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Video Saliency Incorporating Spatiotemporal
Cues and Uncertainty Weighting
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Abstract— We propose a novel algorithm to detect visual
saliency from video signals by combining both spatial and
temporal information and statistical uncertainty measures. The
main novelty of the proposed method is twofold. First, separate
spatial and temporal saliency maps are generated, where the
computation of temporal saliency incorporates a recent psy-
chological study of human visual speed perception. Second, the
spatial and temporal saliency maps are merged into one using a
spatiotemporally adaptive entropy-based uncertainty weighting
approach. The spatial uncertainty weighing incorporates the
characteristics of proximity and continuity of spatial saliency,
while the temporal uncertainty weighting takes into account the
variations of background motion and local contrast. Experimen-
tal results show that the proposed spatiotemporal uncertainty
weighting algorithm significantly outperforms state-of-the-art
video saliency detection models.

Index Terms— Visual attention, video saliency, spatiotemporal
saliency detection, uncertainty weighting.

I. INTRODUCTION

V ISUAL attention is an important characteristic of the
Human Visual System (HVS). It is a cognitive process

of selecting the relevant regions while acquiring the most
significant visual information from the visual scenes. Research
on visual attention dated back to 1890 [1]. In general, the
amount of information captured by human eyes is much
more than what the central nervous system can process.
When human eyes gaze at a natural scene, it is impossible
to recognize all the components and their relationship in
the scene immediately [2], [3]. Selective attention filters out
redundant visual information, such that the visual systems are
attracted to the salient regions that contain the most important
visual information in the scene [4]. There are two basic visual
attention mechanisms: bottom-up and top-down. Bottom-up
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mechanism is data-driven and task-independent [5], while top-
down mechanism is voluntary and dependent on viewing tasks
and semantic information [6]–[8].

In the past decades, existing studies have explored
selective visual attention mechanisms in the fields of biology,
psychology, and computer vision [3]–[20]. Recently, it has also
attracted a great deal of attention in the field of multimedia
communications because of its potential applications in the
evaluation and improvement of quality-of-experience (QoE)
in visual communication systems [51]–[53]. According
to the Feature Integration Theory (FIT) developed by
Treisman et al. [9] in the 1980s, the early selective attention
mechanism leads some image regions to be salient because
of certain features (color, intensity, orientation, motion, etc.)
that differentiate them from their surrounding regions [9].
Koch et al.’s visual attention model [10] suggests that selective
visual attention includes three stages: elementary parallel
feature representation across the visual field; the Winner-Take-
All (WTA) mechanism singling out the most salient location;
and the routing selection for the next most salient locations.

Recently, computer vision researchers proposed various
computational models of saliency detection for images
[11]–[20], [45]– [48]. One of the earliest saliency detection
models was proposed by Itti et al [11]. This model calculates
saliency map based on multi-scale center-surround feature
contrast from intensity, color and orientation. Based on Itti’s
model, Harel et al. designed a graph-based saliency detection
model by using a better measure of dissimilarity [12]. Different
from [11], the model adopts graph theory to form saliency
maps from low-level features [12]. Gao et al. computed the
center-surround discriminant for saliency detection [16]. The
saliency values of image pixels are obtained by the power of
a Gabor-like feature set to discriminate the center-surround
visual appearance. In [17], Yan et al. described a saliency
detection model based on sparse coding. Bruce et al. used
the principle of information maximization to build a saliency
detection model [14], which yields saliency maps for images
based on Shannon’s self-information measure. Hou et al.
measured saliency based on a new concept of Spectral
Residual [13], where the saliency map is obtained based on
log spectra representation of images, which is calculated by
the Fourier Transform (FT). Several other studies also adopted
the information from frequency domain for saliency detec-
tion [18], [47], [48]. Liu et al. used a machine learning tech-
nique to learn the features of salient objects for images [15].
They first calculate features of multi-scale contrast, center-
surround histogram and color spatial distribution from images.
Then a Conditional Random Field (CRF) is determined
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for these features to detect salient objects in images [15].
Goferman et al. proposed a context-aware saliency detection
model by introducing more context information in the saliency
map [38]. Garcia-Diaz et al. designed a saliency detection
model based on a hierarchical definition of optical variabil-
ity [45]. Recently, Riche et al. used the multi-scale spatial
rarity for saliency detection [46].

