
normal vector estimated, the x and y components of the
gradient field can be computed as

zx = n̂x/n̂z,

zy = n̂ y/n̂z . (26)

Fig. 2. Synthetic surfaces (a) Ramp-peak (b) Sphere, (c) Peak-valley, and
(d) sample photos of 6 real objects. (Top from left to right: Cat, Rock, and
Horse. Bottom from left to right: Gray, Owl, and Buddha.)

Finally, the resulting estimates of the partial derivatives can
be arranged into two numeric arrays defined as

Zx(i, j) = ∂z

∂x
|(x,y)=(xi,y j ),

Z y(i, j) = ∂z

∂y
|(x,y)=(xi,y j ). (27)

In practice, an accurate surface reconstruction necessitates
using a relatively large number of sampling points, which may
lead to prohibitive acquisition requirements from the viewpoint
of hardware design and its practical limitations [12]. Using
less dense sampling sets, on the other hand, could result
in suboptimal reconstructions of poor quality [7]. However,
this unfortunate situation can be greatly improved through
the use of DCS. In this case, given partial measurements
of Zx and Z y , one can employ Algorithm 1 to solve for
zx and zy . This step can be interpreted as increasing the
sampling density of the gradient field (without complicating
the hardware design). Note, in the final stage of Algorithm 1,
a surface shape is recovered via solving a Poisson equation
under proper boundary conditions, which can be implemented
in a variety of ways [8]–[10], [39], [40]. In this work,
we take advantage of the spectral (i.e., frequency-domain)
method of [10].

V. EXPERIMENTAL RESULTS

In the experimental part of this work, we compared the
performance of the proposed DCS method against: (a) classical
CS and (b) reconstruction based on dense sampling (DS).
In our experiments, we used the synthetic surfaces from
[41] and [42] (see Fig. 2 (a)–(c)) as well as real world
measurements from six different objects (see Fig. 2 (d))
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TABLE I

COMPARISONS OF SURFACE RECOVERY RESULTS FOR DIFFERENT MEASUREMENT NOISE LEVELS WITH r = 0.5

TABLE II

COMPARISONS OF SURFACE RECOVERY RESULTS FOR DIFFERENT OUTLIERS LEVELS (do ) WITH SNR = 20 dB

TABLE III

COMPARISONS OF SURFACE RECOVERY RESULTS FOR DIFFERENT SAMPLING RATIOS WITH SNR = 20 dB

(provided by courtesy of Dan Goldman and Steven Seitz2).
The subsampling matrices �x and �y were obtained from
an identity matrix I through a random subsampling of its
rows by a factor r , resulting in a required partial sampling
ratio. For sparse representation, W was defined to represent
a four-level orthogonal wavelet transform using the nearly
symmetric wavelets with five vanishing moments [43].
Experiments confirm that natural surfaces can be represented
sparsely in this basis [44]. To compare the reconstruction
quality, we have used Signal-to-Noise Ratio, defined as

SN R = 10 log(

∑N−1
i=0

∑M−1
j=0 z(i, j )2

∑N−1
i=0

∑M−1
j=0 (z(i, j )−ẑ(i, j ))2

), where ẑ(·, ·)
denotes the reconstructed surface.

Table I to Table IV summarize reconstruction results for
different methods, obtained for both synthetic and real world

2http://courses.cs.washington.edu/courses/csep576/05wi//projects/project3/
project3.htm

TABLE IV

COMPARISONS OF SURFACE RECOVERY RESULTS FOR DIFFERENT

DECIMATION FACTOR (d f ) WITH SNR = 20 dB

data for different partial sampling ratios and noise levels.
In particular, Table I summarizes the results for different mea-
surement noise levels and partial sampling ratio of r = 0.5.
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Fig. 3. Peak-Ramp surface (a) and its reconstructed versions using (b) DS, (c) classical CS, and (d) DCS for SNR = 20 dB.

