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Abstract— Objective assessment of image quality is fundamen-
tally important in many image processing tasks. In this paper,
we focus on learning blind image quality assessment (BIQA)
models, which predict the quality of a digital image with no access
to its original pristine-quality counterpart as reference. One of
the biggest challenges in learning BIQA models is the conflict
between the gigantic image space (which is in the dimension of
the number of image pixels) and the extremely limited reliable
ground truth data for training. Such data are typically collected
via subjective testing, which is cumbersome, slow, and expensive.
Here, we first show that a vast amount of reliable training
data in the form of quality-discriminable image pairs (DIPs)
can be obtained automatically at low cost by exploiting large-
scale databases with diverse image content. We then learn an
opinion-unaware BIQA (OU-BIQA, meaning that no subjective
opinions are used for training) model using RankNet, a pairwise
learning-to-rank (L2R) algorithm, from millions of DIPs, each
associated with a perceptual uncertainty level, leading to a DIP
inferred quality (dipIQ) index. Extensive experiments on four
benchmark IQA databases demonstrate that dipIQ outperforms
the state-of-the-art OU-BIQA models. The robustness of dipIQ is
also significantly improved as confirmed by the group MAximum
Differentiation competition method. Furthermore, we extend the
proposed framework by learning models with ListNet (a listwise
L2R algorithm) on quality-discriminable image lists (DIL). The
resulting DIL inferred quality index achieves an additional
performance gain.

Index Terms— Blind image quality assessment (BIQA),
learning-to-rank (L2R), dipIQ, RankNet, quality-discriminable
image pair (DIP), gMAD.

I. INTRODUCTION

OBJECTIVELY assessing image quality is of fundamen-
tal importance due in part to the massive expansion

of online image volume. Objective image quality assess-
ment (IQA) has become an active research topic over the last
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decade, with a large variety of IQA models proposed [1], [2].
They can be categorized into full-reference models (FR, where
the reference image is fully available when evaluating a dis-
torted image) [3], reduced-reference models (RR, where only
partial information about the reference image is available) [4],
and blind/no-reference models (NR, where the reference image
is not accessible) [5]. In many real-world applications, ref-
erence images are unavailable, making blind IQA (BIQA)
models highly desirable in practice.

Many BIQA models are developed by supervised learn-
ing [6]–[14] and share a common two-stage structure:
1) perception- and/or distortion-relevant features (denoted
by x) are extracted from the test image; and 2) a quality
prediction function f (x) is learned by statistical machine
learning algorithms. The performance and robustness of these
approaches rely heavily on the quality and quantity of the
ground truth data for training. The most common type of
ground truth data is in the form of the mean opinion
score (MOS), which is the average of quality ratings given by
multiple subjects. Therefore, these models are often referred
to as opinion-aware BIQA (OA-BIQA) models and may incur
the following drawbacks. First, collecting MOS via subjective
testing is slow, cumbersome, and expensive. As a result, even
the largest publicly available IQA database, TID2013 [15],
provides only 3, 000 images with MOSs. This limited num-
ber of training images is deemed extremely sparsely distrib-
uted in the entire image space, whose dimension equals the
number of pixels and is typically in the order of millions.
As such, the generalizability of BIQA models learned from
small training samples is questionable on real-world images.
Second, among thousands of sample images, only a few dozen
source reference images can be included, considering the
combinations of reference images, distortion types and levels.
For example, the TID2013 database [15] includes 25 source
images only. It is extremely unlikely that this limited number
of reference images sufficiently represent the variations that
exist in real-world images. Third, since these BIQA models
are trained with individual images to make independent quality
predictions, the cost function is blind to the relative perceptual
order between images. As a result, the learned models are
weak at ordering images with respect to their perceptual
quality.

In this paper, we show that a vast amount of reliable training
data in the form of so-called quality-discriminable image
pairs (DIP) can be generated by exploiting large-scale data-
bases with diverse image content. Each DIP is associated with
a perceptual uncertainty measure to indicate the confidence
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level of its quality discriminability. We show that such DIPs
can be generated at very low cost without resorting to subjec-
tive testing. We then employ RankNet [16], a neural network-
based pairwise learning-to-rank (L2R) algorithm [17], [18],
to learn an opinion-unaware BIQA (OU-BIQA, meaning
that no subjective opinions are used for training) model by
incorporating the uncertainty measure into the loss function.
Extensive experiments on four benchmark IQA databases
demonstrate that the DIP inferred quality (dipIQ) indices
significantly outperform previous OU-BIQA models. We also
conduct another set of experiments in which we train the
dipIQ indices using different feature representations as inputs
and compare them with OA-BIQA models using the same
representations. The generalizability and robustness of dipIQ
are improved across all four IQA databases and verified by
the group MAximum Differentiation (gMAD) competition
method [19], which examines image pairs optimally selected
from the Waterloo Exploration Database [20]. Furthermore,
we extend the proposed pairwise L2R approach for
OU-BIQA to a listwise L2R one by evoking ListNet [21]
(a listwise L2R extension of RankNet [16]) and transforming
DIPs to quality-discriminable image lists (DIL) for training.
The resulting DIL inferred quality (dilIQ) index leads to an
additional performance gain.

The remainder of the paper is organized as follows.
BIQA models and typical L2R algorithms are reviewed and
categorized in Section II. The proposed dipIQ approach is
introduced in Section III. Experimental results using dipIQ on
four benchmark IQA databases compared with state-of-the-art
BIQA models are presented in Section IV, followed by an
extension to the dilIQ model in Section V. We conclude the
paper in Section VI.

II. RELATED WORK

We first review existing BIQA models according to their
two-stage structure: feature extraction and quality prediction
model learning. We then review typical L2R algorithms.
Details of RankNet [16] are provided in Section III.

A. Existing BIQA Models

From the feature extraction point of view, three types
of knowledge can be exploited to craft useful features for
BIQA. The first is knowledge about our visual world that
summarizes the statistical regularities of undistorted images.
The second is knowledge about degradation, which can then
be explicitly taken into account to build features for particular
artifacts, such as blocking [22]–[24], blurring [25]–[27] and
ringing [28]–[30]. The third is knowledge of the human visual
system (HVS) [31], namely perceptual models derived from
visual physiological and psychophysical studies [32]–[35].
Natural scene statistics (NSS), which seek to capture the
natural statistical behavior of images, embody the three-fold
modeling in a rather elegant way [5]. NSS can be extracted
directly in the spatial domain or in transform domains such as
DFT, DCT, and wavelets [36], [37].

In the spatial domain, edges are presumably the most
important image features. The edge spread can be used to

detect blurring [38], [39], and the intensity variance in smooth
regions close to edges can indicate ringing artifacts [28].
Step edge detectors that operate at 8 × 8 block boundaries
measure the severity of discontinuities caused by JPEG com-
pression [22]. The sample entropy of intensity histograms is
used to identify image anisotropy [40], [41]. The responses
of image gradients and the Laplacian of Gaussian operators
are jointly modeled to describe the destruction of statistical
naturalness of images [12]. The singular value decomposition
of local image gradient matrices may provide a quantitative
measure of image content [42]. Mean-subtracted and contrast-
normalized pixel value statistics have also been modeled using
a generalized Gaussian distribution (GGD) [8], [43]–[45],
inspired by the adaptive gain control mechanism seen in
neurons [33].