Compared with saliency detection in still images, video
saliency detection is a much more challenging problem due to
the complication in the detection and utilization of temporal
and motion information. So far, only a limited number of
algorithms are proposed for spatiotemporal saliency detection
for video signals [18], [19], [23]– [28]. Early methods of
salient motion detection attempted to identify moving fore-
ground objects as salient regions. In [23], Wildes proposed a
measurement of salient motion for surveillance applications.
The spatiotemporal gradient filters are used to evaluate the
extent to which local regions in space-time are dominated
by a single coherent salient motion [23]. Wixson designed a
salient motion detection model by defining salient motion as
motion resulting from typical surveillance targets as opposed
to other distracting motions [24]. In that study, the motion of
image pixels over time is calculated to estimate the moving
distance of these image pixels. The pixel saliency is measured
by the distance over which the image pixel has traveled with
a consistent direction [24].

More recent methods of video saliency detection try to com-
bine spatial and temporal information [18], [19], [25]– [28].
Itti et al. utilized a Bayesian model to detect surprising events
as important information attracting human attention, where
surprise is measured by the difference between posterior and
prior beliefs for the observer [19]. Ma et al. integrated top-
down mechanism into classical bottom-up saliency detection
models for video summarization [28], where the top-down
information includes semantic cues such as face and speech.
Zhai et al. linearly combined spatial and temporal saliency
maps to obtain the final saliency map for video frames [25]. In
that study, the spatial saliency map is computed based on the
color histogram of video frames, while the temporal saliency
map is calculated by the planar motion between images
(estimated by applying RANSAC on point correspondences
in the scene) [25]. Le Meur et al. extended their saliency
detection model for images [29] by adding temporal saliency
information into the framework [26]. The spatiotemporal
saliency map for video frames is calculated based on the
feature maps from achromatic, chromatic and temporal
information [26]. Mahadevan et al. extended the discriminant
saliency detection approach in [16] by incorporating motion-
based perceptual grouping and a discriminant formulation
of center-surround saliency to create spatiotemporal saliency
maps [27]. Guo et al. combined quaternion intensity, color
and motion features and employed the phase spectrum of
Quaternion Fourier Transform to calculate spatiotemporal
saliency for video frames [18]. The spatiotemporal saliency
map is computed as the Inverse Fourier Transform (IFT) on a
constant amplitude and the original phase spectrum. Seo et al.
introduced the notion of self-resemblance to measure visual
saliency from video signals [32]. Butko et al. proposed

a real-time spatiotemporal saliency detection model for
robot cameras [49].

A key issue in video saliency evaluation is how to incor-
porate motion information, for which existing models tend to
use ad-hoc methods with little justification from psychological
or physiological studies. Our work is inspired by a recent
study by Stocker and Simoncelli regarding human visual speed
perception [33], where a set of psychovisual experiments
were carried out to measure the prior probability distribution
and likelihood function of visual speed perception. These
measurements are consistent across human subjects and can be
modeled by simple parametric functions. These results allow
us to quantify the motion information content in a perceptually
meaningful way and use it as a predictor of temporal saliency.

Another important problem in the development of spa-
tiotemporal saliency models is how to combine spatial and
temporal saliency maps when both of them are available.
Unlike existing approaches that often use simple combination
rules such as linear combination with fixed weights, we
associate each saliency map with a entropy-based uncertainty
map and merge the saliency maps adaptively based on the local
uncertainty measures. Our uncertainty calculation is motivated
by the principles of proximity and continuity of the Gestalt
theory [39], [40], and also the impacts of background motion
and local contrast based on the psychovisual study in [33].
The law of proximity states that elements which are close to
each other tend to be perceived as forming a group, while the
law of continuity indicates that elements which are connected
with each other tend to be perceived into a group together.
These two principles can be applied to the visual saliency as
follows: first, the spatial location that is closer to the most
concentrated saliency regions in an image is more likely to
be a salient location; second, a spatial location that is more
connected to other saliency regions is more likely to be a
salient location. We use these two principles to calculate the
uncertainty for the spatial saliency. The psychovisual experi-
ments in the study [33] suggest that the accuracy of motion
perception varies with the speed of motion and local contrast.
We adopt the mathematical models behind to determine the
uncertainty of temporal saliency. The final spatiotemporal
saliency is calculated by fusing spatial and temporal saliency
based on their uncertainties. Partial preliminary results of the
proposed spatiotemporal saliency detection model have been
published in [60]. Experimental results show that the proposed
spatiotemporal saliency detection model outperforms other
existing ones on a public large-scale database.

