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Abstract— Digital images in the real world are created by a
variety of means and have diverse properties. A photographical
natural scene image (NSI) may exhibit substantially different
characteristics from a computer graphic image (CGI) or a screen
content image (SCI). This casts major challenges to objective
image quality assessment, for which existing approaches lack
effective mechanisms to capture such content type variations, and
thus are difficult to generalize from one type to another. To tackle
this problem, we first construct a cross-content-type (CCT)
database, which contains 1,320 distorted NSIs, CGIs, and SCIs,
compressed using the high efficiency video coding (HEVC)
intra coding method and the screen content compression (SCC)
extension of HEVC. We then carry out a subjective experiment
on the database in a well-controlled laboratory environment.
Moreover, we propose a unified content-type adaptive (UCA)
blind image quality assessment model that is applicable across
content types. A key step in UCA is to incorporate the variations
of human perceptual characteristics in viewing different content
types through a multi-scale weighting framework. This leads to
superior performance on the constructed CCT database. UCA
is training-free, implying strong generalizability. To verify this,
we test UCA on other databases containing JPEG, MPEG-2,
H.264, and HEVC compressed images/videos, and observe that
it consistently achieves competitive performance.

Index Terms— Natural scene image, computer graphic image,
screen content image, image quality assessment, high efficiency
video coding (HEVC), screen content compression (SCC).
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I. INTRODUCTION

W ITH the rapid development of mobile and cloud
computing, massive content composed of both nat-

ural scenes, graphics, and screen content is being gener-
ated everyday [1]–[3]. Different from photographic natural
scene images (NSIs) which are captured from real-world
scenes, computer graphic images (CGIs) and screen content
images (SCIs) are mostly generated artificially by comput-
ers. CGIs are digitally synthesized visual content (sometimes
simulate real-world scenes), which are widely used in anima-
tions, video games, graphic designs, etc. SCIs are generally
interfaces presented to users on screens of digital viewing
devices. SCIs are often composed of texts, tables, dialogs, and
sometimes natural and computer-generated content. SCIs and
CGIs have substantially different characteristics from NSIs.
For example, SCIs and CGIs tend to have more noise-free
smooth areas, high-saturation color content, and extremely
sharp texts and edges. Many specialized technologies have
been proposed to take care of these differences, especially
screen content coding (SCC) [1], [4]. The joint collaborative
team on video coding (JCT-VC) also develops HEVC-SCC as
an extension of high efficiency video coding (HEVC) [5].

Nevertheless, little work has been dedicated to assess
the quality of SCIs, and even less has been devoted to
cross-content-type quality assessment. Over the last two
decades, a variety of image quality assessment (IQA) mea-
sures have been proposed [6]–[11], most of which show
good promises on natural content, but several studies have
shown that state-of-the-art IQA measures designed for nat-
ural content cannot predict the quality of screen content
properly [2], [3].

Limited work has been done on quality assessment of SCIs
and CGIs. Yang et al. [2] constructed a screen IQA data-
base (SIQAD), which contains SCIs corrupted by traditional
distortions, e.g., noise, blur, JPEG and JPEG2000 compres-
sion. Wang et al. [3] conducted a subjective user study on
SCIs. Different from traditional distortions studied in SIQAD,
they considered the distortions introduced by HEVC and
HEVC-SCC compression, and constructed a screen content
database (SCD) for SCI quality assessment. Wang et al. [12]
proposed an SCI quality assessment measure based on
visual field adaptation and information content weighting.
Gu et al. [13] and Ni et al. [14], [15] incorporated gradient and
edge information in SCI quality assessment. Fang et al. [16]
designed an uncertainty weighting method to fuse the quality
of textual and pictorial regions. Gu et al. [17] developed a
blind SCI quality model through big data learning. It is worth
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Fig. 1. Reference images in the CCT database. Top two rows: NSIs. Middle two rows: CGIs. Bottom two rows: SCIs.

noting that all these methods were designed and tested on
SCIs only, but not in a cross-content-type environment. Very
few work considered cross-content-type IQA. Xu et al. [18]
developed a measure for NSIs, SCIs, and document images
which are captured from document files. Min et al. [19]
proposed a measure for JPEG compressed NSIs and SCIs.