Statistical modeling in the wavelet domain resembles the
early visual system [32], and natural images exhibit sta-
tistical regularities in the wavelet space. Specifically, it is
widely acknowledged that the marginal distribution of wavelet
coefficients of a natural image (regardless of content) has
a sharp peak near zero and heavier than Gaussian tails.
Therefore, statistics of raw [4], [6], [46], [47] and normal-
ized [48], [49] wavelet coefficients, and wavelet coefficient
correlations in the neighborhood [10], [29], [50]–[52] can be
individually or jointly modeled as image naturalness mea-
surements. The phase information of wavelet coefficients, for
example expressed as the local phase coherence, is exploited
to describe the perception of blur [26] and sharpness [53].

In the DFT domain, blur kernels can be efficiently esti-
mated [50], [51], [54] to quantify the degree of image blurring.
The regular peaks at feature frequencies can be used to identity
blocking artifacts [23], [55]. Moreover, it is generally hypothe-
sized that most perceptual information in an image is stored in
the Fourier phase rather than the Fourier amplitude [56], [57].
Phase congruency [58] is such a feature that identifies per-
ceptually significant image features at spatial locations where
Fourier components are maximally in-phase [40].

In the DCT domain, blocking artifacts can be identified
in a shifted 8 × 8 block [24]. The ratio of AC coefficients
to DC components can be interpreted as a measure of local
contrast [59]. The kurtosis of AC coefficients can be used to
quantify the structure statistics. In addition, AC coefficients
can also be jointly modeled using a GGD [7].

There is a growing interest in learning features for BIQA.
Ye et al. learned quality filters on image patches using
K-means clustering and adopted filter responses as features [9].
They then took one step further by supervised filter learn-
ing [45]. Xue et al. [60] proposed a quality-aware clustering
scheme on the high frequencies of raw patches, guided by
an FR-IQA measure [61]. Kang et al. investigated a convolu-
tional neural network to jointly learn features and nonlinear
mappings for BIQA [62].

From the model learning perspective, SVR [63], [64] is the
most commonly used tool to learn f (x) for BIQA [6], [9],
[10], [12], [45], [52]. The capabilities of neural networks to
pre-train a model without labels and to easily scale up have
also been exploited for this purpose [40], [47], [51], [62].
Another typical quality regression is the example-based
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method, which predicts the test image quality score using the
weighted average of training image quality scores, where the
weight encodes the perceptual similarity between the test and
training images [14], [52], [60]. Saad et al. [7], [59] jointly
modeled x and MOS using a multivariate Gaussian distribu-
tion and performed prediction by maximizing the conditional
probability P(x|MOS). Similar probabilistic modeling strate-
gies have been investigated [43], [65]. Pairwise L2R algo-
rithms have also been used to learn BIQA models [66], [67].
However, in these methods, DIP generation relies solely on
MOS availability, which limits the number of DIPs produced.
Moreover, their performance is inferior to that of existing
BIQA methods. Other advanced learning algorithms include
topic modeling [68], Gaussian process [51], and multi-kernel
learning [67], [69].

B. Existing L2R Algorithms

Existing L2R algorithms can be broadly classified into three
categories based on the training data format and loss function:
pointwise, pairwise, and listwise approaches. An excellent
survey of L2R algorithms can be found in [17]. Here we only
provide a brief overview.

Pointwise approaches assume that each instance’s impor-
tance degree is known. The loss function usually examines
the prediction accuracy of each individual instance. In an early
attempt on L2R, Fuhr [70] adopted a linear regression with a
polynomial feature expansion to learn the score function f (x).
Cossock and Zhang [71] utilized a similar formulation with
some theoretical justifications for the use of the least squares
loss function. Nallapati [72] formulated L2R as a classification
problem and investigated the use of maximum entropy and
support vector machines (SVMs) to classify each instance into
two classes—relevant or irrelevant. Ordinal regression-based
pointwise L2R algorithms have also been proposed such as
PRanking [73] and SVM-based large margin principles [74].

Pairwise approaches assume that the relative order between
two instances is known or can be inferred from other ground
truth formats. The goal is to minimize the number of misclas-
sified instance pairs. In the extreme case, if all instance pairs
are correctly classified, they will be correctly ranked [17].
In RankSVM [75], Joachims creatively generated training
pairs from clickthrough data and reformulated SVM to learn
the score function f (x) from instance pairs. Proposed in 2005,
RankNet [16] was probably the first L2R algorithm used
by commercial search engines, which had a typical neural
network with a weight-sharing scheme forming its skeleton.
Tsai et al. [76] replaced RankNet’s loss function [16] with a
fidelity loss originating from quantum physics. In this paper,
RankNet is adopted as the default pairwise L2R algorithm
to learn OU-BIQA models for reasons that will be described
later. RankBoost [77] is another well-known pairwise L2R
algorithm based on AdaBoost [78] with an exponential
loss.

Listwise approaches provide the opportunity to directly
optimize ranking performance criteria [17]. Representa-
tive algorithms include SoftRank [79], SVMmap [80], and
RankGP [81]. Another subset of listwise approaches choose

to optimize listwise ranking losses. For example, as a direct
extension of RankNet, ListNet [21] duplicates RankNet’s
structure to accommodate an instance list as input and opti-
mizes a ranking loss based on the permutation probability
distribution [21]. In this paper, we also employ ListNet to learn
OU-BIQA models as an extension of the proposed pairwise
L2R approach.

III. PROPOSED PAIRWISE L2R APPROACH FOR OU-BIQA

In this section, we elaborate the proposed pairwise L2R
approach to learn OU-BIQA models. First, we propose an
automatic DIP generation engine. Each DIP is associated with
an uncertainty measure to quantify the confidence level of its
quality discriminability. Second, we detail RankNet [16] and
extend its capability to learn from the generated DIPs with
uncertainty.

