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Abstract—We propose a fast multi-exposure image fusion
(MEF) method, namely MEF-Net, for static image sequences
of arbitrary spatial resolution and exposure number. We first
feed a low-resolution version of the input sequence to a fully
convolutional network for weight map prediction. We then jointly
upsample the weight maps using a guided filter. The final
image is computed by a weighted fusion. Unlike conventional
MEF methods, MEF-Net is trained end-to-end by optimizing the
perceptually calibrated MEF structural similarity (MEF-SSIM)
index over a database of training sequences at full resolution.
Across an independent set of test sequences, we find that the
optimized MEF-Net achieves consistent improvement in visual
quality for most sequences, and runs 10 to 1000 times faster than
state-of-the-art methods. The code is made publicly available at
https://github.com/makedede/MEFNet.

Index Terms—Multi-exposure image fusion, convolutional neu-
ral networks, guided filtering, computational photography.

I. INTRODUCTION

MULTI-EXPOSURE image fusion (MEF) provides a
cost-effective solution for high-dynamic-range (HDR)

imaging [1]. It takes an image sequence with different ex-
posure levels as input and produces a high-quality and low-
dynamic-range image, ready for display [2]. Research in MEF
has yielded a number of methods [2]–[8], which generate fused
images with faithful detail preservation and vivid color appear-
ance. This is mainly accomplished by a weighted summation
framework

Y =
K∑

k=1

Wk �Xk , (1)

where� denotes the Hadamard product. Wk and Xk represent
the k-th weight map and the corresponding exposure image,
respectively, Y is the fused image, and K is the number of
exposures in the input sequence. Noticeable exceptions of the
framework are optimization-based methods [6], [8], where the
fusion process is supervised by a perceptual image quality
metric [9].

Despite the demonstrated success, the high resolution of the
exposure sequence captured by commercial cameras and mo-
bile devices poses a grand challenge to existing MEF methods,
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which may require extensive computational resources and take
seconds (or even minutes) to generate the fused results. The
situation becomes even worse with the increasing number of
exposures. Algorithm acceleration through code optimization
is possible [10], [11], but it may not generalize across different
MEF methods. Another general approach to accelerate an
MEF method [12]–[14] is to downsample the input sequence,
execute the MEF operator at low resolution, and upsample
the fused image. One drawback of this approach is that the
MEF method never sees the high-resolution sequences and
therefore fails to fully reproduce the fine details, limiting the
visual sharpness of the fused images.

We aim to develop an MEF method for static scenes with
three desirable properties:

• Flexibility. It must accept input sequences of arbitrary
spatial resolution and exposure number.

• Speed. It must be fast, facilitating real-time mobile ap-
plications at high resolution.

• Quality. It must produce high-quality fused images across
a broad range of content and luminance variations.

To achieve flexibility, we utilize a fully convolutional net-
work [15], which takes an input of arbitrary size and produces
an output of the corresponding size (known as dense predic-
tion). The network is shared by different exposed images,
enabling it to process an arbitrary number of exposures. To
achieve speed, we follow the downsample-execute-upsample
scheme and feed the network a low-resolution version of the
input sequence. Rather than producing the fused image as
in [6], [16], [17], the network learns to generate the low-
resolution weight maps in Eq. (1) and jointly upsample them
using a guided filter [18] for final weighted fusion. By doing
so, we take advantage of the smooth nature of the weight maps
and make use of the input sequence as the guidance [19]. Di-
rectly upsampling the fused image is difficult due to the exis-
tence of rich high-frequency information in the high-resolution
sequence and the lack of proper guidance. To achieve quality,
we integrate the differentiable guided filter with the preceding
network [19] and optimize the entire model end-to-end for
the subject-calibrated MEF structural similarity (MEF-SSIM)
index [9] over a large number of training sequences [6], [20]–
[23]. Although most of our inference and learning is performed
at low resolution, the objective function MEF-SSIM [9] is
measured at full resolution, which encourages the guided filter
to cooperate with the convolutional network, generating high-
quality fused images. Extensive experiments demonstrate that
the resulting MEF-Net achieves consistent improvement in
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visual quality compared with state-of-the-art MEF methods
for most sequences. More importantly, MEF-Net runs 10 to
1000 times faster and holds much promise for approximating
and accelerating the MEF methods that are computationally
intensive.