II. PROPOSED METHOD

The general framework of the proposed model is depicted
in Fig. 1. Low-level spatial and motion features are first
extracted from the input video sequence, where the spatial
features (including luminance, color and texture) and the
motion feature are used to calculate the spatial and temporal
saliency maps, respectively. The spatial and temporal uncer-
tainty maps are then calculated to assess the confidence of
the corresponding saliency maps. Finally, the spatial and tem-
poral saliency maps are fused using an uncertainty weighting
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Fig. 1. The framework of the proposed model.

approach, resulting in the final spatiotemporal saliency map.
The principle behind the framework is flexible. For example,
other features, including high-level cognitive features, can be
easily integrated into the framework.

A. Spatial Saliency Evaluation

Our previous research work have demonstrated that DCT
coefficients can represent statistical features of image patches
effectively for saliency detection in still images [20]. The
spatial saliency detection used in this study basically follows
the method introduced in [20] (with modification) and is
briefly described here. Given a video frame, we first convert
all image pixels into the YCbCr color space rather than RGB
color space and divide the frame into non-overlapping 8 × 8
patches. Four features are extracted from each patch, including
one luminance feature L (DC value of the Y component),
two color features C1 and C2 (DC values of the Cb and Cr
components), and one texture feature T (total AC energy of
the Y component). These patch-based features extracted across
space constitute four feature maps.

In this study, we use a contrast-of-feature approach to
estimate patch saliency. The saliency value Sk

i for patch i
based on the contrast of feature k is calculated as:

Sk
i =

∑

j �=i

[
1√

2πσs
e−l2

i j /2σ 2
s

]
Dk

i j (1)

where kε{L, C1, C2, T }, σs is a width parameter of the
Gaussian weighting function, which is used to weight the
absolute feature difference Dk

i j between patches i and j , and
li j is the spatial distance between patches i and j . The value
of σs determines the size of the neighborhood and thus the
locality of the feature contrast measure. Different from the
study [20], here the texture difference between image patches
is calculated by the Euclidean distance rather than Hausdorff
distance for the low computational complexity.

Finally, the feature maps are normalized to [0, 1] and
the overall spatial saliency map S(s) of the video frame is
calculated as the average of the feature maps [20]:

S(s) = 1

K

∑

k∈{L ,C1,C2,T }
N(Sk ) (2)

where N is the normalization operator and K is the number of
features (K = 4). For simplicity, we have dropped the spatial
index i from both sides of the equation.

B. Temporal Saliency Evaluation

Existing studies have demonstrated that object motion is
often highly correlated with visual attention [21], [22]. Our
temporal saliency evaluation algorithm starts with optical flow
based motion estimation [30], which is more efficient and
provides denser and smoother motion vector field compared
with block matching-based motion estimation. The optical
flow vector field indicates absolute local motion, but perceived
object motion often corresponds to the relative motion between
the object and the background [55], [56]. Generally, an object
of strong motion with respect to the background would be a
surprising event to the HVS [21], [22], [33]. If we consider the
HVS as an efficient information extractor, it would pay more
attention to such a event [21], [22]. Therefore, visual attention
of motion can be measured based on the perceptual prior
probability distribution about the speed of motion. Recently,
Stocker et al. measured the prior probability of human speed
perception based on a series of psychovisual experiments [33].
The results have been employed in the field of perceptual video
quality assessment [34], but have not been exploited in the
context of visual saliency estimation. According to the results
in [33], the “perceptual" prior distribution of motion speed
can be well fitted with a power-law function:

p(v) = κ/vα (3)

where v is the motion speed; and κ and α are two positive
constants. This suggests that with the increase of object
speed, the probability decreases and thus the visual surprise
increases. This also allows us to compute the motion speed-
based temporal saliency using its self-information as

S(t) = − log p(v) = α log v + β (4)

where β = −logκ is a constant. The parameters α and β are
chosen based on the study in [34].

It remains to compute v, which is the relative motion speed
of the current position with respect to the background. To be
aligned with the spatial saliency map calculation in Eq. (1),
here we evaluate the relative speed vi of the i -th patch as

vi =
∑

j �=i

[
1√

2πσt
e−l2

i j /2σ 2
t

]
Dv

i j (5)

where Dv
i j is the length of the vector difference between the

mean absolute motion vectors of patches i and j . Eq. (5)
calculates the relative motion in a more localized fashion
within a large neighboring region rather than comparing with
the global background motion. By imposing a weighting factor
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based on the distance between the current patch and the
neighboring patches, we obtain the flexibility to put more
emphasis on the regions closer to the current patch. We find
this method simple and robust, and it provides more useful
features and flexibilities than using global background motion.