In practice, many causes could lead to image degradations,
and the major distortions depend on the application scenarios.
For example, photographic NSIs may suffer from degradations
caused by noisy sensing, out-of-focus or motion blur, and
imperfect lighting conditions. CGIs may suffer from rendering
artifacts, such as shadow, noise, and contrast distortion. SCIs
sometimes contain NSIs and CGIs at local regions, and
may suffer from the degradations happen in both NSIs and
CGIs. The major application scenario we have in mind is to
enable thin-clients to enjoy the computationally intensive and
graphically rich services by instantly transmitting the remote
computer interface to the clients. Such interface is a mixture of
different types of image/video content (natural, graphical, and
screen content), which mostly suffer from practical video com-
pression artifacts. Therefore, in this paper, we consider HEVC
and HEVC-SCC compression as main sources of distortions.

HEVC is the latest video coding standard proposed by
JCT-VC [20], which also recommends the HEVC-SCC exten-
sion, aiming to improve the compression efficiency specifi-
cally for screen content [5]. The block-based coding scheme
in HEVC/HEVC-SCC may result in blocking artifacts [20],
which can significantly degrade the perceptual quality. Many
blockiness measures have been proposed especially for JPEG
compressed images [19], [21]–[26]. However, those mea-
sures do not work well for block-based coding schemes
such as HEVC/HEVC-SCC because of the varying block
sizes and deblocking filters. Moreover, general-purpose no-
reference (NR) IQA measures are also ineffective as will be
clear later.

In this paper, we make one of the first attempts to develop
a unified content-type adaptive (UCA) blind IQA measure for
natural, graphic, and screen content images. We first construct
a new IQA database, namely the cross-content-type (CCT)
database that contains HEVC/HEVC-SCC compressed NSIs,
CGIs, and SCIs, based on which we conduct a subjective
experiment. CGIs are generally computer-generated, and are

often created to simulate real-world scenes in many practical
applications. Thus we take computer graphic content as a
separate type in the database.

Considering that HEVC/HEVC-SCC have flexible block
sizes and the human visual system (HVS) has receptive fields
of various scales, we extract and integrate block-based corner
and edge features at multiple scales adaptively. The relative
importance across different scales is determined from the
contrast sensitivity function (CSF) and the content dependent
characteristics of the HVS, leading to an adaptive multi-scale
weighting strategy. Experimental results on the CCT database
show that the proposed UCA method well adapts to various
content types and achieves competitive performance.

The construction of UCA does not involve any training
process and is independent of specific block-based compres-
sion algorithms. Therefore, we also test UCA on JPEG com-
pressed images, and MPEG-2, H.264 and HEVC compressed
video sequences. Experimental results on public image and
video databases show that UCA demonstrates strong gen-
earlizability and consistently obtains competitive performance
against state-of-the-art NR image/video quality models.

The remainder of this paper is organized as follows.
Section II describes the construction of the CCT database
and the subjective user study. Section III presents in detail
the proposed UCA measure. Experimental results are given in
Section IV, where we compare UCA with state-of-the-art NR
quality measures. In Section V, we test the generalizability
of UCA on other block-based encoders. Section VI concludes
this paper.

II. SUBJECTIVE QUALITY ASSESSMENT OF NATURAL,
GRAPHIC AND SCREEN CONTENT IMAGES

Few previous work has been dedicated to cross-content-type
IQA. To facilitate the research, we construct the CCT database
and conduct a subjective study. We extend the SCD database
in [3] by adding two more types: natural and graphic content.

A. Reference and Distorted Images

We include the following 3 types of images in the database.
• NSI: We select 24 high quality NSIs to cover a variety

of image content including landscapes and cityscapes,
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TABLE I

CONSTRUCTION OF THE CCT DATABASE

indoor and outdoor views, closeups and wide-angle shots.
Some images are from [27] and others are captured by
ourselves.

• CGI: We collect 24 reference CGIs from 15 computer
games via screen snapshots. The chosen games include
various types, e.g., action, adventure, and strategy.

• SCI: 23 pristine SCIs are from the SCD database [3]
and another one is captured by ourselves through screen
snapshot. The selected SCIs provide a good coverage
of general computer operation scenes, e.g., web pages,
documents, desktops, and softwares.

Fig. 1 illustrates all 72 reference NSIs, CGIs, and SCIs, whose
resolutions are either 1920 × 1080 or 1280 × 720. We mainly
consider the following two distortion types.