II. RELATED WORK

In this section, we provide a brief overview of existing MEF
methods and general approaches for fast image processing,
with emphasis on previous ones that are closely related to our
work.

A. Existing MEF Algorithms

The Laplacian pyramid [24] proposed by Burt and Adelson
in 1983 has a lasting impact on image fusion research [25].
Combining with Gaussian [2], [3] or edge-preserving [4], [7]
filters, the Laplacian pyramid provides a convenient multi-
resolution framework to refine the weight map Wk, which
carries perceptually important information of Xk. Mertens
et al. [2] adopted this framework and proposed one of the
first pixel-wise MEF methods, which keeps a good balance
between visual quality and computational complexity. Since
then, a great number of pixel-wise MEF methods [26] have
been developed, mainly to improve visual quality at the cost
of increasing computational complexity. Compared to pixel-
wise MEF, patch-wise methods generally produce a smoother
Wk that requires less post-processing, but bear heavier com-
putational burdens. Goshtasby [27] presented one of the first
patch-wise MEF methods. Ma and Wang [28] extended the
idea [27] and developed a structural patch decomposition
for MEF. Typical perceptual factors that contribute to Wk

include gradient [29], contrast [2], color saturation [2], [7],
entropy [27], structure [28], well-exposedness [2], [3], and
saliency [4].

B. Fast Image Processing

As mobile devices become people’s primary cameras to
take photos, there is a growing demand to accelerate image
processing operators for novel mobile applications such as
photo editing, face manipulation, and augmented reality. A
good case in point is bilateral filtering [30]–[32], which
benefits from years of code optimization, due to the ubiquity of
edge-preserving image processing. However, such acceleration
tricks may not generalize to other operators. A system-level
acceleration solution, friendly to mobile hardware, is to send
images to a cloud server, execute the image processing oper-
ator on the cloud, and send the processed images back [33].
Due to the large bitrate of high-resolution images, this may
introduce significant delays, especially when the network con-
dition is unstable. The downsample-execute-upsample scheme
is another general method for algorithm acceleration, which
suffers from two limitations. First, the underlying operator may
still be slow to run at low resolution. Second, it is difficult for
upsampling techniques to recover the high-frequency informa-
tion in the high-resolution images, especially when they are
of complex structures. Recently, due to efficient feed-forward

inference, convolutional networks [14], [19] have been used
to approximate and accelerate popular image processing oper-
ators, including edge-preserving filtering, detail manipulation,
non-local dehazing, and style transfer.

C. Closely Related Work

Our work is closely related to several previous methods.
Li et al. [4] first introduced guided filtering to MEF. The
weight map Wk was constructed based on pixel saliency and
spatial consistency measurements, and was refined by a guided
filter. Kou et al. [7] built their work upon [2] and replaced
Gaussian smoothing with gradient domain guided filtering.
The three components of the above two methods—weight
map construction, guided filtering, and weighted fusion—are
optimized separately (often through manual adjustment). Our
method is different from them by resorting to an end-to-end
solution, where the three components are jointly optimized in a
data-driven fashion. Rather than pre-defining a computational
graph for MEF, Ma et al. [8] formulated it as an optimization
problem

Yopt = arg max
Y

MEF-SSIM({Xk},Y)

subject to 0 ≤ Y ≤ 255 .
(2)

Due to the nonconvexity of MEF-SSIM [9] and the high-
dimensionality of the optimization problem, a closed-form
solution is difficult. Therefore, a gradient-based iterative solver
is adopted [8], which is computationally expensive. Another
work closely related to ours is from Prabhakar et al. [6],
who trained a feed-forward convolutional network to solve
the optimization problem in (2). The method works reasonably
well on extreme situations, but does not achieve the flexibility,
speed, and quality we seek. We will show that the proposed
MEF-Net achieves higher quality, while being much faster and
more flexible.