Analyzing the table, we first note that, in all cases, dense
sampling improves SNR. This reflects the fact that imposing
sparsifying priors on the source signal in wavelet domain can
be used as a denoising method for surface reconstruction.
At the same time, one can see that using CS substantially
degrades reconstruction quality, while DCS improves the
quality in comparison with CS, providing results compara-
ble to those produced by DS for higher levels of noise.
This is an important observation that implies that DCS
can be beneficial for reducing the complexity (and hence
the cost) of hardware design. Additionally, for the sake
of visual comparison, the reconstruction results for the
Ramp-Peak synthetic surface and the horse object are given
in Fig. 3 and Fig. 4, respectively for SNR = 20 dB.
In both cases, one can see that DCS yields reconstructions of
nearly the same quality as those computed through DS, while
resulting in much less severe artifacts as compared to the case
of CS (especially in vicinity of surface edges). As it can also
be seen that CS-based reconstructions are characterized by
overly smoothed edges – the defect virtually undetectable in
the case of the proposed DCS approach.

Note that from the viewpoint of statistical estimation
theory, CS asserts a Gaussian noise model, but in practice
gradient measurements would be corrupted by both noise
and outliers which. In fact, this is considered to be a more
standard model [2], [3]. The use of the additional derivative
constraints by DCS makes our reconstruction robust toward
the inconsistency in noise modeling because these constraints
are independent from noise model. This argument is supported
by the results in Table II. Here, we have used salt and pepper
noise to model outliers [3] in presence of Gaussian noise with

SNR = 20 dB. The parameter do indicates the proportion of
pixels which are missing due to outliers. One can see that, in
this case, although reconstruction quality decreases compared
to Gaussian noise model, DCS is more robust compared to
CS and still can lead to a reconstruction accuracy comparable
with dense sampling.

To investigate the performance of the proposed algorithm
at different measurement noise regimes, the surface recon-
structions have been computed for a range of SNR values.
The results of these computations for Ramp–Peak surface
are summarized in Fig. 5(a). Clearly, the cross-derivative
constraint exploited by DCS effectively restricts the feasibility
region for an optimal solution, and thus the algorithm results
in a substantially improved reconstruction quality as compared
to the case of CS for all SNR values. Note that, even at
SNR = 8 dB, the reconstruction quality of DCS is virtually as
good as that of CS reconstructions obtained at SNR = 30 dB.
This is a considerable improvement as compared to CS,
which shows that DCS remains a reliable estimation approach
even at high noise levels. Although reconstruction results for
Ramp–Peak surface may seem convincing, one can argue that
these results can be model dependent. In Fig. 5(b), reconstruc-
tion results are summarized across the dataset of Fig. 2. Here
we have depicted improvement in SNR, that is the difference
between the DCS based reconstruction result and the CS based
reconstruction result. It can be seen in Table I and Table II
that CS reconstruction can vary for different surfaces. We use
the SNR difference between CS based and DCS based recon-
structions, because CS based reconstruction can be considered
as a baseline for comparison. The curve in Fig. 5(b) is the
average improvement for the 9 surfaces and the error bars
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Fig. 4. Horse surface (a) and its reconstructed versions using (b) DS, (c) classical CS, and (d) DCS for SNR = 20 dB.

denotes variation across the dataset. As it can be seen, a similar
trend can be seen across the dataset. Although, the amount of
improvement is model dependent and can vary for different
surfaces, but error bars confirm that the trend is the dataset.

Table III summarizes the reconstruction results obtained
with CS and DCS for different subsampling ratios and a fixed
noise level of SNR = 20 dB. One can see that, once again,
DCS outperforms CS for all the cases under comparison. This
conclusion is further confirmed by Fig. 6(a) which presents the
results of the reconstruction of Ramp-Peak surface obtained
for a continuous range of subsampling ratios. This result
deserves a special attention, as it shows that the DCS-based
reconstruction with r = 0.3 is comparable with the CS-based
reconstruction with r = 0.6. This is an important observation
which suggests that subcritical non-uniform sampling can be
used in conjunction with DSC to substantially improve the
effective resolution of the hardware in use. To investigate the
consistency of the results, in Fig. 6(b), reconstruction results
are summarized across the dataset similar to Fig. 5(b). Again,
it can be seen that although the amount of improvement is
dependent on the surface of interest but error bars confirm
that the trend is consistent across the dataset. This observation
indicates that, the developed method can be used for surface
reconstruction of different source signals.

For these results we have assumed a random sampling pro-
cedure to guarantee that the required condition for CS recovery
holds. One can argue that, in practice the sampling pattern
is decimation because we may have access to low resolution

versions of the surface of interest. For this reason, results for
uniform decimation pattern are presented in Table IV. We have
used two decimation factors (d f ), defined as the downsampling
proportion. First, we assume a uniform downsampling in just
one spatial direction which leads to d f = 0.5 and next we
assume a uniform decimation in both spatial directions, which
gives d f = 0.25. Reconstruction results confirm that although
reconstruction quality decreases when we use decimation
sampling, DCS still can lead to much better accuracy.

