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Objective Quality Assessment of
Tone-Mapped Images
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Abstract— Tone-mapping operators (TMOs) that convert high
dynamic range (HDR) to low dynamic range (LDR) images pro-
vide practically useful tools for the visualization of HDR images
on standard LDR displays. Different TMOs create different tone-
mapped images, and a natural question is which one has the best
quality. Without an appropriate quality measure, different TMOs
cannot be compared, and further improvement is directionless.
Subjective rating may be a reliable evaluation method, but it
is expensive and time consuming, and more importantly, is
difficult to be embedded into optimization frameworks. Here
we propose an objective quality assessment algorithm for tone-
mapped images by combining: 1) a multiscale signal fidelity
measure on the basis of a modified structural similarity index
and 2) a naturalness measure on the basis of intensity statistics
of natural images. Validations using independent subject-rated
image databases show good correlations between subjective
ranking score and the proposed tone-mapped image quality index
(TMQI). Furthermore, we demonstrate the extended applications
of TMQI using two examples—parameter tuning for TMOs and
adaptive fusion of multiple tone-mapped images.1

Index Terms— High dynamic range image, image fusion, image
quality assessment, naturalness, perceptual image processing,
structural similarity, tone mapping operator.

I. INTRODUCTION

THERE has been a growing interest in recent years in
high dynamic range (HDR) images, where the range of

intensity levels could be on the order of 10,000 to 1 [1].
This allows for accurate representations of the luminance
variations in real scenes, ranging from direct sunlight to faint
starlight [1]. With recent advances in imaging and computer
graphics technologies, HDR images are becoming more widely
available. A common problem that is often encountered in
practice is how to visualize HDR images on standard display
devices that are designed to display low dynamic range (LDR)
images. To overcome this problem, an increasing number of
tone mapping operators (TMOs) that convert HDR to LDR
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images have been developed, for examples [2]–[5]. Because
of the reduction in dynamic range, tone mapping procedures
inevitably cause information loss. With multiple TMOs avail-
able, one would ask which TMO faithfully preserves the
structural information in the original HDR images, and which
TMO produces natural-looking realistic LDR images.

TMO assessment in the past mostly relied on human sub-
jective evaluations. In [6], perceptual evaluations of 6 TMOs
were conducted with regard to similarity and preferences.
An overview and a subjective comparison of 8 TMOs were
reported in [7]. HDR capable monitor was employed in [8] to
compare 6 TMOs in a subjective experiment using a paired
comparison method. In [9], 14 subjects were asked to rate
2 architectural interior scenes produced by 7 TMOs based
on basic image attributes as well as the naturalness of the
LDR images. A more comprehensive subjective evaluation was
carried out in [10], where tone mapped images generated by 14
TMOs were shown to 2 groups of 10 human observers to rate
LDR images, concerning overall quality, brightness, contrast,
detail reproduction and color. In [11], subjects were asked to
choose the best LDRs derived from 2 TMOs with different
parameter settings to optimally tune the algorithms. The value
of subjective testing cannot be overestimated. However, they
have fundamental limitations. First, it is expensive and time
consuming. Second, it is difficult to be incorporated into an
optimization framework to automatically improve TMOs and
adjust their parameter settings. Furthermore, important image
structures contained in HDR images may be missing in tone
mapped images, but human observers may not be aware of
their existence. In this sense, subjective evaluation should
not be regarded as a golden standard for the quality of tone
mapped images.

Typical objective image quality assessment (IQA)
approaches assume the reference and test images to have
the same dynamic range [12], and thus cannot be directly
applied to evaluate tone mapped images. Only a few objective
assessment methods have been proposed for HDR images.
The HDR visible differences predictor (HDR-VDP) [1], [13]
is a human visual system (HVS) based fidelity metric that
aims to distinguish between visible (suprathreshold) and
invisible (subthreshold) distortions. The metric reflects the
perception of distortions in terms of detection probability.
Since HDR-VDP is designed to predict the visibility of
differences between two HDR images of the same dynamic
range, it is not applicable to compare an HDR image with
an LDR image. A dynamic range independent approach
was proposed in [14], which improves upon HDR-VDP and
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produces three types of quality maps that indicate the loss
of visible features, the amplification of invisible features, and
reversal of contrast polarity, respectively. These quality maps
show good correlations with subjective classifications of image
degradation types including blur, sharpening, contrast reversal,
and no distortion. However, it does not provide a single
quality score for an entire image, making it impossible to be
validated with subjective evaluations of overall image quality.