Chen et al. [14] investigated a number of convolutional net-
work architectures in terms of their approximation accuracy,
speed, and compactness when accelerating image processing
operators. They found that a multi-scale context aggregation
network (CAN) characterized by dilated convolutions [34]
satisfies the three criteria and significantly outperforms prior
methods [13]. We will adopt CAN as our default network
architecture. Wu et al. [19] treated the guided filter as a group
of spatially-varying differentiable transformations and inte-
grated it with convolutional networks for end-to-end training.
Although their method [19] achieves superior performance in
some applications with relatively smooth outputs (e.g., style
transfer [35]), it cannot accurately approximate operators that
work with high-frequency image content (e.g., multi-scale tone
manipulation [36]). Our method circumvents this problem by
applying the guided filter on Wk, which is smoother and easier
to upsample than Y.

III. MEF-NET

We describe MEF-Net, a flexible, fast, and high-quality
MEF method. MEF-Net consists of a bilinear downsampler,
a CAN, a guided filter, and a weighted fusion module. The
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Fig. 1. Schematic diagram of the proposed MEF-Net. The downsampled input sequence {Xl
k} is fed to CAN, where the main computation takes place. The

learned weight maps {Wl
k} are jointly upsampled to high resolution by the guided filter. The fused image is obtained by a weighted summation of {Xk}

and {Wk}.

TABLE I
SPECIFICATION OF CAN IN MEF-NET FOR LOW-RESOLUTION WEIGHT MAP PREDICTION

Layer 1 2 3 4 5 6 7
Convolution 3×3 3×3 3×3 3×3 3×3 3×3 1×1
Dilation 1 2 4 8 16 1 1
Width 24 24 24 24 24 24 1
Bias 7 7 7 7 7 7 3
Adaptive normalization 3 3 3 3 3 3 7
Nonlinearity 3 3 3 3 3 3 7
Receptive field 3×3 7×7 15×15 31×31 63×63 65×65 65×65

architecture is shown in Fig. 1. We first downsample an input
sequence {Xk} and feed CAN the low-resolution version
{Xl

k} to predict the low-resolution weight maps {Wl
k}.

Taking {Wl
k}, {Xl

k}, and {Xk} as inputs, we obtain the
high-resolution weight maps {Wk} using the guided filter,
an operation also known as joint upsampling in computer
vision [37]. Finally, we compute the fused image Y using
Eq. (1). MEF-Net is end-to-end trainable with the objective
function MEF-SSIM [9] evaluated at high resolution.

A. CAN for Low-Resolution Weight Map Prediction

The core module of MEF-Net is a convolutional network,
which transforms the low-resolution input sequence {Xl

k} to
the corresponding weight maps {Wl

k}. The network must
allow for {Xl

k} of arbitrary spatial size and exposure number,
and produce {Wl

k} of the corresponding size and number. To
achieve this, we make use of a fully convolutional network
to handle all exposures (i.e., images of different exposures
share the same weight generation network), which can be
efficiently implemented by allocating {Xl

k} along the batch
dimension. From a number of alternative networks [15], [38],
we select CAN [34], which has been advocated by Chen
et al. [14] and Wu et al. [19] for approximating image
processing operators. The key advantage of CAN is its large
receptive field without sacrificing spatial resolution. It grad-
ually aggregates contextual information at deeper layers and
accomplishes computation of global image statistics for better
image modeling. Table I specifies our CAN configuration. It

has seven convolution layers, whose responses have the same
resolution as the input. Similar to [14], we employ adaptive
normalization right after convolution