• HEVC [20]: All reference NSIs, CGIs, and SCIs are
compressed using HEVC intra coding with 11 quality
levels from 30 to 50 at an interval of 2. HEVC adopts
a 4:2:0 color format, so we downsample all reference
images from 4:4:4 to 4:2:0 format before compression.

• HEVC-SCC: As an extension of HEVC, HEVC-SCC
provides better compression performance for screen con-
tent [5]. The reference CGIs and SCIs are compressed
using HEVC-SCC intra coding with 11 quality levels.
Since HEVC-SCC supports 4:4:4 format, downsampling
is not performed.

For both HEVC and HEVC-SCC, we use the reference soft-
ware, i.e., HM (HEVC Test Model) [28] along with the pro-
vided configuration files. In summary, a total of 72 reference
and 1,320 distorted NSIs, CGIs, and SCIs are included in the
CCT database, whose details are summarized in Table I.

B. Subjective Testing Methodology

We adopt a single-stimulus strategy in which subjects rate
one test image at any time instance directly using a 10-
point numerical categorical judgement method. All test images
are shown in a random order with a MATLAB interface
on a 23-inch LED monitor, which is calibrated according
to the recommendations of ITU-R BT.500-13 [29]. A total
of 43 subjects (28 males and 15 females) participate in
the subjective experiment. Subjects are seated at a viewing
distance of around 3 times the screen height in a laboratory
environment which has normal indoor illumination levels. The
full experiment is divided into 4 sessions, each of which lasts
less than 30 minutes. Each subject only takes part in two
sessions. We summarize the key points of the subjective testing
in Table II.

TABLE II

SUBJECTIVE EXPERIMENT SETUP

C. Data Processing

We employ the outlier detection and subject rejection
algorithm suggested in [29]. Specifically, the raw score for
an image is considered to be an outlier if it is outside 2
standard deviations (stds) about the mean score of that image
for the Gaussian case or outside

√
20 stds for the non-

Gaussian case. A subject is removed if more than 5% of
his/her evaluations are outliers. As a result, 3 subjects are
rejected, and each image is rated by 20 valid subjects. Among
all scores given by the remaining valid subjects, about 2.61%
of the total subjective evaluations are identified as outliers and
are subsequently removed. We calculate the difference mean
opinion score (DMOS) as the ground truth. The raw rating ri j

(given by the i th subject to the j th image) is first converted
to the raw difference di j by subtracting it from the raw rating
of the corresponding reference image. di j is then converted to
a Z -score: zi j = di j −di

σi
, where di is the mean difference score

given by the i th subject, and σi is the std. Z -scores are then
averaged across subjects: z j = 1

N j

∑N j
i=1 zi j , where N j is the

number of valid ratings for the j th image. Finally, averaged
Z -scores are linearly rescaled to the range of [0, 100] to obtain
the final DMOSs, with higher values indicating worse quality.

III. THE PROPOSED UCA MODEL

A diagram of the proposed UCA method is shown in Fig. 2.
UCA is composed of two main steps: a feature extraction
process executed at multiple scales and an adaptive multi-scale
weighting process that pools the results into a single quality
score.

A. Feature Extraction

In spatial domain, corners and edges are presumably the
most important image features. They are sensitive to various
image distortions. For example, in block-based image/video
compression schemes, because of block partitioning and the
relatively independent processing between individual blocks,
corners and edges near the boundaries of blocks change in
different ways as compared to the middle regions of the blocks.
More specifically, new corners and edges may be created
near block boundaries while genuine corners and edges may
be smoothed within blocks. Such disparities increase with
the compression level. Therefore, we detect the statistical
differences of corners and edges between block boundaries
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Fig. 2. Diagram of the proposed UCA method. LPF: low-pass filtering. ↓ 2: downsampling by a factor of 2. pn : the likelihood of a distorted image being
NSI. wn : multi-scale weights for NSI. ws : multi-scale weights for SCI. w: final multi-scale weights. r: feature vector.

and middle regions. We find this a simple but effective way
to gauge the perceptual quality of compressed images.