The purpose of the current work is to develop an objective
IQA model for tone mapped LDR images using their corre-
sponding HDR images as references. Our work is inspired
by the success of two design principles in IQA literature.
The first is the structural similarity (SSIM) approach [15] and
its multi-scale derivations [16], [17], which asserts that the
main purpose of vision is to extract structural information
from the visual scene and thus structural fidelity is a good
predictor of perceptual quality. The second is the natural scene
statistics (NSS) approach, which maintains that the visual
system is highly adapted to the natural visual environment
and uses the departure from natural image statistics as a
measure of perceptual quality [18]. Here we propose a method
that combines a multi-scale structural fidelity measure and a
statistical naturalness measure, leading to Tone Mapped image
Quality Index (TMQI). Moreover, we demonstrate that TMQI
can be employed for optimizing parameters in TMOs and for
adaptively fusing multiple tone mapped images.

II. QUALITY ASSESSMENT METHOD

Due to the reduction in dynamic range, TMOs cannot
preserve all information in HDR images, and human observers
of the LDR versions of these images may not be aware of
this. Therefore, structural fidelity plays an important role in
assessing the quality of tone-mapped images [19]. On the other
hand, structural fidelity alone does not suffice to provide an
overall quality evaluation. A good quality tone mapped image
should achieve a good compromise between structural fidelity
preservation and statistical naturalness, which are sometimes
competing factors.

A. Structural Fidelity

The SSIM approach provides a useful design philosophy as
well as a practical method for measuring structural fidelities
between images [20]. The original SSIM algorithm is applied
locally and contains three comparison components − lumi-
nance, contrast and structure. Since TMOs are meant to change
local intensity and contrast, direct comparisons of local and
contrast are inappropriate. Let x and y be two local image
patches extracted from the HDR and the tone-mapped LDR
images, respectively. We define our local structural fidelity
measure as

Slocal(x, y) = 2σ ′
xσ

′
y + C1

σ ′
x

2 + σ ′
y

2 + C1
· σxy + C2

σxσy + C2
(1)

where σx , σy and σxy are the local standard deviations and
cross correlation between the two corresponding patches in
HDR and LDR images, respectively, and C1 and C2 are posi-
tive stabilizing constants. Compared with the SSIM definition

[15], the luminance comparison component is missing, and
the structure comparison component (the second term in (1))
is exactly the same. The first term in (1) compares signal
strength and is modified from that of the SSIM definition
based on two intuitive considerations. First, the difference
of signal strength between HDR and LDR image patches
should not be penalized when their signal strengths are both
significant (above visibility threshold) or both insignificant
(below visibility threshold). Second, the algorithm should
penalize the cases that the signal strength is significant in one
of the image patches but insignificant in the other. This is
different from the corresponding term in the original SSIM
definition where any change in signal strength is penalized.

To distinguish between significant and insignificant signal
strength, we pass the local standard deviation σ through a
nonlinear mapping, which results in the σ ′ value employed in
(1). The nonlinear mapping should be designed so that signif-
icant signal strength is mapped to 1 and insignificant signal
strength to 0, with a smooth transition in-between. Therefore,
the nonlinear mapping is related to the visual sensitivity of
contrast, which has been an extensively studied subject in the
literature of visual psychophysics [21]. Practically, the HVS
does not have a fixed threshold of contrast detection, but
typically follows a gradual increasing probability in observ-
ing contrast variations. Psychometric functions describing the
detection probability of signal strength have been employed
to model the data taken from psychophysical experiments.
Generally, the psychometric function resembles a sigmoid
shape [22], [23] and the sensory threshold is usually defined at
the level of 50% of detection probability. A commonly adopted
psychometric function is known as Galton’s ogive [21], which
takes the form of a cumulative normal distribution function
given by

p(s) = 1√
2πθs

∫ s

−∞
exp

[
− (x − τs)

2

2θ2
s

]
dx (2)

where p is the detection probability density, s is the amplitude
of the sinusoidal stimulus, τs is the modulation threshold, and
θs is the standard deviation of the normal distribution that
controls the slope of detection probability variation. It was
found that the ratio

k = τs

θs
(3)

is roughly a constant, known as Crozier’s law [21], [24].
Typical values of k ranges between 2.3 and 4, and k = 3
makes the probability of false alarm considerably small [21].