A. DIP Generation

Our automatic DIP generation engine is described as
follows. We first choose three best-trusted FR-IQA models,
namely MS-SSIM [82], VIF [83], and GSMD [84]. A logistic
nonlinear function suggested in [85] is adopted to map pre-
dictions of the three models to the MOS scale of the LIVE
database [86]. After that, the score range of the three models
roughly spans [0, 100], where higher values indicate better
perceptual quality. We associate each candidate image pair
with a nonnegative T , which is equal to the smallest score
difference of the three FR models. Intuitively, the perceptual
uncertainty level of quality discriminability should decrease
monotonically with the increase of T . By varying T , we can
generate DIPs with different uncertainty levels. To quantify
the level of uncertainty, we employ a raised-cosine function
given by

U(T ) =
⎧
⎨

⎩

1
2

(

1 + cos

(
πT

Tc

))

if T ≤ Tc

0 otherwise ,

(1)

where U(T ) lies in [0, 1], with a higher value indicating a
greater degree of uncertainty and Tc is a constant, above which
the uncertainty goes to zero. In the current implementation,
we set Tc = 20, whose legitimacy can be validated from
two sources. First, the average standard deviation of MOSs on
LIVE is around 9, which is approximately half of Tc, therefore
guaranteeing the perceived discriminability of two images.
Second, based on the subjective experiments conducted by
Gao et al. [67] on LIVE, the consistency between subjects
on the relative quality of one pair increases with the absolute
difference and, when it is larger than 20, the consistency
approaches 100%. Fig. 1 shows the shape of the uncertainty
function as a function of T and some representative DIPs,
where the left images have better quality in terms of the
three chosen FR-IQA models with T > 0. All the shown
DIPs are generated from the training image set that will be
described later. It is clear that setting T close to zero produces
the highest level of uncertainty of quality discriminability.
Careful inspection of Fig. 1(a) and Fig. 1(b) reveals that
the uncertainty manifests itself in two ways. First, the right
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Fig. 1. Illustration of the perceptual uncertainty of quality discriminability of DIPs as a function of T . The left images of all DIPs have better quality in
terms of the three FR-IQA models with T > 0. However, the quality discriminability differs significantly. All images are originated from the 700 training
images and cropped for better visibility. (a)–(f) DIPs with different levels of uncertainty.

image in Fig. 1(a) has better perceived quality to many human
observers compared with the left one, which disagrees with
the three FR-IQA models. Second, both images in Fig. 1(b)
have distortions that are barely perceived by the human eye.
In other words, they have very similar perceptual quality.
The perceptual uncertainty generally decreases if T increases
and when T > 20, the DIP is clearly discriminable, further
justifying the selection of Tc = 20.

B. RankNet [16]

Given a number of DIPs, a pairwise L2R algorithm would
make use of their perceptual order to learn quality models
while taking the inherent perceptual uncertainty into account.
Here, we revisit RankNet [16], a pairwise L2R algorithm
that was the first of its kind used by commercial search

engines [17]. We extend it to learn from DIPs associated
with uncertainty. Fig. 2 shows RankNet’s architecture, which
is based on classical neural networks and has two parallel
streams to accommodate a pair of inputs. The two-stream
weights are shared, which is achieved by using the same
initializations and the same gradients during backpropaga-
tion [16]. The quality prediction function f (x), namely the
dipIQ index, is implemented by one of the streams, and the
loss function is defined on a pair of images with the help
of f . Specifically, let f (xi ) and f (x j ) be the output of the
first and second streams, whose difference is converted to a
probability using

Pij ( f ) = exp
(

f (xi ) − f (x j )
)

1 + exp
(

f (xi ) − f (x j )
) , (2)
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Fig. 2. The architecture of dipIQ based on RankNet [16]. (a)–(f) DIPs with
different levels of uncertainty.

based on which we define the cross entropy loss as

L( f ; xi , x j , P̄i j ) = −P̄i j log Pij − (1 − P̄i j ) log(1 − Pij )

= −P̄i j
(

f (xi ) − f (x j )
)

+ log
(
1 + exp

(
f (xi ) − f (x j )

))
, (3)

where P̄i j is the ground truth label associated with the training
pair, consisting of the i -th and j -th images. In the case of DIPs
described in the Section III-A, P̄i j is always 0 or 1, indicating
that the quality of the i -th image is worse or better than the
j -th one. Within the mini-batch stochastic gradient minimiza-
tion framework, we define the batch-level loss function using
the perceptual uncertainty of each DIP as a weighting factor

Lb( f ) =
∑

〈i, j 〉∈B
(1 − Uij )L( f ; xi , x j , P̄i j ), (4)

where B is the batch containing the DIP indices currently
being trained. As Eq. (4) makes clear, DIPs with higher
uncertainty contribute less to the overall loss. With some
derivations, we obtain the gradient of Lb with respect to the
model parameters collectively denoted by w as follows

∂Lb( f )

∂w
=

∑

〈i, j 〉∈B

(

−P̄i j + exp
(

f (xi ) − f (x j )
)

1 + exp
(

f (xi ) − f (x j )
)

)

×
(

1 − Uij

) (
∂ f (xi )

∂w
− ∂ f (x j )

∂w

)

. (5)

In the case of a linear dipIQ containing no hidden layers and
no nonlinear activations, Eq. (3) is reduced to

L(w; xi , x j , P̄i j ) = −P̄i j

(
wT (xi − x j )

)

+ log(1 + exp(wT (xi − x j )), (6)

which is easily recognized as logistic regression. The convex-
ity of Eq. (6) ensures the global optimality of the solution.
We investigate both linear and nonlinear dipIQ cases with
the cross entropy as loss. In fact, any probability distribu-
tion measures can be adopted as alternatives. For example,

Tsai et al. [76] proposed a fidelity loss measure from quan-
tum physics. We find in our experiments that the fidelity
loss impairs performance, so we use the cross entropy loss
throughout the paper.

We select RankNet [16] as our first choice of pairwise
L2R algorithm for two reasons. First, it is capable of han-
dling a large number (millions) of training samples using
stochastic or mini-batch gradient descent algorithms. By con-
trast, the training of other pairwise L2R methods such as
RankSVM [75], even with a linear kernel, is painfully slow.
Second, since RankNet [16] embodies classical neural network
architectures, we embrace the latest advances in training deep
neural networks [87], [88] and can easily upscale the network
by adding more hidden layers to learn powerful nonlinear
quality prediction functions.

IV. EXPERIMENTS

In this section, we first provide thorough implementation
details of RankNet [16] to learn OU-BIQA models. We then
describe the experimental protocol based on which a fair
comparison is conducted between dipIQ and state-of-the-art
BIQA models. After that, we discuss how to extend the
proposed pairwise L2R approach for OU-BIQA to a listwise
one that could possibly boost the performance.

A. Implementation Details

1) Training Set Construction: We collect 840 high quality
and high resolution natural images to represent scenes we
see in the real world. They can be roughly clustered into
seven groups: human, animal, plant, landscape, cityscape, still-
life, and transportation. Sample source images are shown
in Fig. 3. We preprocess each source image by down-sampling
it using a bicubic kernel so that the maximum height or width
is 768. Following the procedures described in [19], we add
four distortion types, namely JPEG and JPEG2000 (JP2K)
compression, white Gaussian noise contamination (WN), and
Gaussian blur (BLUR), each with five distortion levels. As a
result, our training set consists of 17, 640 test images, with
840 source and 16, 800 distorted images. We randomly hold
out 140 source images and their corresponding distorted
images and use them as the validation set. For the rest
14, 700 images, we adopt the proposed DIP generation engine
to produce more than 80 million DIPs, which constitute our
training set.