1) Corner Feature: We adopt Shi and Tomasi’s minimum
eigenvalue method [30] to detect corners. Given an image
I(x, y), corners are detected by maximizing the weighted sum
of squared differences

D(u, v) =
∑

x,y

a(x, y)[I(x + u, y + v) − I(x, y)]2, (1)

where (u, v) is the spatial shift, and a(x, y) is a weighting
window. Applying a Taylor series expansion to I(x +u, y +v),
D(u, v) can be approximated by

D(u, v) ≈ [
u v

]
H

[
u
v

]

, (2)

where H is a Harris matrix

H =
∑

x,y

w(x, y)

[
Ix Ix IxIy

Ix Iy IyIy

]

. (3)

Presumably, a corner should have larger differences in D(u, v)
along all directions defined by (u, v), which means the Har-
ris matrix H should have two large eigenvalues. Therefore,
a corner metric is given by

Hλ = min(λ1, λ2), (4)

where λ1 and λ2 are eigenvalues of H. Then a corner map can
be created by

C = (ci j )h×w = BW(Hλ), (5)

where BW is a threshold-based binarization function. C is the
final binary corner map, in which ci j = 1 indicates that a
corner is detected at position (i, j). h and w denote the image
height and width, respectively.

To single out the corners distributed at the block boundaries,
we create a mask map M = (mij )h×w , whose elements are

Fig. 3. Illustration of the block boundary mask M = (mi j )h×w for a 24×24
image with 8×8 blocks. Gray pixels denote mi j = 1 and white pixels denote
mi j = 0.

defined as

mij =
{

1 if mod(i, N) < 2 or mod( j, N) < 2

0 otherwise
(6)

where i and j are the row and column indices, mod calculates
the remainder, and N is the block size. Fig. 3 gives an illustra-
tion of the mask M for a 24×24 image with 8×8 blocks. Then
corners identified at the block boundaries can be represented
by

C′ = (c′
i j )h×w = C ◦ M = (ci j · mij )h×w, (7)

where ◦ denotes the Hadamard product. Our corner feature is
computed as the ratio of the corners at the block boundaries

rc =
∑

i, j c′
i j

∑
i, j ci j

. (8)

2) Edge Feature: Given an image I, its gradient magnitude
can be calculated as

G =
√

G2
x + G2

y, (9)
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Fig. 4. CSFs and multi-scale weights for natural and screen content. (a) Multi-scale weights for natural content. (b) Multi-scale weights for screen content.

where Gx and Gy are the partial derivatives along horizontal
and vertical directions, respectively. An edge map is created
by

E = (ei j )h×w = BW(G), (10)

where E is a binary map and ei j = 1 indicates that an edge
pixel is detected at (i, j). We use the same mask map M
defined in Eq. (6) to identify edges at the block boundaries

E′ = (e′
i j )h×w = E ◦ M = (ei j · mij )h×w. (11)

The edge feature is given by the ratio of the edges at the block
boundaries

re =
∑

i, j e′
i j

∑
i, j ei j

. (12)

3) Overall Quality Feature: As illustrated in Fig. 3, block
boundaries occupy R = 4(N−1)

N2 of an image. Presumably,
a high quality image free of block-based compression should
have rc and re values close to R. With the increase of
the compression level, a large proportion of corners and
edges are detected near block boundaries, and thus rc and
re increase. We compute the overall quality/distortion feature
as the product of rc and re normalized by R2 such that high
quality images have a feature value close to 1

r = rcre

R2 = N4rcre

16(N − 1)2 . (13)

The feature extraction process is executed at 4 scales, forming
a feature vector r = [r1, r2, r3, r4]T , where ri is the overall
quality feature at the i th scale derived from Eq. (13).

B. Adaptive Multi-Scale Weighting

Many existing work [31]–[33] has shown that multi-scale
analysis improves quality prediction performance. Here we
propose a multi-scale framework and focus on the impact of
the human psychological behaviors and the visual sensitivity
characteristics across scales.

1) Multi-Scale Weights for Natural Content: We divide
an image into 4 scales by iterative low-pass filtering and
downsampling. Quality features are extracted at each scale
and integrated linearly using a set of multi-scale weights.
Following the strategies adopted in [32] and [33], we derive
the weights of each scale from the CSF of the HVS.