The temporal saliency S(t) is evaluated at all patches in a
video frame, and is then normalized to the range of [0,1],
resulting in a temporal saliency map of the frame.

C. Spatial Uncertainty Evaluation

Depending on the visual content, the detected saliency based
on spatial and motion features may have different levels of
confidence or certainty across space and time. For example,
a single moving object in a static background scene and
with sharp color contrast with respect to the background may
be detected as a salient object with high certainty, while
the certainty drops dramatically when multiple objects with
similar color and texture are moving at a similar speed.
Here we propose to estimate such uncertainty in saliency
evaluation and demonstrate its value in improving the accuracy
of saliency detection.

Our spatial uncertainty evaluation method is conceptually
rooted in the Gestalt theory [39], [40], in which the law of
proximity indicates that elements which are close to each other
tend to be perceived as forming a group, while the law of
continuity states that elements which are connected with each
other tend to be perceived into a group together. These two
principles of Gestalt Law may be extended to visual saliency
as follows: first, the spatial location that is closer to the most
concentrated saliency regions in an image is more likely to be
a salient location; second, a spatial location that is more con-
nected to other saliency regions is more likely to be a salient
location. These properties are also in line with our empirical
statistics of an image database created by Achanta et al. [35],
which includes 1000 images and their corresponding binary
ground truth maps from human subjects. Note that our goal
is to create a scalar-valued prediction of the degree of
visual saliency at each spatiotemporal location, but our spatial
uncertainty model is built upon a binary mask of segmented
main objects [35] that attract visual attention. We make this
seemingly suboptimal choice for the following reasons.

Firstly, the desirable ground truth training data would be
saliency maps with gradual saliency values obtained from
visual saliency recording. Unfortunately, it is infeasible to
obtain such desired ground truth maps, because eye tracking
experiments can only obtain limited numbers of fixation
points. For still images, the recorded fixation points (even
when all recorded points from multiple observes are collapsed)
are sparsely distributed over space. For video, the situation is
even worse, where we often end up with only 0 or 1 fixation
point in each video frame. Therefore, dense ground truth
saliency map that directly reflects the probability of a pixel
being salient is unrealistic to obtain in reality. In some existing
image saliency databases, smooth saliency maps are provided,
but these smooth maps are artificially created by Gaussian fil-
tering the sparse fixation maps. It would be mistaken to derive
our saliency likelihood models from such artificially smoothed

Fig. 2. Likelihood of saliency as a function of spatial distance from saliency
center.

maps. For example, the connectedness model would be sensi-
tive to and largely determined by the size of the Gaussian filter,
which is often picked arbitrarily. In other words, the artificial
smoothing process (rather than the true degree of visual
saliency) would dominate the modelling process.

Secondly, the Gestalt theory we employ to guide our mod-
elling of spatial uncertainty only suggests us to consider the
relationship between the locations of salient pixels, without
taking into account the degree of saliency. As a result, to
apply the Gestalt theory, we have to rely on a binary map
that classifies each pixel to be either salient or not, as is the
case of the database given in [35]. This gives us a clean and
easy method to build the uncertainty model, but meanwhile
only provides a rough estimate of the uncertainty in estimating
human visual saliency.

Finally, despite of the limitations, our approach finds a
shortcut capturing the most important ingredients of the intu-
itive ideas that could help us constrain the likelihood of
saliency. To the best of our knowledge, there was no previous
work that uses a similar approach to create uncertainty maps
to help with saliency detection. Moreover, our experiments
in III demonstrate significant effect of such an approach in
improving saliency prediction.

For images in the database [35], the salient pixels in the
ground truth maps are the pixels with saliency value one, while
the saliency values of the other pixels are zero. Specifically,
given an image and its ground truth saliency map S, we first
compute the expected center location of its saliency map by:

xc = 1

M

∑

(x,y)∈RS

x Sx,y (6)

yc = 1

M

∑

(x,y)∈RS

ySx,y . (7)

where RS is the set of all ground truth salient pixels and
M is their total count. We can then compute the spatial
distance d from the expected saliency center (xc, yc) to any
location (x, y) in the image, and carry out statistics of the
likelihood of a pixel being a salient pixel as a function of d .
Specifically, for a given distance value d , the likelihood is
estimated by counting the percentage of saliency pixels in
all pixels of all the binary maps that have distance d from
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their corresponding saliency centers. The statistical results are
shown in Fig. 2. As expected, with the increase of d from the
saliency center, the likelihood decreases, conforming with the
law of proximity. To describe this relationship efficiently, we
find that the statistical data can be very well fitted with the
following function:

p(s|d) = α1 exp

[
−

(
d

β1

)γ1
]