AN(Z) = λnZ + λ′nIN(Z) , (3)

where λn, λ′n ∈ R are learnable scalar weights, Z indicates
the intermediate representations, and IN(·) stands for the
instance normalization operator [39]. We choose not to use
batch normalization [40] here because the batch size (i.e., the
number of exposures) is usually small, which may introduce
problems during training due to inaccurate batch statistics
estimation. In addition, to better preserve the local structural
information of Xl

k [20], we adopt the leaky rectified linear
unit (LReLU) as the point-wise nonlinearity

LReLU(Z) = max(λrZ,Z) , (4)

where λr > 0 is a fixed parameter during training. The output
layer produces Wl

k using a 1×1 convolution without adaptive
normalization and nonlinearity.

B. Guided Filter for High-Resolution Weight Map Upsampling

The key assumption of the guided filter is a local linear
model between the guidance I and the filtering output Q [18]

Q(i) = aωI(i) + bω,∀i ∈ ω , (5)

where i is the index of the guidance and ω is a local square
window with radius r. aω, bω are linear coefficients assumed
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(a) (b)

Fig. 2. Demonstration of the learned weight map Ŵk . A brighter pixel in Ŵk indicates that the corresponding pixel in Xk contributes more to the fused
image Y. Ŵk shows a strong preference to high-contrast and well-exposed regions. (a) Source sequence “Corridor” along with the learned weight maps. (b)
Fused image by MEF-Net. Sequence courtesy of Jianrui Cai.

Algorithm 1 Guided filtering for joint upsampling in MEF-
Net
Input: Low-resolution weight map Wl

k, low-resolution Xl
k

as guidance, high-resolution Xk as guidance, radius r, and
regularization parameter λa

Output: High-resolution weight map Wk

1: meang = fmean
(
Xl

k

)
meani = fmean

(
Wl

k

)
corrg = fmean

(
Xl

k �Xl
k

)
corrgi = fmean

(
Xl

k �Wl
k

)
2: varg = corrg −meang �meang

covgi = corrgi −meang �meani
3: Al

k = covgi � (varg + λa)
Bl

k = meani −Al
k �meang

4: Ak = f↑
(
Al

k

)
Bk = f↑

(
Bl

k

)
5: Wk = Ak �Xk + Bk

to be constant in ω and can be computed by minimizing the
reconstruction error

`(aω, bω) =
∑
i∈ω

(
(aωI(i) + bω −P(i))

2
+ λaa

2
ω

)
, (6)

where P is the filtering input and λa is a regularization
parameter penalizing large aω [18]. In the context of MEF-
Net, we treat the low-resolution Wl

k and Xl
k as the input

and the guidance of the guided filter to obtain Al
k and Bl

k,
respectively. As in [18], [19], we replace the mean filter on Al

k

and Bl
k, and bilinearly upsample them to the high-resolution

Ak and Bk. The high-resolution weight map Wk is computed
by

Wk = Ak �Xk + Bk . (7)

Algorithm 1 summarizes the guided filter for joint upsampling
in MEF-Net, where fmean and f↑ denote box filtering and
bilinear upsampling, respectively. By interpreting the guided
filter as a group of spatially-varying differentiable transfor-
mations [19], we integrate it with the preceding CAN and
optimize MEF-Net end-to-end at full resolution. We may
apply the guided filter as a post-processing step without any

training, but it hurts the fusion performance as will be clear
in Section IV-B.

To stabilize gradients during training and to obtain consis-
tent results, we take the absolute values of {Wk} followed by
normalization such that they sum to one across exposures at
each spatial location

Ŵk(i) =
|Wk(i)|∑K
k=1|Wk(i)|

. (8)

Fig. 2 demonstrates the learned weight maps {Ŵk} of the
source sequence “Corridor”, where a brighter pixel in Ŵk in-
dicates that the corresponding pixel in Xk contributes more to
the fused image Y. The learned Ŵk enjoys several desirable
properties. First, Ŵk is smooth with gentle transitions from
sharp to flat regions. Second, Ŵk prefers high-contrast and
well-exposed regions, both of which significantly impact the
perceptual quality of Y. Third, Ŵk reflects the global struc-
ture of Xk and is beneficial for large-scale detail preservation.
As a result, the fused image appears natural without loss of
details and presence of artifacts.