We first define a viewing resolution factor ξ as

ξ = π · d · n

180 · hs · 2
, (14)

where the unit of ξ is cycles per degree of visual angle (cpd),
d is the viewing distance (inch), hs is the height of the
screen (inch), and n denotes the number of pixels in the
vertical direction of the screen. We use ξ to divide the spatial
frequency range for each scale, which covers one section of
the CSF formulated by [34]

S(u) = 5200e(−0.0016u2(1+100/L)0.08)

√
(1 + 144

X2
0

+ 0.64u2)( 63
L0.83 + 1

1−e(−0.02u2)
)
, (15)

where u, L, and X2
0 indicate spatial frequency (cpd), lumi-

nance (cd/m2), and angular object area (squared degrees),
respectively.

As illustrated in Fig. 4(a), each scale corresponds to one spa-
tial frequency range. For example, the finest scale corresponds
to [ ξ

2 , ξ ] and so on. The weight for each scale is calculated
as the area under the CSF within the corresponding frequency
covering range

wi = 1

Z

∫ ξ

2i−1

ξ

2i

S(u)du, i ∈ {1, 2, 3, 4}, (16)

where i from 1 to 4 corresponds the finest to coarsest scale,
respectively. Z is a normalization factor such that

∑
i wi = 1.

2) Multi-Scale Weights for Screen Content: Previous studies
in the literature [12], [35], [36] suggest that humans have
significantly different behaviors when viewing natural scene
and screen content. Unlike natural scene perception, when
viewing screen content, the HVS tends to be more focused
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so as to perform tasks better suited to extracting the type
of information conveyed in screen content, such as reading
texts. Rayner [35], [36] reviewed the viewing behaviors under
different conditions. Two important aspects are saccade length
and perceptual span. The saccade length in natural scene
perception is generally 2 times as many as screen content
perception. The perceptual span of natural scene perception
is also larger (which is around 2 if under the same task
of recognition). Moreover, the attentional selection and shift
are often object-based and the “object size” of natural scene
approximately doubles that of screen content.

To account for such behaviors in our model and to achieve
equivalence in viewing natural scene and screen content,
we choose to set screen content’s equivalent viewing distance
as half of its actual viewing distance (ξs = ξ

2 ). Replacing ξ
with ξs in Eq. (16), we derive a group of multi-scale weights
ws for screen content. As illustrated in Fig. 4(b), more weights
are given to finer scales, which is expected since observers are
more focused at high-frequency details.

3) Adaptive Weighting: In practice, it is sometimes difficult
to make a crisp judgement about if an image whether a natural
scene or screen content, and sometimes the image is a mixture
of both. This is often the case for computer graphic images that
mimic natural scenes. Here we propose an adaptive weighting
strategy that bridges between the two cases

w = pn · wn + (1 − pn) · ws , (17)

where wn and ws are the multi-scale weight vectors for NSIs
and SCIs, respectively, and pn is the likelihood that the image
is an NSI.

It remains to determine pn. This requires certain image
features that are sensitive to image types but robust to
distortion types and levels. We find the variance of local
variance (VOLV) serves this purpose well. In particular,
we compute the variance of local image patches. We then
compute the variance of all local variances in the image.
To test how effective VOLV is at differentiating image types,
we collect another set of high quality images including
200 NSIs and 100 SCIs, which are not included in the CCT
database, and compress them using HEVC/HEVC-SCC with
11 compression levels. Fig. 5 illustrates the histograms of
VOLV of 2,200 compressed NSIs and 2,200 compressed SCIs,
from which we see that a good separation is achieved.

Moreover, we find that the distributions of both content
types generally follow the gamma distribution, whose prob-
ability density function (PDF) is given by

f (v; α, β) = βαvα−1e−vβ

�(α)
, for v ≥ 0 and α, β > 0, (18)

where v is the VOLV value, α, β are two shape parameters,
and �(·) is the gamma function. The fitted curves are also
given in Fig. 5. We compute pn as

pn = p(t = 0|v) = p(t = 0, v)

p(v)

= p(v|t = 0) · p(t = 0)

p(v|t = 0) · p(t = 0) + p(v|t = 1) · p(t = 1)
, (19)

Fig. 5. Histograms of variance of the local variance. Natural scene and
screen content are well separated and the histograms are well fitted by the
gamma probability density function.

where t = 0 and t = 1 indicate that the content type is an
NSI and SCI, respectively.