(8)

where p(s|d) stands for the likelihood of a pixel being salient
given its distance d from the saliency center (xc, yc). α1, β1
and γ1 are fitting parameters for the model and are found to
be α1 = 0.9694, β1 = 93.30, and γ1 = 2.8844, respectively,
based on the image database [35]. The fitting curve is also
shown in Fig. 2. Given this likelihood model, a natural way
to quantify the level of perceptual uncertainty is to compute
the entropy of the likelihood:

U (d) = Hb(p(s|d)) (9)

where Hb(p) is the binary entropy function computed as
−p log2 p − (1 − p) log2(1 − p).

Another aspect that could have a significant impact on the
saliency likelihood of a pixel is how it is connected to other
salient pixels (the property of continuity). For each pixel, we
calculate its connectedness as

c =
∑

(x,y)∈RN

Sx,y (10)

where RN represents the set of direct neighboring pixels
near the current pixel, excluding itself. Based on the image
database [35], we carried out statistics on the likelihood of a
pixel being salient as a function of connectedness c, and the
results are shown in Fig. 3. It can be observed that the more a
pixel is connected to salient pixels, the more likely it is also a
salient pixel. This relationship can also be summarized using
an empirical function given by

p(s|c) = 1 − exp

[
−

(
c

β2

)γ2
]

(11)

where p(s|c) represents the likelihood of a pixel being salient
given its connectedness c to other salient pixels. β2 and γ2
are fitting parameters and are found to be β2 = 4.7262 and
γ2 = 5.2531, respectively, based on the image database [35].
The fitting function is shown in Fig. 3. Similarly, we can
quantify the uncertainty using the entropy of the likelihood:

U (c) = Hb(p(s|c)) (12)

Finally, assuming independence between proximity and
connectedness, we calculate the total uncertainty for each pixel
in the spatial saliency as

U (s) = U (d) + U (c) (13)

Applying such uncertainty computation to the spatial
saliency map generated in Section II-A, we obtain the spatial
uncertainty map of each video frame.

Fig. 3. Likelihood of saliency as a function of connectedness.

D. Temporal Uncertainty Evaluation

When the background motion in a video sequence is very
large (most likely caused by camera motion), the visual
system cannot identify the motion of objects in the scene as
accurately as those in static background [33]. In addition, the
accuracy may decrease with the increase of local contrast [33],
[57]–[59]. Interestingly, these intuitive ideas about perceptual
uncertainty find direct justifications from the psychovisual
studies in [33], where the likelihood function of perceived
speeds given the stimulus speed vs is modeled as

p(vm |vs) = 1√
2πσvm

exp

[−(log vm − log vs)
2

2σ 2

]
(14)

where vs and vm are the speed of the true stimulus motion
and its perceptual measurement, respectively; the width para-
meter σ in the log-normal distribution determines the level of
perceptual uncertainty. Furthermore, the experimental results
in [33] show that in the logarithmic speed domain, σ is roughly
constant for any stimulus speed vs and inversely dependent on
the stimulus contrast q . This can be expressed as

σ = λ/qγ (15)

where λ and γ are both positive constants.
Since the uncertainty of speed is associated with the back-

ground speed [33], [34], assuming the stimulus speed vs is
the speed of the background motion vg , we can quantify the
perceptual uncertainty using the entropy of the likelihood:

U (t) = −
∫ ∞

−∞
p(vm |vg) log p(vm |vg)dvm

= log vg − γ log q + δ (16)

where δ = 1
2 + 1

2 log(2π)+ log λ is a constant. The parameters
are set according to the experiments from the study [34].
As expected, this uncertainty measure for temporal saliency
U (t) increases with background motion and decreases with
the stimulus contrast.

E. Spatio Temporal Uncertainty Weighting (STUW)

The last step in creating an overall spatiotemporal saliency
map is to combine the spatial and temporal saliency maps
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Fig. 4. Sample saliency maps. Column 1: original video frame with human fixation point marked with a circle; Column 2 - 4: spatial, temporal, and overall
saliency maps, respectively.

computed in Sections II-A and II-B, respectively, which are
also associated with different levels of uncertainty based on
the computation in Sections II-C and II-D. Naturally, the
saliency measure with lower uncertainty should be given larger
weight. This leads to an Uncertainty Weighted (UW) fusion
rule given by

S = U (t) S(s) + U (s) S(t)

U (s) + U (t)
(17)

which is also the final step of our SpatioTemporal Uncertainty
Weighting (STUW) algorithm.