The reciprocal of the modulation threshold τs is often used
to quantify visual contrast sensitivity, which is a function
of spatial frequency, namely the contrast sensitivity function
(CSF) [21]. A CSF formula that fits well with data collected
in various psychological experiments is given by [25]

A( f ) ≈ 2.6[0.0192 + 0.114 f ] exp[−(0.114 f )1.1] (4)

where f denotes spatial frequency. This function is normalized
to have peak value 1, and thus only provides relative sensitivity
across the frequency spectrum. In practice, it needs to be
scaled by a constant λ to fit psychological data. In our
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implementation, we follow Kelly’s CSF measurement [26].
Combining this with (4), we obtain

τs( f ) = 1

λ A( f )
. (5)

This threshold value is calculated based on contrast sensitivity
measurement assuming pure sinusoidal stimulus. To convert
it to a signal strength threshold measured using the standard
deviation of the signal, we need to take into account that signal
amplitude scales with both contrast and mean signal inensity,
and there is a

√
2 factor between the amplitude and standard

deviation of a sinusoidal signal. As a result, a threshold value
defined on signal standard deviation can be computed as

τσ ( f ) = μ√
2 λ A( f )

(6)

where μ is the mean intensity value. Based on Crozier’s law
[21], [24], we have

θσ ( f ) = τσ ( f )

k
. (7)

We can then define the mapping between σ and σ ′ as

σ ′ = 1√
2πθσ

∫ σ

−∞
exp

[
− (x − τσ )2

2θ2
σ

]
dx (8)

In (1), σ ′
x and σ ′

y are the mapped versions of σx and σy ,
respectively. They are bounded between 0 and 1, where 0 and
1 represent completely insignificant and completely significant
signal strengths, respectively.

The local structural fidelity measure Slocal is applied to an
image using a sliding window that runs across the image space.
This results in a map that reflects the variation of structural
fidelity across space. The visibility of image details depends
on the sampling density of the image, the distance between the
image and the observer, the resolution of the display, and the
perceptual capability of the observer’s visual system. A single-
scale method cannot capture such variations. Following the
idea used in multi-scale [16] and information-weighted SSIM
[17], we adopt a multi-scale approach, where the images are
iteratively low-pass filtered and downsampled to create an
image pyramid structure [27], as illustrated in Fig. 1. The
local structural fidelity map is generated at each scale. Fig. 2
shows two examples of such maps computed at multiple scales
for the LDR images created from two different TMOs. It is
interesting to observe these fidelity maps and examine how
they correlate with perceived image fidelity. For example, the
structural details of the brightest window regions are missing
in Image (b), but are more visible in Image (a). For another
example, there are detailed structures in the top-right dark
regions that are not easily discerned in Image (a), but are better
visualized in Image (b). All of these are clearly reflected in
the structural fidelity maps.

At each scale, the map is pooled by averaging to provide a
single score:

Sl = 1

Nl

Nl∑
i=1

Slocal(xi , yi ) (9)

where xi and yi are the i -th patches in the HDR and LDR
images being compared, respectively, and Nl is the number of
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Fig. 1. Framework of multiscale structural fidelity assessment.

patches in the l-th scale. In the literature, advanced pooling
strategies such as information content based pooling [17] have
been shown to improve the performance of IQA algorithms.
However, in our current experiment, these advanced pooling
methods did not result in notable performance gain in the
proposed structural fidelity measure. The overall structural
fidelity is calculated by combining scale level structural fidelity
scores using the method in [16]

S =
L∏

l=1

Sβl
l (10)

where L is the total number of scales and βl is the weight
assigned to the l-th scale.

There are several parameters in the implementation of our
structural fidelity model. First, when computing Slocal, we
set C1 = 0.01 and C2 = 10, and we find that the overall
performance of the structural fidelity model is insensitive to
these parameters within an order of magnitude. Second, to
create the fidelity map at each scale, we adopt the same setting
as in the SSIM algorithm [15] by employing a Gaussian sliding
window of size 11×11 with standard deviation 1.5. Third, as in
[16], we assume a viewing distance of 32 cycles/degree, which
can represent signals up to 16 cycles/degree of resolution
without aliasing, and thus we use 16 cycles/degree as the
spatial frequency parameter when applying the CSF in (4) to
the finest scale measurement. The spatial frequency parameters
applied to the subsequent finer scales are then 8, 4, 2, 1
cycles/degree, respectively. Fourth, the mean intensity value in
(6) is set to be the mean of the dynamic range of LDR images,
i.e., μ = 128. Fifth, when combining the measures across
scales, we set L = 5 and {βl} = {0.0448, 0.2856, 0.3001,
0.2363, 0.1333}, which follows the psychophysical experiment
results reported in [16]. Finally, in order to assess the quality
of color images, we first convert them from RGB color space
to Yxy space and then apply the proposed structural fidelity
measure on the Y component only.