2) Base Feature: We adopt CORNIA features [9] to
represent test images because they appear to be highly com-
petitive in a recent gMAD competition on the Waterloo
Exploration Database [19]. In addition, a top performing
OU-BIQA model, BLISS [89], also chooses CORNIA features
as input and trains on synthetic scores. As such, we offer
a fair testing bed to compare dipIQ learned by a pairwise
L2R approach (RankNet [16]) against BLISS [89] learned by
a regression method (SVR).

3) RankNet Instantiation: We investigate both linear and
nonlinear dipIQ models, denoted by dipIQ∗ and dipIQ, respec-
tively. The input dimension to RankNet is 20, 000, equaling
the feature dimension in CORNIA [9]. The loss layer is
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Fig. 3. Sample source images in the training set. (a) Human. (b) Animal. (c) Plant. (d) Landscape. (e) Cityscape. (f) Still-life. (g) Transportation. All images
are cropped for better visibility.

implemented by the cross entropy function in Eq. (3). For
dipIQ∗, the input layer is directly connected to the output
layer without adding hidden layers or going through nonlinear
transforms. The use of the cross entropy loss ensures the
convexity of the optimization problem. For dipIQ, we add
3 hidden layers, which have a 256 - 128 - 3 structure.
All layers are fully connected, followed by rectified linear
units (ReLU) [90] as nonlinearity activations. We choose the
node number of the third hidden layer to be 3 so that we can
visualize the 3D embedding of test images. Other choices are
somewhat ad-hoc, and a more careful exploration of alternative
architectures could potentially lead to significant performance
improvements.

The RankNet training procedure generally follows
Simonyan and Zisserman [91]. Specifically, the training is
carried out by optimizing the cross entropy function using
mini-batch gradient descent with momentum. The weights of
the two streams in RankNet are shared. The batch size is set
to 512, and momentum to 0.9. The training is regularized
by weight decay (the L2 penalty multiplier set to 5 × 10−4).
The learning rate is fixed to 10−4. Since we have a plenty
of DIPs (more than 80 million) for training, each DIP is
exposed to the learning algorithm once and only once. The
learning stops when the entire set of DIPs have been swept.
The weights that achieve the lowest validation set loss are
used for testing.

B. Experimental Protocol

1) Databases: Four IQA databases are used to com-
pare dipIQ with state-of-the-art BIQA measures. They are
LIVE [86], CSIQ [92], TID2013 [15] and Waterloo Explo-
ration Database [20]. The first three are small subject-rated
IQA databases that are widely adopted to benchmark objective
IQA models. Each test image is associated with an MOS to

represent its perceptual quality. In our experiments, we only
consider distortion types that are shared by all four databases,
namely JP2K, JPEG, WN, and BLUR. As a result, LIVE [86],
CSIQ [92], and TID2013 [15] contain 634, 600, and 500 test
images, respectively. The Exploration database contains
4, 744 reference and 94, 880 distorted images. Although the
MOS of each test image is not available in the Exploration
database, innovative evaluation criteria are employed to com-
pare BIQA measures as will be specified next.

2) Evaluation Criteria: We use five evaluation criteria to
compare the performance of BIQA measures. The first two
are included in previous tests carried out by the video quality
experts group (VQEG) [93]. Others are introduced in [20] to
take into account image databases without MOS. Details are
given as follows.

• Spearman’s rank-order correlation coefficient (SRCC) is
defined as

SRCC = 1 − 6
∑

i d2
i

N(N2 − 1)
, (7)

where N is the number of images in a database and di is
the difference between the i -th image’s ranks in the MOS
and model prediction.

• Pearson linear correlation coefficient (PLCC) is computed
by

PLCC =
∑

i (si − s̄)(qi − q̄)
√∑

i (si − s̄)2
√∑

i (qi − q̄)2
, (8)

where si and qi stand for the MOS and model prediction
of the i -th image, respectively.

• Pristine/distorted image discriminability test (D-test) con-
siders pristine and distorted images as two distinct
classes, and aims to measure how well an IQA model
is able to separate the two classes. More specifically,
indices of pristine and distorted images are grouped into
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sets Sp and Sd , respectively. A threshold T is adopted
to classify images such that S′

p = {i |qi > T } and
S′

d = {i |qi ≤ T }. The average correct classification rate
is defined as

R = 1

2

( |Sp ∩ S′
p|

|Sp| + |Sd ∩ S′
d |

|Sd |

)

. (9)

The value of T should be optimized to yield the
maximum correct classification rate, which results in a
discriminability index

D = max
T

R(T ). (10)

D lies in [0, 1] with a larger value indicating a better
separability between pristine and distorted images.

• Listwise ranking consistency test (L-test) evaluates the
robustness of IQA models when rating images with the
same content and the same distortion type but different
distortion levels. The assumption is that the quality of
an image degrades monotonically with the increase of
the distortion level for any distortion type. Given a
database with S source images, K distortion types and
Q distortion levels, the average SRCC is used to quantify
the ranking consistency between distortion levels and
model predictions

Ls = 1

SK

S∑

i=1

K∑

j=1

SRCC(li j , qi j ), (11)

where li j and qi j represent the distortion levels and the
corresponding distortion/quality scores given by a model
to the set of images that are from the same (i -th) source
image and have the same ( j -th) distortion type.

• Pairwise preference consistency test (P-test) compares the
performance of IQA models on a number of DIPs, whose
generation is similar to what is described Section III-A
but with a stricter rule [20]. A good IQA model should
give concordant preferences with respect to DIPs. Assum-
ing that an image database contains M DIPs and that the
number of concordant pairs of an IQA model (meaning
that the model predicts the correct preference) is Mc,
the pairwise preference consistency ratio is defined as

P = Mc

M
. (12)

P lies in [0, 1] with a higher value indicating better
performance. We also denote the number of incorrect
preference predictions as Mi = M − Mc.

SRCC and PLCC are applied to LIVE [86], CSIQ [92],
and TID2013 [15], while the D-test, L-test, and P-test are
applied to the Waterloo Exploration Database. Note that the
use of PLCC requires a nonlinear function q̂ = (β1 −β2)/(1+
exp(−(q − β3)/|β4|)) + β2 to map raw model predictions to
the MOS scale. Following Mittal et al. [8] and Ye et al. [89],
in our experiments we randomly choose 80% reference images
along with their corresponding distorted versions to estimate
{βi |i = 1, 2, 3, 4}, and use the rest 20% images for testing.
This procedure is repeated 1, 000 times and the median SRCC
and PLCC values are reported.

TABLE I

MEDIAN SRCC AND PLCC RESULTS ACROSS
1, 000 SESSIONS ON LIVE [86]

TABLE II

MEDIAN SRCC AND PLCC RESULTS ACROSS
1, 000 SESSIONS ON CSIQ [86]

C. Experimental Results

1) Comparison With FR and OU-BIQA Models: We com-
pare dipIQ with two well-known FR-IQA models: PSNR
(whose largest value is clipped at 60 dB in order to perform
a reasonable parameter estimation) and SSIM [94] (whose
implementation used in the paper involves a down-sampling
process [95]) and previous OU-BIQA models, including
QAC [60], NIQE [43], ILNIQE [65], and BLISS [89]. The
implementations of QAC [60], NIQE [43], and ILNIQE [65]
are obtained from the original authors. To the best of our
knowledge, the complete implementation of BLISS [89] is not
publicly available. Therefore, to make a fair comparison we
train BLISS [89] on the same 700 reference images and their
distorted versions, which have been used to train dipIQ. The
labels are synthesized using the method in [89]. The training
toolbox and parameter settings are inherited from the original
paper [89].