Since both spatial and temporal uncertainty maps change
over space and time, this fusion rule is spatiotemporally
adaptive, which differentiates it from existing methods where
fixed weighting schemes are used to combine spatial and
temporal saliency maps [19], [25], [26], [28]. Fig. 4 provides
a sample video frame, together with its spatial, temporal and
overall saliency maps. It can be observed that both spatial and
temporal saliency maps are effective at identifying potential
salient objects, and the fused overall saliency map successfully
predicts the actual locations of visual fixations.

III. EXPERIMENTAL EVALUATION

We use two experiments based on a publicly available video
database [19] to evaluate the performance of the proposed
STUW algorithm. The first experiment shows the effect of
the fusion method by uncertainty weighting, and the second
experiment compares the performance of the proposed STUW
algorithm against existing ones.

A. Evaluation Methodology

The test database [19], [50] contains 50 video clips totaling
over 25 minutes with a variety of video content such as sports
video, video games, outdoor video in daytime and nighttime,
television broadcast, etc. The ground truth of visual fixations
is obtained from the fixation points from 8 subjects recorded
by an eye tracker. Some samples of video frames and their
corresponding ground truth are shown in Figs. 7 and 10.

We use similar assessment methods as the study in [19]
to evaluate the performance of the proposed STUW method.
The data is collected from all video frames with fixation points
in all sequences. The performance of spatiotemporal saliency
detection models is evaluated by comparing the response val-
ues at fixation and random locations in the saliency map [19].
Generally, an effective saliency detection model would have

high response at fixation locations and no response at most
random locations. Here, the saliency distributions at fixation
and random locations are calculated with 10 bins of saliency
values over the saliency map, as shown in Figs. 5 and 8, in
which the x-axis represents the saliency value bins from 0 to 1
with 0.1 interval, while the y-axis represents the number of
human fixation locations or random locations with different
saliency value bins. The saliency distributions are obtained
as the histogram of saliency values at fixation locations or
randomly chosen locations from all video frames with fixation
locations. Kullback-Leibler (KL) distance is used to measure
the similarity between these two distributions:

K L(H, R) = 1

2

(
∑

n

hn log
hn

rn
+

∑

n

rn log
rn

hn

)
(18)

where H and R are saliency distributions at human fixation
locations and random locations with probability density func-
tions hn and rn , respectively; and n is the index of the saliency
value bin (n ∈ {1, 2, 3 . . . , 10}). The saliency detection model
with larger KL distance can better discriminate human fixation
locations from random locations, and thus has better
performance [19].

Besides KL distance, Receiver Operating Characteristics
(ROC) curve [36] is also adopted for performance evaluation.
The ROC curve is a graphical plot of the True Positive
Rate (TPR) VS. the False Positive Rate (FPR) for a binary
classifier with varying discrimination thresholds, as shown in
Figs. 6 and 9. The saliency distributions at human fixations
and random locations are used as the test and discrimination
set, respectively. For each threshold, the TPR is calculated as
the percentage of the number of human fixation locations with
salient values larger than this threshold over the total number
of human fixation locations; the FPR is computed as the per-
centage of the number of random locations with salient values
larger than this threshold over the total number of random
locations. The area under the ROC curve (AUC) provides an
overall evaluation. A better video saliency detection model is
expected to have a larger AUC value.

Additionally, NSS (Normalized Scanpath Saliency) [42] is
also adopted for performance evaluation in this study. As indi-
cated in [41], ROC depends on the ordering of the fixations
and does not capture the metric amplitude differences. Thus,
we use the NSS metric to conduct a more comprehensive
performance evaluation of the proposed model. The NSS is
defined as the response value at human fixation locations in
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Fig. 5. The saliency distributions at human fixation locations (narrow blue bars) and random locations (wide green bars) from spatial saliency, temporal
saliency, and spatiotemporal saliency by different fusion methods.

the normalized saliency map with zero mean and unit stan-
dard deviation. A larger NSS value implies better predication
performance of the saliency detection model.

B. Experiment 1

In this experiment, we compare the performance of the
spatial, temporal, and spatiotemporal saliency maps to demon-
strate the significance of the uncertainty weighting based
fusion algorithm. Furthermore, we compare the performance
of the proposed UW fusion method with those from other
existing fusion methods.