B. Statistical Naturalness

A high quality tone mapped LDR image should not only
faithfully preserve the structural fidelity of the HDR image,
but also look natural. Nevertheless, naturalness is a subjective
quantity that is difficult to define quantitatively. A large
literature has been dedicated to the statistics of natural images
which have important significance to both image processing
applications and the understanding of biological vision [28].
An interesting study of naturalness in the context of subjective
evaluation of tone mapped images was carried out in [29],
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(a)

(b)

Fig. 2. Tone-mapped LDR images and their structural fidelity maps in five scales. The images were created using Adobe Photoshop “Highlight compression”
and “Exposure and Gamma” methods (not optimized for quality), respectively. (a) S = 0.9152 (S1 = 0.8940; S2 = 0.9341; S3 = 0.9428; S4 = 0.9143;
S5 = 0.8277). (b) S = 0.8614 (S1 = 0.9161; S2 = 0.9181; S3 = 0.8958; S4 = 0.8405; S5 = 0.7041).

which provided useful information regarding the correlations
between image naturalness and different image attributes
such as brightness, contrast, color reproduction, visibility and
reproduction of details. The results showed that among all
attributes being tested, brightness and contrast have more
correlation with perceived naturalness. This motivates us to
build our statistical naturalness model based on these two
attributes. This choice may be oversimplifying in defining
the general concept of statistical image naturalness (and may
not generalize to other image processing applications that
uses the concept of naturalness), but it provides an ideal
compromise between the simplicity of our model and the
capability of capturing the most important ingredients of
naturalness that are related to the tone mapping evaluation
problem we are trying to solve, where brightness mapping
is an inevitable issue in all tone mapping operations. It also
best complements the structural fidelity measure described in
Section II-A, where brightness modeling and evaluation are
missing.

Our statistical naturalness model is built upon statistics con-
ducted on about 3,000 8bits/pixel gray-scale images obtained

from [30], [31] that represent many different types of natural
scenes. Fig. 3 shows the histograms of the means and standard
deviations of these images, which are useful measures that
reflect the global intensity and contrast of images. We found
that these histograms can be well fitted using a Gaussian and
a Beta probability density functions given by

Pm(m) = 1√
2πσm

exp

[
−m − μm

2σ 2
m

]
(11)

and

Pd (d) = (1 − d)βd−1dαd−1

B(αd , βd)
(12)

where B(·, ·) is the Beta function. The fitting curves are
shown in Fig. 3, where the model parameters are estimated
by regression, and the best values we found are μm = 115.94
and σm = 27.99 in (11), and αd = 4.4 and βd = 10.1 in (12),
respectively.

Recent studies suggested that brightness and contrast are
largely independent quantities in terms of both natural image
statistics and biological computation [32]. As a result, their
joint probability density function would be the product of the
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Fig. 3. Histograms of (a) means (fitted by Gaussian PDF) and (b) standard
deviations (fitted by Beta PDF) of natural images.

two. Therefore, we define our statistical naturalness measure
as

N = 1

K
Pm Pd (13)

where K is a normalization factor given by K = max{Pm Pd }.
This constrains the statistical naturalness measure to be
bounded between 0 and 1.

C. Quality Assessment Model

The structural fidelity measure S introduced in Section II-A
and the statistical naturalness measure N described in
Section II-B characterizes different aspects of the quality of
tone mapped images. They may be used individually or jointly
as a vector valued measure. In many practical applications,
however, users prefer a single score that indicates the overall
quality of the image. Therefore these parameters should be
combined in some manner. In the literature of IQA, there had
been earlier work that combines image statistics and measures
of structure and contrast [33], though in a different context.
Here we define a three-parameter function to scalarize the joint

measure, resulting in a Tone Mapped image Quality Index
(TMQI)

Q = aSα + (1 − a)Nβ (14)

where 0 ≤ a ≤ 1 adjusts the relative importance of the
two components, and α and β determine their sensitivities,
respectively. Since both S and N are upper-bounded by 1, the
overall quality measure is also upper-bounded by 1.

The parameters in (14) are left to be determined. In our
implementation, they are tuned to best fit the subjective evalua-
tion data provided by the authors of [34]. In their experiments,
the subjects were instructed to look simultaneously at two
LDR images created by two different TMOs applied upon
the same HDR image, and then pick the one with better
overall quality. Two studies have been done, involving two
groups of subjects. The first study was carried out at Zheijang
University, where 59 naive volunteers were invited to do
the pair-wise comparison task and fill the preference matrix.
The second study was conducted using Amazon Mechanical
Turk, an online service of subjective evaluation. Each paired
comparison was assigned to 150 anonymous subjects. The
database includes 6 data sets, each of which contains images
generated by 5 well-known TMOs, introduced by Drago
et. al. [4], Durand & Dorsey [35], Fattal et. al. [5], Reinhard
et. al. [2] and Mertens et. al. [36]. The subjective ranking
scores in each folder are then computed using the preference
matrix.