Since we do not have any prior knowledge about the content
type, we assume p(t = 0) = p(t = 1) = 0.5. Moreover,
we assume that the VOLV value v for each content type
follows a gamma PDF

p(v|t = 0) = f (v; αn, βn), (20)

p(v|t = 1) = f (v; αs , βs), (21)

where (αn, βn) and (αs, βs) are fitting parameters for NSIs
and SCIs, respectively. As a result,

pn = f (v; αn, βn)

f (v; αn, βn) + f (v; αs , βs)
. (22)

Although we do not apply an explicit content type classifica-
tion in our method, we test the discrimination ability of pn on
the CCT database. Specifically, we classify the content type
through hard-thresholding, i.e., an image is classified as NSI
if pn ≥ 0.5. We have accuracies of 92.8% and 88.3% on NSIs
and SCIs, respectively. On CGIs, 87.5% of the images are
classified as NSIs because they simulate natural scenes.

Finally, the overall quality Q is the weighted sum given by

Q = wT r. (23)

C. Implementation Details

In the current implementation, UCA works with gray-scale
images only. To detect corners, we apply a 3 × 3 Gaussian
filter with a std of 0.5 as a preprocessing. The threshold in
Eq. (5) is set to

τ = 0.0005 · max(Hλ), (24)

where max(·) finds the maximum of the corner metric matrix
Hλ given by Eq. (4). For edge detection, we adopt the Prewitt
operation. The corresponding threshold is set to 2. Similar
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TABLE III

THE DETAILS OF COMPETING NR IQA MODELS. NSS: NATURAL SCENE STATISTICS. DCT: DISCRETE
COSINE TRANSFORMATION. DWT: DISCRETE WAVELET TRANSFORM

performance is obtained using other edge detectors, such as
Sobel and Canny [50] methods.

The parameters in computing the viewing resolution
factor in Eq. (14) and the CSF in Eq. (15) are set
based on our subjective experiment. These are d = 35,
n = 1, 080, h ≈ 11.3, L = 200, and X2

0 ≈ 606. The
final multi-scale weights for natural and screen content
are wn = [0.2066, 0.3329, 0.2855, 0.1749]T and ws =
[0.3858, 0.3309, 0.2026, 0.0807]T , respectively. To compute
VOLV, we adopt a 7 ×7 Gaussian filter. The fitted parameters
in the gamma PDFs for NSIs and SCIs are αn = 1.6876,
βn = 33.3924 and αs = 3.2516, βs = 140.6982, respectively.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

The proposed UCA method is tested on the CCT database,
which contains a total of 1,320 compressed images divided
into 5 subsets, as listed in Table I. Following the practices
in [51], we first map the predicted scores nonlinearly using a
five-parameter logistic function

q(s) = ε1

(
1

2
− 1

1 + eε2(s−ε3)

)

+ ε4s + ε5, (25)

where {εi |i = 1, 2, . . . , 5} are parameters to be fitted. We then
compare the mapped scores with DMOSs using Spearman
rank-order correlation coefficient (SRCC) and Pearson linear
correlation coefficient (PLCC). A higher SRCC or PLCC value
indicates better performance.

We choose a variety of objective NR IQA models to
cover different design methodologies. These include state-
of-the-art general-purpose models DIIVINE [37], BLIINDS-
II [38], BRISQUE [39], NFERM [40], CORNIA [41],
HOSA [18], NIQE [42], IL-NIQE [43], and LPSI [44]. Since
HEVC/HEVC-SCC compressed images mainly suffer from
blocking and blurring artifacts, we also include top performing

distortion-specific (blockiness and blur) NR models, including
Wang2000 [21], Bovik [22], Wang2002 [23], Perra [24],
Li [25], RMB [26], BIBLE [45], CPBD [46], FISH [47],
S3 [48], and LPC-SI [49]. A summary of the competing
models is given in Table III. We implement our own versions
of Wang2000 [21], Bovik [22], and Perra [24], while the
implementations of the rest algorithms are obtained from the
original authors.

For methods that involve training (DIIVINE [37],
BLIINDS-II [38], BRISQUE [39], and NFERM [40]),
we retrain them using the CCT database. Specifically, given a
target set (one of the five subsets or the whole CCT database),
we randomly select 80% reference images along with their
distorted versions as the training set and leave the rest 20%
as the test set. Note that images corresponding to the same
reference image are assigned to the same set to ensure the
complete independence of the training and test data. If the
target set is the whole database, we conduct such random
separation for every subset to keep a balance among all
subsets. We repeat this procedure 1,000 times and report the
median SRCC and PLCC results. In order to make a fair
comparison, we also apply this splitting procedure for the
training-free methods. In other words, results only on the test
sets are reported.