Tables I, II, and III list comparison results between dipIQ
and existing OU-BIQA models in terms of median SRCC and
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Fig. 4. The noisiness of the synthetic score [89]. (a) Synthetic score = 10. (b) Synthetic score = 10. (c) Synthetic score = 40. (a) has worse perceptual
quality than (b), which in turn has approximately the same quality compared with (c). Both two cases are in disagreement with the synthetic score [89].
Images are selected from the training set.

TABLE III

MEDIAN SRCC AND PLCC RESULTS ACROSS
1, 000 SESSIONS ON TID2013 [15]

PLCC values on LIVE [86], CSIQ [92], and TID2013 [15],
respectively. Both dipIQ∗ and dipIQ outperform all previous
OU-BIQA models on LIVE [86] and CSIQ [92], and are
comparable to ILNIQE [65] on TID2013 [15]. Although both
dipIQ∗ and BLISS [89] learn a linear prediction function
using CORNIA features as inputs [9], we observe consis-
tent performance gains of dipIQ∗ across all three databases
over BLISS [89]. This may be because dipIQ∗ learns from
more reliable data (DIPs) with uncertainty weighting, whereas
the training labels (synthetic scores) for BLISS are noisier,
as exemplified in Fig. 4. It is not hard to observe that
Fig. 4(a) has clearly worse perceptual quality than Fig. 4(b),
which in turn has approximately the same quality compared
with Fig. 4(c). Both two cases are in disagreement with the
synthetic score [89].

To ascertain that the improvement of dipIQ is statistically
significant, we carry out a two sample T-test (with a 95%
confidence) between PLCC values obtained by different
models on LIVE [86]. After comparing every possible pairs
of OU-BIQA models, the results are summarized in Table V,
where a symbol “1” means the row model performs signifi-
cantly better than the column model, a symbol “0” means the
opposite, and a symbol “-” indicates that the row and column

TABLE IV

THE D-TEST, L-TEST AND P-TEST RESULTS ON THE WATERLOO
EXPLORATION DATABASE [20].

models are statistically indistinguishable. It can be observed
that dipIQ is statistically better than dipIQ∗, which is better
than all previous OU-BIQA models.

Table IV shows the results on the Waterloo Explo-
ration Database. dipIQ∗ and dipIQ outperform all previous
OU-BIQA models in the D-test and P-test, and are compet-
itive in the L-test, whose performance is slightly inferior to
NIQE [43] and ILNIQE [65]. By learning from examples with
a variety of image content, dipIQ is able to crush the number
of incorrect preference predictions in the P-test down to around
130, 000 out of more than 1 billion candidate DIPs.

In order to gain intuitions on why the generalizability of
dipIQ is excellent even without MOS for training, we visualize
the 3D embedding of the LIVE database [86] in Fig 5,
using the learned 3D features from the third hidden layer
of dipIQ. We can see that the learned representation is able
to cluster test images according to the distortion type, and
meanwhile align them with respect to their perceptual quality
in a meaningful way, where high quality images are clamped
together regardless of image content.

2) Comparison With OA-BIQA Models: In the second set
of experiments, we train dipIQ using different feature rep-
resentations as inputs and compare with OA-BIQA models
using the same representations and MOS for training.
BRISQUE [8] and DIIVINE [10] are selected as represen-
tative features extracted from the spatial and wavelet domain,
respectively. We also compare dipIQ with CORNIA [9], whose
features are adopted as the default input to dipIQ. We re-train
BRISQUE [8], DIIVINE [10], and CORNIA [9] on the
LIVE database, whose learning tools and parameter settings
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Fig. 5. 3D embedding of the LIVE database [86]. (a) Color encodes distortion type. (b) Color encodes quality; the warmer, the better. The learned features
from the third hidden layer of dipIQ are able to cluster images based on distortion types and align them in a perceptually meaningful way.

TABLE V

STATISTICAL SIGNIFICANCE MATRIX BASED ON THE HYPOTHESIS TESTING. A SYMBOL “1” MEANS THAT THE PERFORMANCE
OF THE ROW ALGORITHM IS STATISTICALLY BETTER THAN THAT OF THE COLUMN ALGORITHM, A SYMBOL “0”

MEANS THAT THE ROW ALGORITHM IS STATISTICALLY WORSE, AND A SYMBOL “−” MEANS THAT THE

ROW AND COLUMN ALGORITHMS ARE STATISTICALLY INDISTINGUISHABLE

TABLE VI

MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS, TRAINING

ON LIVE [86] AND TESTING ON CSIQ [92]. THE SUPERSCRIPTS
B AND D INDICATE THAT THE INPUT FEATURES

OF DIPIQ ARE FROM BRISQUE [8] AND

DIIVINE [10], RESPECTIVELY

follow their respective papers. We adjust the dimension of
the input layer of dipIQ to accommodate features of different
dimensions and train them on the 700 reference images and
their distorted versions, as described in IV-A. All models
are tested on CSIQ [92], TID2013 [15] and the Exportation
database [20]. From Tables VI, VII, and VIII, we observe

TABLE VII

MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS,
TRAINING ON LIVE [86] AND TESTING ON TID2013 [15]

that dipIQ consistently performs better than the corresponding
OA-BIQA model on CSIQ [92] and the Exploration database,
and is comparable on TID2013 [15]. The reason we do not
obtain noticeable performance gains on TID2013 [15] may be
that TID2013 [15] has 18 references images originated from
LIVE [86], based on which the OA-BIQA models have been
trained. This creates dependencies between training and testing
sets. We may also draw conclusions about the effectiveness
of the feature representations based on their performance
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TABLE VIII

THE D-TEST, L-TEST AND P-TEST RESULTS ON THE EXPLORATION
DATABASE [20], TRAINING ON LIVE [86]

Fig. 6. gMAD competition between dipIQB and BRISQUE [8]. (a) best
BRISQUE for fixed dipIQB . (b) worst BRISQUE for fixed dipIQB . (c) best
dipIQB for fixed BRISQUE. (d) worst dipIQB for fixed BRISQUE.

under the same pairwise L2R framework: generally speaking,
CORNIA [9] features > BRISQUE [8] features >
DIIVINE [10] features.