Commonly used fusion methods to combine spatial and
temporal saliency maps include [37]: (1) Normalized and
Sum (NS): a simple fusion method that normalizes the spatial
and temporal saliency maps to the same dynamic range and
then sums them to obtain the final spatiotemporal saliency
map; (2) Normalized and Maximum (NM): the fusion method
that normalizes the spatial and temporal saliency maps to
the same dynamic range and then uses the maximum value
as the final saliency value at each location; (3) Normalized
and Product (NP): the fusion method that normalizes the
spatial and temporal saliency maps to the same dynamic range
and then multiplies the maps to produce the spatiotemporal
saliency map; (4) Contents-based Global Nonlinear Ampli-
fication (CGNA) [43]: the fusion method that consists of
globally promoting feature maps with a small number of strong
peaks of activity, while globally suppressing feature maps
eliciting peak responses in the visual scene; (5) Maximum
and Skewness (MS) [44]: the fusion method that adopts the
maximum value of spatial saliency and skewness of temporal
saliency to combine the spatial and temporal saliency. The
detailed description of NS, NM and NP can be found in [37],
while the detailed introduction of CGNA and MS can be found
in [43] and [44], respectively.

Fig. 6. ROC comparison of spatial saliency, temporal saliency, and spa-
tiotemporal saliency by different fusion methods.

We compare the proposed UW fusion method with afore-
mentioned existing fusion methods (NS, NM, NP, CGNA,
and MS). Fig. 5 shows the saliency distributions at human
fixations and random locations for the spatial saliency map,
temporal saliency map, and spatiotemporal saliency maps
created by different fusion methods. It can be seen that the
difference between saliency distributions at human fixation
and random locations from spatial saliency is larger than that
from the temporal saliency. The difference between saliency
distributions of human fixation and random locations from
the proposed fusion method is larger, compared with the
other fusion methods (NS, NP, NM, CGNA and MS). These
conclusions are further confirmed by Fig. 6, which shows
the ROC curves of spatial saliency, temporal saliency, and
spatiotemporal saliency from different fusion methods.

Table I provides the detailed KL distance, AUC and
NSS values of spatial saliency, temporal saliency, and
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TABLE I

KL DISTANCE, AUC, AND NSS COMPARISONS OF SPATIAL SALIENCY, TEMPORAL SALIENCY,

AND SPATIOTEMPORAL SALIENCY BY DIFFERENT FUSION METHODS

Fig. 7. Visual comparison of spatial, temporal, and spatiotemporal saliency. Row 1: video frames with human fixation point marked with circles;
Rows 2 - 4: spatial, temporal, and spatiotemporal saliency maps, respectively.

spatiotemporal saliency by different fusion methods. It appears
that spatial saliency alone can predict more accurate fixations
than temporal saliency. The KL distance and AUC values
from some spatiotemporal saliency maps (NS, NP, NM, CGNA
and the proposed one) are higher than those of the spatial or
temporal saliency map only, while the KL distance and AUC
values from spatiotemporal saliency maps by MS are lower
than those from spatial saliency only. From the NSS results, we
can see that the spatiotemporal saliency maps from NP and the
proposed UW can obtain better performance than the spatial
saliency. Among the results from different fusion methods, the
proposed UW fusion method obtain the highest KL distance,
AUC and NSS values. Thus, the proposed fusion method by
uncertainty weighting achieves better performance than other
existing fusion methods.

Fig. 7 provides sample saliency maps produced by the
proposed method. From the first (or second) column of this
figure, the saliency value at human fixation location in the
spatial saliency map is not highest in this saliency map.

Although the saliency value at human fixation location in
the temporal saliency map might be the highest, there are
other locations with high saliency values in the temporal
saliency map. On the contrary, the saliency value at human
fixation location is always highest in the spatiotemporal
saliency map. Other comparison samples also demonstrate
this advantage of the spatiotemporal saliency by uncertainty
weighting. These comparison samples demonstrate that the
spatiotemporal saliency map predicts human fixations more
accurately compared with the spatial or temporal saliency
maps alone.

As suggested by Table I, the performance of the spatial
saliency is closer to that of the spatiotemporal saliency com-
pared with that of the temporal saliency. This is not surprising
because many regions of interests in a video sequence are also
of interests in individual frames. On the other hand, salient
motion from the temporal saliency map can enhance certain
salient regions in the spatial saliency map and helps in deter-
mining the final spatiotemporal saliency map. Therefore, both
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Fig. 8. Saliency distributions at human fixation locations (narrow blue bars) and random locations (wide green bars) from different spatiotemporal saliency
models. The x- and y-axis represent the predicted saliency values from different models and histograms of the corresponding salient values, respectively.

spatial and temporal saliency contribute to the overall spa-
tiotemporal saliency, as quantitatively indicated in Table I.