Finding the best parameters in (14) using subjective data is
essentially a regression problem. The major difference from
traditional regression problems is that here we are provided
with relative ranking data between images only, but not quality
scores associated with individual images. We developed a
learning method where the parameters are learnt from an
iterative method. At each iteration, one pair of images is
randomly selected from one randomly selected data set. If
the model generates objective scores that give the same order
of the pair as the subjective rank order, then there is no
change to the model parameters; Otherwise, each parameter
is updated towards the direction of correcting the model error
by a small step. The iteration continues until convergence.
In our experiment, we observe good convergence property
of this iterative learning process. Furthermore, to ensure the
robustness of our approach, we conducted a leave-one-out
cross validation procedure, where the database (of 6 data sets)
was divided into 5 training sets and 1 testing set, and the
same process was repeated 6 times, each with a different
division between training and testing sets. Although each time
ends up with a different set of parameters, they are fairly
close to each other and result in the same ranking orders
for all the training and testing sets. In the end, we select
a = 0.8012, α = 0.3046, and β = 0.7088 as our final model
parameters.

III. VALIDATION OF QUALITY ASSESSMENT METHOD

The validation process is conducted by comparing our
objective quality assessment results with subjective data. Two
evaluation metrics are employed which are given as follows.
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1) Spearman’s rank-order correlation coefficient (SRCC) is
defined as

SRCC = 1 − 6
∑N

i=1 d2
i

N(N2 − 1)
(15)

where di is the difference between the i -th image’s ranks
in subjective and objective evaluations. SRCC is a non-
parametric rank-order based correlation metric, inde-
pendent of any monotonic nonlinear mapping between
subjective and objective scores.

2) Kendall’s rank-order correlation coefficient (KRCC) is
another non-parametric rank correlation metric com-
puted as

KRCC = Nc − Nd
1
2 N(N − 1)

(16)

where Nc and Nd are the numbers of concordant (of
consistent rank order) and discordant (of inconsistent
rank order) pairs in the data set, respectively.

The proposed TMQI is the only objective quality mea-
sure being tested. To the best of our knowledge, almost no
other method has been proposed to compare images with
different dynamic ranges. The only exception is the method
proposed in [14], which creates probability maps to distinguish
between visible (suprathreshold) and invisible (subthreshold)
degradations. The probability maps are shown to be useful
in classifying image distortion types but are not meant to be
pooled to produce an overall quality score of a tone mapped
image. As a result, direct comparison with the proposed
method is not possible.

Three experiments have been carried out in our validation
process, each uses a different subject-ranked database. The first
database is from [34], which was also used in the parameter
training step discussed in Section II-C. Our leave-one-out cross
validation method described in Section II-C creates SRCC and
KRCC values for each of the six testing data sets, where for
each data set, the parameters were trained using the other five
data sets. Table I shows the means and standard deviations of
KRCC and SRCC values between subjective rankings and our
model predictions, respectively.

In the second experiment, we use the database introduced in
[10], [37], from which we employ the overall quality ranking
data by 10 naive subjects of 14 tone mapped images created
from the same HDR image. The KRCC and SRCC values
between subjective rankings of the images and our structural
fidelity, statistical naturalness and overall quality scores are
given in Table II, where we observe that the structural fidelity
measure alone can provide reasonable predictions of subjective
rankings. The statistical naturalness measure by itself is not a
good predictor of the overall quality ranking, but it comple-
ments the structural fidelity measure. When the two measures
are combined, better prediction of the overall image quality is
achieved. It is worth mentioning that the test data here is not
used in the training process, but the resulting KRCC and SRCC
values are comparable with those obtained in the test using the
first database, which is used for training. This implies good
generalization capability of the training method described in
Section II-C.