We further compare dipIQB and BRISQUE [8] using the
gMAD competition methodology on the Waterloo Exploration
Database. Specifically, we first find a pair of images that have
the maximum and minimum dipIQB values from a subset of
images in the Exploration database, where BRISQUE [8] rates
them to have the same quality. We then repeat this procedure,
but with the roles of dipIQB and BRISQUE [8] exchanged.
The two image pairs are shown in Fig. 6, from which we
conclude that images in the first row exhibits approximately
the same perceptual quality (in agreement with dipIQB) and
those in the second row has drastically different perceptual
quality (in disagreement with BRISQUE [8]). This verifies
that the robustness of dipIQB is significantly improved over
BRISQUE [8] using the same feature representations and MOS
for training. Similar gMAD competition results are obtained
across all quality levels, and for dipIQD versus DIIVINE [10]
and dipIQ versus CORNIA [9].

In summary, the proposed pairwise L2R approach is proved
to learn OU-BIQA models with improved generalizability and
robustness compared with OA-BIQA models using the same
feature representations and MOS for training.

V. LISTWISE L2R APPROACH FOR OU-BIQA

In this section, we extend the proposed pairwise L2R
approach for OU-BIQA to a listwise L2R one. Specifically,
we first construct three-element DILs by concatenating DIPs.
For example, given two DIPs 〈i, j〉 and 〈 j, k〉 with the same
level of uncertainty, we create a list 〈i, j, k〉 with the ground
truth label P̄i j k = 1, indicating that the quality of the i -th
image is better than the j -th image, whose quality is better
than the k-th image. The uncertainty level is transferred as
well. We then employ ListNet [21], a listwise L2R extension
of RankNet [16] to learn OU-BIQA models. The major differ-
ences between ListNet and RankNet are twofold. First, ListNet
can have multiple streams with the same weights to accom-
modate a list of inputs, where each stream is implemented
by a classical neural network architecture similar to RankNet,
as shown in Fig. 2. In this paper, we instantiate a three-
stream ListNet to fit three-element DILs. Second, the loss
function of ListNet is defined using the concept of permutation
probability. More specifically, we define a permutation π =
〈π(1), π(2), . . . , π(n)〉 on a list of n instances as a bijection
from {1, 2, .., n} to itself, where π( j) denotes the instance
at position j in the permutation. The set of all possible
permutations of n instances is termed as �. We define the
probability of permutation π given the list of predicted scores
{ f (xi )} as

Pπ ( f ) =
n∏

j=1

exp
(

f (xπ( j ))
)

n∑

k= j
exp

(
f (xπ(k))

)
, (13)

which satisfies Pπ( f ) > 0 and
∑

π∈� Pπ ( f ) = 1 as proved
in [21]. The loss function can then be defined as the cross
entropy function between the ground truth and permutation
probabilities

L( f ; {xi}, {P̄π }) = −
∑

π∈�

P̄π log(Pπ). (14)

When n = 2, the loss function of ListNet [21] in Eq. (14)
becomes equivalent to that of RankNet [16] in Eq. (3). In the
case of three-element DILs, we have P̄π = 1, if π = 〈i, j, k〉
and P̄π = 0 otherwise. Therefore, the loss function in Eq. (14)
can be simplified as

L( f ; xi , x j , xk, P̄i j k)

= − f (xi ) − f (x j ) + log

⎛

⎝
∑

l∈{i, j,k}
exp ( f (xl))

⎞

⎠

+ log

⎛

⎝
∑

l∈{ j,k}
exp ( f (xl))

⎞

⎠ , (15)

based on which we define the batch-level loss as

Lb( f ) =
∑

〈i, j,k〉∈B
(1 − Uijk)L( f ; xi , x j , xk, P̄i j k ), (16)

where Uijk is the uncertainty level of the list, transferred from
the corresponding DIPs. The gradient of Eq. (16) w.r.t. the
parameters w can be easily derived. Note that ListNet [21]
does not add new parameters.
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TABLE IX

MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS
ON LIVE [86], USING LISTNET [21] FOR TRAINING

TABLE X

MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS

ON CSIQ [92], USING LISTNET [21] FOR TRAINING

TABLE XI

MEDIAN SRCC AND PLCC RESULTS ACROSS 1, 000 SESSIONS
ON TID2013 [15], USING LISTNET [21] FOR TRAINING

TABLE XII

THE D-TEST, L-TEST AND P-TEST RESULTS ON THE EXPLORATION

DATABASE [20], USING LISTNET [21] FOR TRAINING

We generate 50 million DILs from the available DIPs as
the training data for ListNet [21]. The training procedure is
exactly the same as training RankNet [16]. The training stops
when the entire set of image lists have been swept once. The
weights that achieve the lowest validation set loss are used for
testing.

We list the comparison results between dilIQ trained
by ListNet [21] and the baseline dipIQ on LIVE [86],
CSIQ [92], TID2013 [15], and the Exploration database
in Tables IX, X, XI, and XII, respectively. Remarkable per-
formance improvements have been achieved on CSIQ and
TID2013. This may be because the ranking position infor-
mation is made explicit to the learning process. dilIQ is
comparable to dipIQ on LIVE and the Exploration database.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an OU-BIQA model,
namely dipIQ, using RankNet [16]. The input to the dipIQ
training model are an enormous number of DIPs, not obtained
by expensive subjective testing but automatically generated

with the help of most trusted FR-IQA models at low cost.
Extensive experimental results demonstrate the effectiveness of
the proposed dipIQ indices with higher accuracy and improved
robustness in content variations. We also learn an OU-BIQA
model, namely dilIQ, using a listwise L2R approach, which
achieves an additional performance gain.

The current work opens the door to a new class of
OU-BIQA models and can be extended in many ways. First,
novel image pair and list generation engines may be developed
to account for situations that reference images are not avail-
able (or do not ever exist). Second, advanced L2R algorithms
are worth exploring to improve the quality prediction perfor-
mance. Third, in practice, a pair of images may be regarded
as having indiscriminable quality. Such knowledge could be
obtained either from subjective testing (e.g., paired comparison
between images) or from the image source (e.g., two pristine
images acquired from the same source), and is informative
in constraining the behavior of an objective quality model.
The current learning framework needs to be improved in
order to learn from such quality-indiscriminable image pairs.
Fourth, given the powerful DIP generation engine developed
in the current work and the remarkable success of recent
deep convolutional neural networks, it may become feasible
to develop end-to-end BIQA models that bypass the feature
extraction process and achieve even stronger robustness and
generalizability.
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[28] S. Oğuz, Y. Hu, and T. Q. Nguyen, “Image coding ringing artifact
reduction using morphological post-filtering,” in Proc. IEEE Workshop
Multimedia Signal Process., Jun. 1998, pp. 628–633.

[29] H. R. Sheikh, A. C. Bovik, and L. Cormack, “No-reference quality
assessment using natural scene statistics: JPEG2000,” IEEE Trans.
Image Process., vol. 14, no. 1, pp. 1918–1927, Nov. 2005.

[30] H. Tao, N. Klomp, and I. Heynderickx, “A no-reference metric for
perceived ringing artifacts in images,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 4, pp. 529–539, Apr. 2010.

[31] B. A. Wandell, Foundations of Vision. Sunderland, MA, USA: Sinauer
Associates, 1995.