B. Performance Comparison

Table IV summarizes the test results, from which we have
several useful findings. First, training-based models exhibit
advantages over training-free models. Second, models based
on blockiness and blur estimation may perform reasonably
in one subset, but fail to align different content types well,
leading to a performance drop on the whole database. Third,
there is a clear trend of performance drop from NSIs and
CGIs to SCIs, which is the case for almost all models.
As a result, the SCI subset appears to be extremely difficult
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TABLE IV

MEDIAN SRCC AND PLCC PERFORMANCE ACROSS 1,000 TRAILS ON 5 SUBSETS AND THE WHOLE CCT DATABASE. TIME: SECONDS/IMAGE

TABLE V

SRCC PERFORMANCE OF DIFFERENT FEATURES

AND WEIGHTING STRATEGIES

for most models. Finally, the proposed UCA model, which
is training-free, achieves the best performance in all cases,
and creates the least performance drop from NSI to SCI
subsets.

C. Statistical Significance Analysis

Fig. 6 illustrates the mean and std of the SRCC values
across the 1,000 trials for all algorithms listed in Table IV.
The mean performance follows a similar trend as in Table IV.
Besides, the std of UCA is smaller than competing models,
which suggests that UCA performs more consistently.

To testify whether the differences between any two mod-
els are statistically significant, we perform a t-test [52] on
SRCC values obtained by different models. After compar-
ing every possible pairs of models, the results are sum-
marized in Fig. 7, where a white/black block indicates
that the row algorithm is statistically better/worse than the
column algorithm, while a gray block indicates that the

TABLE VI

SRCC PERFORMANCE AS A FUNCTION OF THE THRESHOLD τ

row and column algorithms are statistically indistinguishable.
It can be observed that UCA is statistically superior to
all competing algorithms on all 5 subsets and the whole
CCT database.

D. Ablation Experiment

We conduct a series of ablation experiments to single out the
core contributors of UCA. First, we only adopt corner features
to obtain a model denoted by UCAc. A similar model can be
obtained with edge features only, denoted by UCAe. SRCC
performance results of UCAc, UCAe, and UCA are listed
in Table VI, from which we observe that feature combination
achieves the best performance. Second, we test six different
weighting strategies. These are wc1 = [1, 0, 0, 0], wc2 =
[0.25, 0.25, 0.25, 0.25], wc3 = ws , wc4 = 0.5 · wn + 0.5 · ws ,
wc5 = wn , and wc6 = pn · wn + (1 − pn) · ws (adopted by
UCA), where the subscript ci is the weighting strategy index.
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Fig. 6. Mean SRCC values and standard error bars for all competing algorithms across 1,000 train-test trials on 5 subsets and the whole CCT database.
A-U are model indices given in Tables III & IV.

Fig. 7. Statistical significance test results on 5 subsets and the whole CCT database. A white/black block indicates that the row model is statistically
better/worse than the column model. A gray block indicates that the row and column models are statistically indistinguishable. A-U are model indices given
in Tables III & IV. (a) NSI/HEVC. (b) CGI/HEVC. (c) CGI/SCC. (d) SCI/HEVC. (e) SCI/SCC. (f) All.

The SRCC results are listed in Table VI, from which we
observe that multi-scale weighting improves the performance
and the CSF-based weighting is more effective than uniform

weighting. Moreover, the proposed adaptive weighting is more
effective than fixed weighting, especially on CGI and SCI
subsets.
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TABLE VII

PERFORMANCE COMPARISON ON JPEG IQA DATABASES

TABLE VIII

PERFORMANCE COMPARISON ON MPEG-2, H.264 AND HEVC VQA DATABASES

E. Parameter Sensitivity

Most parameters in UCA are inherited from previous
publications or can be inferred from the subjective testing
environment. Here, we only test the sensitivity of UCA
with respect to two critical parameters—the thresholds of the
binarization functions in Eq. (5) and Eq. (10), which specify
the minimum accepted quality of the extracted corners and
edges, respectively. We vary the corner threshold from 0.0001
to 0.0011, with a step of 0.0002, and fix the edge threshold
at 2. Similarly we vary the edge threshold from 1.2 to 3.2
with a step of 0.4, while keeping the corner threshold fixed
at 0.0005. From Table V, we see that the SRCC performance
remains stable within a significantly wide range.