TABLE I

CROSS-VALIDATION RESULTS USING DATA FROM [34]

KRCC SRCC

Mean 0.7333 0.8333
Std 0.1632 0.1211

TABLE II

PERFORMANCE EVALUATION USING DATA FROM [10], [37]

KRCC SRCC

Structural Fidelity 0.6923 0.7912
Statistical Naturalness 0.3846 0.5385

Overall Quality 0.7179 0.8187

The third experiment is conducted using a database devel-
oped by ourselves. Twenty subjects were provided with 15 sets
of tone mapped images, each of which includes 8 images
generated by 8 TMOs from the same HDR image. The results
created by five of the TMOs developed by Reinhard et al. [2],
Drago et. al. [4], Durand & Dorsey [35], Mantiuk et. al. [38]
and Pattanaik et. al. [39] are computed using the publicly avail-
able software Qtpfsgui [40]. In addition, three other images
were created using the built-in TMOs in Adobe Photoshop,
namely “Exposure and Gamma,” “Equalize Histogram,” and
“Local Adaptation,” respectively. The parameters used in all
8 TMOs are set as their default values and are not optimized.
The reference HDR images are selected to represent different
indoor and outdoor scenes and are all available online [10],
[41]–[43]. In the subjective test, each of the 20 observers was
asked to rank the 8 images in each image set from the best
to the worst. The subjective rankings for each image is then
averaged, resulting in its mean ranking score within the set.

To evaluate the TMQI method, we calculate the KRCC
and SRCC values between the mean ranking scores and the
objective quality measures for each image set. The results are
given in Table III. To provide an anchor in evaluating the
performance of TMQI, we compare it with the behavior of an
average subject. To do this, we first compute the KRCC and
SRCC values between the mean ranking scores and the ranking
scores given by each individual subject for each image set. We
then compute the mean and standard deviation of these KRCC
and SRCC values over subjects, which are shown in Table III.
The average KRCC and SRCC values over all 15 image set
are given in the last row. It can be seen that for all image
sets, the KRCC and SRCC values of TMQI are well within
the range of ±1 standard deviation from the KRCC and SRCC
values of the mean over all subjects. This indicates that TMQI
behaves quite similarly to an average subject.

Since the TMQI algorithm does not involve any expensive
search or iterative procedure, it is computationally efficient.
Our unoptimized MATLAB implementation on an Intel Quad-
Core 2.67 GHz computer takes on average around 0.75 and 2.7
seconds to evaluate images of sizes 512×512 and 1024×1024,
respectively. Fig. 4 illustrates the scatter plot of runtime versus
the number of image pixels for 20 HDR-LDR comparisons.
It shows that the computational complexity of the TMQI
algorithm is approximately linear with respect to the number
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TABLE III

PERFORMANCE EVALUATIONS USING 15 IMAGE SETS AND 8 TMOS

Image Set
KRCC SRCC

Mean Subject STD of Subject TMQI Mean Subject STD of Subject TMQI
Performance Performance Performance Performance Performance Performance

1 0.8071 0.1038 0.7857 0.9071 0.0650 0.9048
2 0.7269 0.2072 0.6429 0.8251 0.1709 0.7857
3 0.7642 0.1064 0.6429 0.8797 0.0758 0.8095
4 0.8107 0.1141 0.7143 0.9130 0.0746 0.8571
5 0.4714 0.2116 0.6429 0.6000 0.2030 0.7381
6 0.6464 0.1646 0.7857 0.7630 0.1707 0.9048
7 0.7250 0.1275 0.5714 0.8285 0.1006 0.6905
8 0.7000 0.1862 0.5714 0.8023 0.1813 0.6905
9 0.6607 0.1978 0.5714 0.7857 0.1625 0.7619

10 0.8418 0.0991 0.7857 0.9276 0.0581 0.9048
11 0.7428 0.1815 0.7143 0.8523 0.1352 0.8810
12 0.6250 0.2084 0.5714 0.7595 0.2055 0.7143
13 0.5637 0.2298 0.5455 0.6970 0.2343 0.6587
14 0.6214 0.1720 0.6429 0.7702 0.1474 0.7381
15 0.8142 0.0994 0.7857 0.9035 0.0705 0.9048

Average 0.7014 0.1606 0.6649 0.8143 0.1368 0.7963
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Fig. 4. Run time versus the number of image pixels of the proposed
algorithm.

of pixels in the image. The relatively low computational cost
makes it easily adapted to practical applications that involve
iterative optimization processes.

IV. APPLICATIONS OF QUALITY ASSESSMENT METHOD

The application scope of objective IQA measures is beyond
evaluating images and comparing algorithms. A wider range
of applications extends to developing novel image processing
algorithms optimized for the novel IQA measures. In this
section, we use two examples to demonstrate the potentials
of TMQI.