[32] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” J. Physiol.,
vol. 160, no. 1, pp. 106–154, 1962.

[33] D. J. Heeger, “Normalization of cell responses in cat striate cortex,”
J. Neurosci., vol. 9, no. 2, pp. 181–197, 1992.

[34] D. J. Field, “What is the goal of sensory coding?” Neural Com-
put., vol. 6, pp. 559–601, Jul. 1994. [Online]. Available: http://portal.
acm.org/citation.cfm?id=188132.188136.

[35] W. S. Geisler and R. L. Diehl, “Bayesian natural selection and the
evolution of perceptual systems,” Philos. Trans. Roy. Soc. London B,
Biologic. Sci., vol. 357, no. 1420, pp. 419–448, Apr. 2002.

[36] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multiscale transforms,” IEEE Trans. Inf. Theory, vol. 38,
no. 2, pp. 587–607, Mar. 1992.

[37] S. G. Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 11, no. 7, pp. 674–693, Jul. 1989.

[38] X. Li, “Blind image quality assessment,” in Proc. IEEE Int. Conf. Image
Process., Jun. 2002, pp. 449–452.

[39] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “Perceptual blur
and ringing metrics: Application to JPEG2000,” Signal Process., Image
Commun., vol. 19, no. 2, pp. 163–172, Feb. 2004.

[40] C. Li, A. C. Bovik, and X. Wu, “Blind image quality assessment using a
general regression neural network,” IEEE Trans. Neural Netw., vol. 22,
no. 5, pp. 793–799, May 2011.

[41] Y. Fang, K. Ma, Z. Wang, W. Lin, Z. Fang, and G. Zhai, “No-reference
quality assessment of contrast-distorted images based on natural scene
statistics,” IEEE Signal Process. Lett., vol. 22, no. 7, pp. 838–842,
Jul. 2015.

[42] X. Zhu and P. Milanfar, “Automatic parameter selection for denoising
algorithms using a no-reference measure of image content,” IEEE Trans.
Image Process., vol. 19, no. 12, pp. 3116–3132, Dec. 2010.

[43] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[44] A. Mittal, G. S. Muralidhar, J. Ghosh, and A. C. Bovik, “Blind image
quality assessment without human training using latent quality factors,”
IEEE Signal Process. Lett., vol. 19, no. 2, pp. 75–78, Feb. 2012.

[45] P. Ye, J. Kumar, L. Kang, and D. Doermann, “Real-time no-reference
image quality assessment based on filter learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2013, pp. 987–994.

[46] Z. Wang and E. P. Simoncelli, “Reduced-reference image quality assess-
ment using a wavelet-domain natural image statistic model,” Human Vis.
Electron. Imag., 2005, pp. 149–159.

[47] W. Hou, X. Gao, D. Tao, and X. Li, “Blind image quality assessment via
deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1275–1286, Jun. 2015.

[48] Q. Li and Z. Wang, “Reduced-reference image quality assessment using
divisive normalization-based image representation,” IEEE J. Sel. Topics
Signal Process., vol. 3, no. 2, pp. 202–211, Apr. 2009.

[49] A. Rehman and Z. Wang, “Reduced-reference image quality assessment
by structural similarity estimation,” IEEE Trans. Image Process., vol. 21,
no. 8, pp. 3378–3389, Aug. 2012.

[50] H. Tang, N. Joshi, and A. Kapoor, “Learning a blind measure of
perceptual image quality,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2011, pp. 305–312.

[51] H. Tang, N. Joshi, and A. Kapoor, “Blind image quality assessment
using semi-supervised rectifier networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 2877–2884.

[52] P. Ye and D. Doermann, “No-reference image quality assessment
using visual codebooks,” IEEE Trans. Image Process., vol. 21, no. 7,
pp. 3129–3138, Jul. 2012.

[53] R. Hassen, Z. Wang, and M. M. A. Salama, “Image sharpness assessment
based on local phase coherence,” IEEE Trans. Image Process., vol. 22,
no. 7, pp. 2798–2810, Jul. 2013.

[54] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 157–170.

[55] Z. Wang, H. R. Sheikh, and A. C. Bovik, “No-reference perceptual
quality assessment of JPEG compressed images,” in Proc. IEEE Int.
Conf. Image Process., vol. 1. Sep. 2002, pp. 477–480.

[56] T. Huang, J. Burnett, and A. Deczky, “The importance of phase in image
processing filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 23,
no. 6, pp. 529–542, Dec. 1975.

[57] A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,”
Proc. IEEE, vol. 69, no. 5, pp. 529–541, May 1981.

[58] P. Kovesi, “Image features from phase congruency,” J. Comput. Vis. Res.,
vol. 1, no. 3, pp. 1–26, Jun. 1999.

[59] M. A. Saad, A. C. Bovik, and C. Charrier, “A DCT statistics-based
blind image quality index,” IEEE Signal Process. Lett., vol. 17, no. 6,
pp. 583–586, Jun. 2010.

[60] W. Xue, L. Zhang, and X. Mou, “Learning without human scores for
blind image quality assessment,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 995–1002.

[61] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity
index for image quality assessment,” IEEE Trans. Image Process.,
vol. 20, no. 8, pp. 2378–2386, Aug. 2011.

[62] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural net-
works for no-reference image quality assessment,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1733–1740.

[63] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[64] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett,
“New support vector algorithms,” Neural Comput., vol. 12, no. 5,
pp. 1207–1245, May 2000.



MA et al.: DIPIQ: BIQA BY L2R DIPs 3963

[65] L. Zhang, L. Zhang, and A. C. Bovik, “A feature-enriched completely
blind image quality evaluator,” IEEE Trans. Image Process., vol. 24,
no. 8, pp. 2579–2591, Aug. 2015.

[66] L. Xu, W. Lin, J. Li, X. Wang, Y. Yan, and Y. Fang, “Rank learning on
training set selection and image quality assessment,” in Proc. IEEE Int.
Conf. Multimedia Expo, Jul. 2014, pp. 1–6.

[67] F. Gao, D. Tao, X. Gao, and X. Li, “Learning to rank for blind image
quality assessment,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 10, pp. 2275–2290, Oct. 2015.

[68] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Mach. Learn., vol. 42, no. 1, pp. 177–196, Jan. 2001.

[69] X. Gao, F. Gao, D. Tao, and X. Li, “Universal blind image quality
assessment metrics via natural scene statistics and multiple kernel
learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12,
pp. 2013–2026, Dec. 2013.

[70] N. Fuhr, “Optimum polynomial retrieval functions based on the probabil-
ity ranking principle,” ACM Trans. Inf. Syst., vol. 7, no. 3, pp. 183–204,
Jul. 1989.

[71] D. Cossock and T. Zhang, “Subset ranking using regression,” in Proc.
Conf. Learn. Theory, 2006, pp. 605–619.

[72] R. Nallapati, “Discriminative models for information retrieval,” in Proc.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 2004, pp. 64–71.