C. MEF-SSIM as Objective Function

In this subsection, we detail the MEF-SSIM index [9] as
the objective function for MEF-Net. Other perceptual quality
metrics for MEF such as [41], [42] may also serve the purpose.
Specifically, MEF-SSIM decomposes an image patch xk into
three conceptually independent components

xk = ‖xk − µxk
‖ · xk − µxk

‖xk − µxk
‖

+ µxk

= ‖x̃k‖ ·
x̃k

‖x̃k‖
+ µxk

= ck · sk + lk , (9)

where ‖ · ‖ denotes the `2-norm. lk = µxk
, ck = ‖x̃k‖, and

sk = x̃k/‖x̃k‖ represent the intensity, contrast, and structure
of xk, respectively [9].

The desired intensity of the fused image patch is defined by

l̂ =

∑K
k=1 wl (µk, lk) lk∑K
k=1 wl (µk, lk)

, (10)
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(e) (f) (g) (h)
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Fig. 3. Sample sequences (a)–(l) gathered from five sources [6], [20]–[23]. Each sequence is represented by the corresponding fused image from MEF-Net.
Images are cropped for better visibility.

where wl(·) is a weight function of the global mean intensity
µk of Xk and the local mean intensity lk of xk. wl(·) is
specified by a two dimensional Gaussian profile

wl (µk, lk) = exp

(
− (µk − τ)2

2σ2
g

− (lk − τ)2

2σ2
l

)
, (11)

where σg and σl are two photometric spreads, set to 0.2 and
0.5, respectively [5]. τ = 128 represents the mid-intensity
value for an 8-bit sequence. The desired contrast is determined
by the highest contrast in {xk}

ĉ = max
1≤k≤K

ck . (12)

The desired structure is computed by a weighted summation

ŝ =
s̄

‖s̄‖
, where s̄ =

∑K
k=1 ws (x̃k) sk∑K
k=1 ws (x̃k)

, (13)

where ws(·) = ‖ · ‖∞ is an `∞-norm weight function.
Once l̂, ĉ, and ŝ are determined, we invert the decomposition

to obtain the desired fused patch

x̂ = ĉ · ŝ + l̂ . (14)

The construction of MEF-SSIM follows the definition of the
SSIM index [43]

S({xk},y) =
(2µx̂µy + C1)(2σx̂y + C2)

(µ2
x̂ + µ2

y + C1)(σ2
x̂ + σ2

y + C2)
, (15)

where µx̂ and µy denote the mean intensities of the desired
patch and a given fused patch, respectively. σx̂, σy, and σx̂y
denote the local variances of x̂ and y, and their covariance,
respectively. C1 and C2 are two small positive constants to

prevent instability. The local S values are averaged to obtain
an overall quality measure of the fused image

MEF-SSIM({Xk},Y) =
1

M

M∑
i=1

S({RiXk},RiY) , (16)

where Ri is a matrix that extracts the i-th patch from the
image. The MEF-SSIM score ranges from 0 to 1 with a higher
value indicating better visual quality.