C. Experiment 2

In this experiment, we compare the proposed STUW
algorithm with existing ones. In addition to STUW,
three state-of-the-art spatiotemporal saliency models are
under comparison, which include self-resemblance-based
model (SR) [32], surprise-based model (Surprise) [19], and
phase-based model (MRS) [18]. In addition, we also include a
recent context-aware saliency detection model for still images
(CA) [38]. The source code of all four models is available at
their public websites. The experimental results from different
existing models are shown in Figs. 8–10 and Table II.

From Fig. 8, it can be seen that the difference between
the saliency distributions at fixations and random locations
computed from the proposed STUW algorithm is much larger
than those from the other models. This suggests that the
proposed STUW algorithm can better discriminate human
fixations from random locations. This is confirmed by the
ROC curves given in Fig. 9, where the ROC curve of the
proposed STUW algorithm appears to be much higher, espe-
cially when the FPR is low. Furthermore, the KL distance,
AUC, and NSS values provided in Table II quantify the sig-
nificant improvement of the proposed STUW algorithm over
state-of-the-art.

The results in Table II also shows that the recent image
saliency detection model CA [38] performs similarly or even
better than the other spatiotemporal saliency detection models
(SR, Surprise and MRS models). This is not overly surpris-
ing, given the good performance of the spatial-only saliency
detection method reported in Section III-B.

As reported in [54], most human fixation data recorded by
head-mounted eye tracking systems have strong center bias

Fig. 9. ROC comparison of spatiotemporal saliency models.

TABLE II

KL DISTANCE, AUC AND NSS COMPARISONS

OF SPATIOTEMPORAL SALIENCY MODELS

due to the following two factors: the setup of the experiments
(such as subjects being centered at the center of the display
screen), and the fact that human photographers tend to center
objects of interest. To eliminate the center bias during perfor-
mance evaluation, we further conduct comparisons by using
similar methods as in [32] and [54]. Specifically, we first
calculate the saliency distribution at the human eye fixation
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Fig. 10. Visual comparison of saliency models. Row 1: video frames with human fixation point marked with circles; Rows 2 - 6: saliency maps by SR [32],
Surprise [19], MRS [18], CA [38] and STUW, respectively.

TABLE III

KL DISTANCE AND AUC COMPARISONS OF SPATIOTEMPORAL

SALIENCY MODELS WITH SHUFFLED VIDEO FRAMES

locations at the video frames. The saliency distribution from
randomly chosen locations is computed by calculating the
saliency values at the same human fixation locations but of ran-
domly chosen video frames from the test set. The experimental
results from different models are shown in Table III, where we
can see that the overall performance of the proposed model

is again significantly better than existing models of saliency
prediction.

Fig. 10 provides several visual examples to demonstrate the
superior performance of the STUW algorithm. All saliency
models give useful predictions of visual fixations, but the SR,
Surprise and MRS models fail to clearly distinguish the fixated
object from many other objects in the background. There are
other locations with equal or higher saliency values besides
the human fixation locations in the saliency maps given by
SR, Surprise, MRS and CA models. By contrast, the saliency
values within human fixation locations are always the highest
in the corresponding spatiotemporal saliency maps created by
the STUW algorithm, as shown in the last row of Fig. 10.

The computational complexity of the current implementa-
tion of the proposed method is much higher than the existing
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methods, mainly due to the motion estimation process (optical
flow algorithm) involved. Further investigation is desired to
reduce the complexity.

IV. CONCLUSION

In this study, we have proposed a novel spatiotemporal
saliency detection model that has two major contributions.
One is the use of a psychological model of human visual
speed perception to quantify temporal saliency; the other is
the incorporation of an uncertainty-based adaptive weight-
ing approach in the fusion of spatial and temporal saliency
maps. The spatial uncertainty calculation is motivated by
Gestalt laws of proximity and continuity, while the temporal
uncertainty is determined by motion speed and local contrast
features. Experimental results demonstrate that the proposed
STUW algorithm achieves superior performance against state-
of-the-art approaches. The general framework of the proposed
method may be extended in many ways. For example, top-
down mechanisms and semantic cues may be employed to
improve the spatial and temporal saliency or the uncertainty
measurement.
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