A. Parameter Tuning in TMO Algorithm

Many TMOs contain one or more parameters whose optimal
values are often image-dependent. Without human interfer-
ence, it is often a challenging task to choose these parameters,
which could lead to drastically different results. An objective
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Fig. 5. Overall quality measure Q versus parameter b for (a) Desk and
(b) Bristol Bridge images. The tone-mapped images corresponding to selected
b values are shown in Figs. 6 and 7, respectively.

quality measure provides a useful tool to pick these parameters
automatically. Here we use the TMO proposed in [4] as an
example, which uses logarithmic function with varying bases
in different locations to change the dynamic range adaptively.
The algorithm is given by

Ld = Ldmax · 0.01

log10(Lwmax+1)
· log(Lw + 1)

log

(
2+

((
Lw

Lwmax

) log(b)
log(0.5)

)
· 8

) (17)
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(a) (b) (c)

Fig. 6. LDR images generated with different parameter b in (17). (a) b = 0.1, S = 0.8344, N = 0.4599, and Q = 0.8959. (b) b = 0.8, S = 0.8448,
N = 0.4874, and Q = 0.8998. (c) b = 1.0, S = 0.8337, N = 0.1423, and Q = 0.8485.

(a) (b) (c)

Fig. 7. LDR images generated with different parameter b in (17). (a) b = 0.1, S = 0.5214, N = 0.0249, and Q = 0.7535. (b) b = 0.7, S = 0.8137,
N = 0.1136, and Q = 0.7690. (c) b = 1.0, S = 0.8856, N = 0.2923, and Q = 0.7967.

where Lw and Lwmax are world luminance and maximum
luminance of the scene, Ld and Ldmax are display luminance
and maximum luminance of display, respectively, and b is a
tuning parameter. The perceptual quality of the tone mapped
image varies significantly with b. However, in the literature,
the b value is typically fixed around 0.8 through empirical
experimenting with multiple images [4], [40].

In Figs. 5(a) and 5(b), we plot how TMQI varies as a func-
tion of b for images “Desk” and “Bristol Bridge,” respectively
(No computation beyond b = 1 is conducted because it is
beyond the suggested value range by the algorithm). It appears
that the quality score behaves quite differently as a function
of b. Based on the plots, b = 0.8 and b = 1 are picked as the
optimal values for the two images, respectively. These results
confirm that the optimal b value is close to the empirical
value (around 0.8) selected in previous studies, but varies for
different images. The tone mapped LDR images corresponding
to three selected b values are shown in Fig. 6 and Fig. 7,
respectively. Careful inspection of these images shows that
the best b values lead to good balance between preserving
structural details and producing natural looking images.

B. Adaptive Fusion of Tone-Mapped Images

When experimenting with different TMOs on different HDR
images, we often find it difficult to pick a single TMO that
produces the best results for all HDR images. Furthermore,
within a single HDR image, the best TMO may also vary when
different regions in the image are under consideration. To take
the advantages of multiple TMOs, image fusion techniques
may be employed to combine multiple tone mapped images

and an objective quality measure can play an important role
in this process.

Given multiple tone mapped images created by different
TMOs, we first apply a Laplacian pyramid transform that
decomposes these images into different scales. In the pyra-
mid domain, this results in multiple coefficients at the same
scale and the same spatial location, each corresponds to a
different TMO. Examples are given in the first two rows
in Fig. 8, which demonstrate four-scale Laplacian pyramid
decompositions, where the fine scale coefficients (Scales 1–3)
represent image details and the coarsest scale coefficients
(Scale 4) preserve local mean intensities across space. A fusion
strategy can then be applied to combine multiple coeffi-
cients into one at each location in each scale before an
inverse Laplacian pyramid transform is employed to recon-
struct a fused image. Typical fusion schemes aim to locally
select the most salient image features [44]. The most widely
adopted approaches include averaging the coefficients or
picking one of the coefficients with the largest absolute
value.

Here we propose a different fusion scheme. The general
idea is to use the TMQI as the weighting factors in the fusion
process. Let Sj and c j be the local structural fidelity measure
and the Laplacian pyramid transform coefficient computed
from the j -th tone mapped image being fused, respectively.
The fused coefficient is computed as

c( f used) =
∑

j S j c j∑
j S j

. (18)

This is applied to all scales except for the coarsest scale,
for which we use the statistical naturalness measure as the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 8. Image fusion in Laplacian pyramid domain. Top row: first tone-mapped image (a) created by TMO proposed in [38], and its (b)–(e) Laplacian
pyramid subbands, S = 0.5034, N = 0.1263, Q = 0.6937. Middle row: second tone-mapped image (f) using “Exposure and Gamma” method in Adobe
Photoshop, and its (g)–(j) Laplacian pyramid subbands, S = 0.6642, N = 0.0786, and Q = 0.7386. Bottom row: fused image by (k) the proposed method,
and its (l)–(o) Laplacian pyramid domain representation, S = 0.7419, N = 0.3080, and Q = 0.8167.