[73] K. Crammer and Y. Singer, “Pranking with ranking,” in Proc. Adv.
Neural Inf. Process. Syst., 2002, pp. 641–647.

[74] A. Shashua and A. Levin, “Ranking with large margin principle:
Two approaches,” in Proc. Adv. Neural Inf. Process. Syst., 2002,
pp. 937–944.

[75] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2002, pp. 133–142.

[76] M. F. Tsai, T. Y. Liu, T. Qin, H. H. Chen, and W. Y. Ma, “FRank:
A ranking method with fidelity loss,” in Proc. Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., 2007, pp. 383–390.

[77] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting
algorithm for combining preferences,” J. Mach. Learn. Res., vol. 4, no. 6,
pp. 170–178, Nov. 2003.

[78] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
online learning and an application to boosting,” in Proc. Eur. Conf.
Comput. Learn. Theory, 1995, pp. 23–37.

[79] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “SoftRank: Optimizing
non-smooth rank metrics,” in Proc. ACM Int. Conf. Web Search Data
Mining, 2008, pp. 77–86.

[80] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector
method for optimizing average precision,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retr., 2007, pp. 271–278.

[81] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang, “Learning to rank
for information retrieval using genetic programming,” in Proc. SIGIR
Workshop Learn. Rank Inf. Retr., 2007, pp. 1–8.

[82] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. IEEE Asilomar Conf.
Signals, Syst. Comput., Jun. 2003, pp. 1398–1402.

[83] H. R. Sheikh and A. C. Bovik, “Image information and visual
quality,” IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444,
Feb. 2006.

[84] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magni-
tude similarity deviation: A highly efficient perceptual image quality
index,” IEEE Trans. Image Process., vol. 23, no. 2, pp. 684–695,
Feb. 2014.

[85] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evalu-
ation of recent full reference image quality assessment algorithms,”
IEEE Trans. Image Process., vol. 15, no. 11, pp. 3440–3451,
Nov. 2006.

[86] H. R. Sheikh, Z. Wang, A. C. Bovik, and L. K. Cormack. Image and
Video Quality Assessment Research, LIVE, accessed on Apr. 18, 2016.
[Online]. Available: http://live.ece.utexas.edu/research/quality/

[87] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[88] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[89] P. Ye, J. Kumar, and D. Doermann, “Beyond human opinion scores:
Blind image quality assessment based on synthetic scores,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 4241–4248.

[90] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. IEEE Int. Conf. Mach. Learn., Jun. 2010,
pp. 807–814.

[91] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–14.

[92] E. C. Larson and D. M. Chandler, “Most apparent distortion:
Full-reference image quality assessment and the role of strategy,” SPIE
J. Electron. Imag., vol. 19, no. 1, pp. 1–21, Jan. 2010.

[93] VQEG. (2000). Final Report From the Video Quality Experts Group
on the Validation of Objective Models of Video Quality Assessment.
[Online]. Available: http://www.vqeg.org

[94] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[95] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. The
SSIM Index for Image Quality Assessment, accessed on Apr. 18, 2016.
[Online]. Available: https://ece.uwaterloo.ca/ z70wang/research/ssim/

Kede Ma (S’13) received the B.E. degree from
the University of Science and Technology of China,
Hefei, China, in 2012, and the M.A.Sc. degree from
the University of Waterloo, ON, Canada, where he
is currently pursuing the Ph.D. degree in electrical
and computer engineering. His research interests lie
in perceptual image processing and computational
photography.

Wentao Liu (S’15) received the B.E. and M.E.
degrees from Tsinghua University, Beijing, China,
in 2011 and 2014, respectively. He is currently
pursuing the Ph.D. degree with the Electrical and
Computer Engineering Department, University of
Waterloo, ON, Canada. His current research interests
include perceptual quality assessment of images and
videos.

Tongliang Liu received the B.Eng. degree in elec-
tronic engineering and information science from the
University of Science and Technology of China,
and the Ph.D. degree from the University of Tech-
nology Sydney. He is currently a Lecturer with
the School of Information Technologies, Faculty
of Engineering and Information Technologies, The
University of Sydney, and a Core Member with
the UBTech Sydney Artificial Intelligence Institute,
The University of Sydney. His current research
interests include statistical learning theory, computer

vision, and optimization. He has authored and co-authored over 20 research
papers, including IEEE T-PAMI, T-NNLS, T-IP, ICML, and KDD.



3964 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 8, AUGUST 2017

Zhou Wang (S’99–M’02–SM’12–F’14) received
the Ph.D. degree from The University of Texas at
Austin in 2001. He is currently a Professor with the
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. His current research
interests include image processing, coding, and qual-
ity assessment; computational vision and pattern
analysis; multimedia communications; and biomed-
ical signal processing. He has over 100 publications
in these fields with over 30 000 citations (Google
Scholar).

Dr. Wang is currently a Senior Area Editor of the IEEE TRANSACTIONS

ON IMAGE PROCESSING (since 2015), and an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
(since 2016). He was a member of the IEEE Multimedia Signal Processing
Technical Committee (2013–2015), an Associate Editor of the IEEE TRANS-
ACTIONS ON IMAGE PROCESSING (2009–2014), Pattern Recognition (since
2006), and the IEEE SIGNAL PROCESSING LETTERS (2006–2010), and a
Guest Editor of the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL

PROCESSING (2013–2014 and 2007–2009). He is a fellow of the Canadian
Academy of Engineering, and a recipient of the 2016 IEEE Signal Processing
Society Sustained Impact Paper Award, the 2015 Primetime Engineering
Emmy Award, the 2014 NSERC E.W.R. Steacie Memorial Fellowship Award,
the 2013 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE
Signal Processing Society Best Paper Award, and the 2009 Ontario Early
Researcher Award.

Dacheng Tao (F’15) is a Professor of Computer
Science and an ARC Future Fellow with the School
of Information Technologies and the Faculty of
Engineering and Information Technologies, and the
Inaugural Director of the UBTech Sydney Artificial
Intelligence Institute, The University of Sydney.
He mainly applies statistics and mathematics to
Artificial Intelligence and Data Science. His research
interests spread across computer vision, data sci-
ence, image processing, machine learning, and video
surveillance. His research results have expounded

in one monograph and over 500 publications at prestigious journals and
prominent conferences, such as the IEEE T-PAMI, T-NNLS, T-IP, JMLR,
IJCV, NIPS, CIKM, ICML, CVPR, ICCV, ECCV, AISTATS, and ICDM;
and ACM SIGKDD, with several best paper awards, such as the Best
Theory/Algorithm Paper Runner Up Award in IEEE ICDM’07, the Best
Student Paper Award in IEEE ICDM’13, the 2014 ICDM 10-Year Highest-
Impact Paper Award, and the 2017 IEEE Signal Processing Society Best Paper
Award. He received the 2015 Australian Scopus-Eureka Prize, the 2015 ACS
Gold Disruptor Award, and the 2015 UTS Vice-Chancellor’s Medal for
Exceptional Research. He is a Fellow of the OSA, IAPR and SPIE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