As an additional comparison, Fig. 7(a) illustrates the con-
vergence of the mean square error (MSE) of residual, defined
as ‖y − �ct‖2

2 for each iterations of Algorithm, as a function
of the number of iterations, for both CS and DCS algorithms.
Furthermore, Fig. 7(b) summarizes MSE of residual across
the dataset. Here the curves denote the average performance
across dataset and the shaded area denotes the variation
across the dataset. Fig. 7(b) in fact shows that convergence of
CS is slower than DCS across the dataset, which can be seen
as an additional practical advantage offered by the proposed
solution. This advantage can help with online surface
reconstruction [45], where we are interested in reconstructing
a surface over a time interval. In such cases, the speed of
reconstruction is crucial to be able to detect surface changes.

VI. LIMITATIONS AND DISCUSSION

In the present paper, the applicability of DCS to the
problem of surface reconstruction has been studied. The
proposed DCS-based solution was shown to be capable
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Fig. 5. Subplot (a) SNR of Ramp–Peak surface reconstruction as a function
of SNR for r = 0.5. Here, the dashed and solid lines correspond to classic
CS and DCS, respectively, and r = 0.5. Subplot (b) Reconstruction SNR
improvement as a function of SNR across the dataset of Fig. 2. Here the
curve depicts the average improvement of reconstruction results across the
dataset and error bars denote the variation across the dataset.

of either simplifying the hardware design or increasing its
effective spatial resolution. The proposed method applies CS
for surface reconstruction subject to an additional constraint,
which stems from some intrinsic properties of gradient
fields. Based on the SSP paradigm, in fact, DCS is shown
to be better only empirically. Even the value of � is shown
to improve only empirically with respect to a classing
CS setting. Experiments involving both synthetic surfaces and
real world data confirmed the usefulness and effectiveness
of the proposed resurface reconstruction approach. It was
shown that the DCS-based estimation with r = 0.3 results in
reconstructions of the quality comparable to that of CS with
r = 0.6 for fixed noise level of SNR = 20 dB. Moreover,
DCS reconstructions obtained at higher noise levels with
r = 0.5 are comparable with CS reconstructions obtained

Fig. 6. Subplot (a) SNR of Ramp–Peak surface reconstruction as a function
of sub–sampling ratio r . Here, the dashed and solid lines correspond to classic
CS and DCS, respectively, and SNR=20 dB. Subplot (b) Reconstruction SNR
improvement as a function of sub–sampling ratio across the dataset of Fig. 2.
Here the curve depicts the average improvement of reconstruction results
across the dataset and error bars denote the variation across the dataset.

at substantially lower noise levels. Finally, we note that a
promising direction for future work on the subject would be
to replace the use of wavelet analysis with more advanced
(e.g., adaptively learned) sparse signal representations.
Although the proposed algorithm can handle the above
conditions, further experiments confirm algorithm quality
degrades when deviated from suitable conditions for CS based
approaches. Note the sampling operator is generally assumed
to be a random sensing matrix in CS setting, while in practice
only limited number of CS based approaches have been
realized in hardware for CS encoding. Consequently, we either
need a suitable encoding device or to improve the algorithm
for the case of decimation downsampling to be able to use
the proposed method. One direction for this purpose is to use
a better sparsifying basis. It is pretty known that CS can work
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Fig. 7. Subplot (a) Convergence analysis of Ramp-Peak surface recon-
struction obtained with different methods as a function of iterations. Here,
the dashed and solid lines correspond to classic CS and DCS, respectively,
S N R = 20, and r = 0.5. Subplot (b) Convergence analysis across the dataset
of Fig. 2. Here the dashed and solid curves correspond to classic CS and DCS,
respectively. The curves denote the average performance across dataset and
the shaded area denotes the variation across the dataset.

better for the case of incoherent downsampling matrices. One
can improve this quality by using a more suitable sparsifying
basis. Another limitation of the proposed algorithm is noise
model which is assumed to be Gaussian and cannot take
into account outliers which exist in practical applications.
One direction for future studies to improve the algorithm to
become more suitable for the case of practical application.
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