TABLE IV

AVERAGE RANKING SCORES MADE BY 10 SUBJECTS FOR EACH SET

Image Set Source 1 Source 2 Fused Image

1 4.3 7 1.8
2 5.2 4 1.5
3 3.7 5.9 2.3
4 4.1 6.1 2.2
5 2.7 6.9 3

weighting factor:

c( f used) =
∑

j N j c j∑
j N j

(19)

where N j denotes the statistical naturalness score of the j -th
tone mapped image.

The proposed Laplacian pyramid domain fusion method is
demonstrated in the bottom row of Fig. 8, where the fused
image preserves the details in the brightest region (light area
on the top) as in (f), while at the same time maintains higher

contrast in relatively darker regions, as in (a). Fig. 9 provides
an example with natural scene, where one tone mapped
image (a) better preserves structural details, and another
(b) gives more natural overall appearance (but loses structural
information, especially at the brightest areas). Three fused
images created by three different image fusion algorithms are
given in (c), (d) and (e), respectively. The image created by the
proposed method achieves the best balance between structure
preserving and statistical naturalness, and also results in the
best quality score using TMQI.

To further validate the proposed fusion scheme, we have
conducted an additional subjective experiment, where ten
subjects were invited to rank five sets of tone-mapped images,
each of which includes eight images. Seven of these images are
generated using the TMOs employed in the third experiment in
Section III. Two of these seven TMOs are chosen to produce
the eighth image using the proposed fusion method. Table IV
compares average subjective rankings of the source images
and their corresponding fused images, where lower ranking
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(a)

(b)

(c)

(d)

(e)

Fig. 9. Fusion of tone-mapped images. (a) First tone-mapped image using TMO proposed in [35], S = 0.8168, N = 0.1631, and Q = 0.8075. (b) Second
tone-mapped image using the “Exposure and Gamma” method in Adobe Photoshop, S = 0.6315, N = 0.8657, and Q = 0.8744. (c) Fused image by coefficient
averaging in Laplacian pyramid domain, S = 0.7561, N = 0.7409, and Q = 0.8955. (d) Fused image by selecting coefficient of maximal absolute value in
Laplacian pyramid domain, S = 0.7685, N = 0.9428, and Q = 0.9290. (e) Fused image by the proposed method, S = 0.7836, N = 0.9970, and Q = 0.9413.

scores correspond to better quality. It can be seen that the
fused image is almost always ranked significantly higher than
the two source images being fused.

V. CONCLUSION

We develop an objective model to assess the quality of
tone mapped images by combining a multi-scale structural
fidelity measure and a statistical naturalness measure. The
proposed measure not only provides an overall quality score
of an image, but also creates multi-scale quality maps that
reflect the structural fidelity variations across scale and space.
Our experiments show that TMQI is reasonably correlated
with subjective evaluations of image quality. Moreover, we
demonstrate the usefulness of TMQI in automatic parameter
tuning of tone mapping algorithms and in fusing multiple tone
mapped images.

As one of the first attempts on the research topic, our
method has several limitations that may be resolved or
improved in the future. First, TMQI is designed to evaluate
grayscale images only, but most HDR images of natural scenes
are captured in color. One simple method to evaluate tone
mapped color images is to apply the TMQI to each color
channel independently and then combine them. Color fidelity
and color naturalness measures may be developed to improve
the quality measure.

Second, simple averaging is used in the current pooling
method of the structural fidelity map. Advanced pooling
method that incorporate visual attention models may be
employed to improve the quality prediction performance.

Third, the current statistical naturalness measure is based
on intensity statistics only. There is a rich literature on
natural image statistics [28] and advanced statistical models

(that reflects the structural regularities in space, scale and
orientation in natural images) may be included to improve
the statistical naturalness measure.

Fourth, using TMQI as a new optimization goal, many exist-
ing TMOs may be redesigned to achieve better image quality.
Novel TMOs may also be developed by taking advantage of
the construction of the proposed quality assessment approach.

Finally, the current method is applied and tested using
natural images only. The application scope of HDR images
and TMOs is beyond natural images. For example, modern
medical imaging devices often capture HDR medical images
that need to be tone-mapped before visualization. The TMQI
and optimization methods may be adapted to these extended
applications.
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