F. Computational Complexity

To empirically compare the computational complexity of
state-of-the-art NR IQA models with UCA, we report their
execution time for 100 images with a fixed resolution of
1280×720 on a computer with 4.00 GHz Intel Core i7-6700K
CPU and 32 GB RAM. From Table IV, it appears that UCA is
among the models with the lowest computational complexity.

V. GENERALIZABILITY OF UCA

The proposed UCA method is designed for block-
based image/video compression. Therefore, it is interest-
ing to observe how UCA generalizes to other block-based
image/video compression methods and databases. We test
it using publicly available JPEG image compression and
MPEG-2/H.264/HEVC video compression databases.

A. JPEG Compressed Images

We test UCA on the JPEG subsets of 5 widely used IQA
databases: LIVE [53], CSIQ [54], TID2013 [55], MICT [56],
and SIQAD [2], which contain 175, 150, 125, 84, and
140 JPEG compressed images, respectively. All reference
images are excluded. All models listed in Table III except
the blur-specific ones are compared. Table VII lists the per-
formance comparison results. It needs to be aware that many
algorithms are trained or tuned based on some of these
databases. For example, DIIVINE [37], BLIINDS-II [38],
BRISQUE [39], NFERM [40], HOSA [18], Wang2002 [23],
and Li [25] are trained on LIVE, and CORNIA [41] is trained
on both LIVE and CSIQ. We do not list their performance on
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the training databases in Table VII. It can be observed that
UCA achieves high performance, competitive with state-of-
the-art NR quality measures.

B. MPEG-2, H.264, and HEVC Compressed Videos

We test UCA on MPEG-2, H.264, and HEVC compressed
videos using the relevant subsets of 4 public video quality
assessment (VQA) databases—VQEGHD3 [57], CSIQ [58],
IVP [59], and LIVE [60]. The VQEGHD3 subset contains
54 H.264 coded video sequences of 6 bit rates. The CSIQ
subset contains 36 × 2 video sequences of 3 distortion levels,
compressed by H.264 and HEVC, respectively. The IVP subset
contains 40 sequences of 4 levels compressed by H.264 and
30 sequences of 3 levels compressed by MPEG-2, respectively.
Finally, the LIVE subset contain 40 ×2 sequences of 4 levels,
compressed by H.264 and MPEG-2, respectively.

Many NR methods under comparison are designed for
images only, for which we simply average the scores given
to all video frames as an overall quality evaluation. We
incorporate two NR VQA models, namely V-BLIINDS [61]
and VIIDEO [62] into comparison. Note that the two mod-
els are trained or tuned on LIVE, whose results are not
listed in Table VIII. Compared with state-of-the-art distortion-
specific and general-purpose IQA/VQA algorithms, UCA is
quite competitive in all block-based coding schemes, espe-
cially for HEVC.

VI. CONCLUSION

In this paper, we propose a cross-content-type NR IQA
measure for compressed natural, graphic, and screen content
images by integrating a novel perceptually motivated content-
adaptive multi-scale weighting strategy. The proposed UCA
method is validated on a first-of-its-kind CCT database, which
contains a total of 1,320 HEVC/HEVC-SCC compressed NSIs,
CGIs, and SCIs. Experimental results show that UCA not
only significantly outperforms state-of-the-art general-purpose
and distortion-specific NR quality measures but also exhibits
stronger robustness across both content and content type
variations. Experimental results on several other IQA/VQA
databases further demonstrate the generalizability of UCA.

The current UCA is dedicated to block-based image and
video compression, largely due to its wide usage in practice.
Nevertheless, the design principle of content-adaptive multi-
scale weighting is general. In the future, we plan to extend it
to other IQA/VQA application scenarios. The proposed UCA
method may be applied to color images by measuring all
color channels in certain color spaces. In typical image/video
compression methods, all color channels are distorted in a sim-
ilar fashion, and thus UCA should work effectively. However,
specific color distortions may occur when the distortion is not
restricted to compression. In those cases, UCA needs to be
improved.
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