The vanilla version of MEF-SSIM [9] excludes the intensity
comparison and has been adopted by Prabhakar et al. [6]
to drive the learning of convolutional networks for MEF. In
our experiments, we find that optimizing MEF-SSIM without
intensity information is unstable, resulting in fused images
with a relatively pale appearance (see Fig. 6). The improved
version of MEF-SSIM [8] adds the intensity comparison in
Eq. (15) and directly works with color sequences. Neverthe-
less, it is likely to generate over-saturated colors in some
situations [8]. To obtain more conservative fused images
with little artifacts, we choose to handle chroma components
separately as suggested in [6]. Specifically, we work with the
Y’CbCr format and evaluate MEF-SSIM only on the luma
components of {Xk} and Y. In other words, CAN in MEF-
Net is optimized to fuse the luma components. For the Cb
chroma components, we adopt a simple weighted summation
suggested in [6]

b̂ =

∑K
k=1 wc(bk)bk∑K
k=1 wc(bk)

, (17)

where bk denotes the Cb chroma value at the k-th exposure
and wc(bk) = ‖bk − τ‖1 is an `1-norm weight function. The
Cr chroma components can be fused in the same way. Finally,
we convert the fused image from Y’CbCr back to RGB.
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(a)

(b) (c) (d)

Fig. 4. MEF-Net in comparison with Mertens09 [2] and SPD-MEF [5]. (a) Source sequence “Studio” courtesy of HDRSoft. (b) Mertens09. (c) SPD-MEF.
(d) MEF-Net.

D. Training
We collect a large-scale dataset for MEF-Net. Initially, we

gather more than 1, 000 exposure sequences mainly from the
five sources [6], [20]–[23]. We first eliminate sequences that
contain visible object motion. For camera motion, we retain
those sequences that have been successfully aligned by exist-
ing image registration algorithms [44]. After screening, a total
of 690 static sequences remain, which span a great amount of
HDR content, including indoor and outdoor, human and still-
life, day and night scenes. Some representative sequences are
shown in Fig. 3. The spatial resolution ranges from 0.2 to 20
megapixels, while the number of exposures is between three
and nine. We train MEF-Net on 600 sequences and leave the
remaining 90 for testing.

During training, we apply MEF-SSIM on the finest-scale
only in order to reduce GPU memory cost. The parameters of
MEF-SSIM are inherited from [8], [9]. We resize the exposure
sequences to 128s and 512s as the low- and high-resolution
inputs to MEF-Net, respectively, where 128s means that the
short size is resized to 128 while keeping the aspect ratio. The
leaky parameter λr of LReLU is fixed to 0.2. The radius r and
the regularization parameter λa of the guided filter are set to
1 and 10−4, respectively. λa is a critical parameter in MEF-
Net, as will be clear in Section IV-B. Training uses the Adam
solver [45] with a learning rate of 10−4. Other parameters in
Adam are set by default. The batch size is equal to the number
of exposures in the current sequence. The learning stops when
the maximum epoch number 100 is reached. We try to further
train MEF-Net on sequences of varying high resolutions larger
than 512s [19], but this does not yield noticeable improvement.
Finally, we evaluate MEF-Net at full resolution during testing.

IV. EXPERIMENTS

In this section, we first compare MEF-Net with classical
and recent MEF methods in terms of visual quality and com-
putational complexity. We then conduct a series of ablation

experiments to identify the core components of MEF-Net.
Last, we treat MEF-Net as a universal MEF approximator and
use it to accelerate existing MEF methods.

A. Main Results

1) Qualitative Comparison: We compare MEF-Net with six
previous MEF methods, including Mertens09 [2], Li13 [4],
SPD-MEF [5], GGIF [7], DeepFuse [6], and MEF-Opt [8].
Mertens09 [2] is the primary baseline in MEF. Li13 [4]
introduces guided filtering [18] to MEF, while GGIF [7]
applies guided filtering in the gradient domain and achieves
the best performance in a recent subjective experiment [20].
SPD-MEF is an MEF-SSIM-inspired non-iterative method
and ranks second in the same subjective study [20]. MEF-
Opt [8] is a gradient-based iterative method, optimizing MEF-
SSIM [9] in the space of all images. DeepFuse [6] is a closely
related method that trains a convolutional network for MEF. In
principle, MEF-Opt can be regarded as an upper bound of all
MEF methods in terms of MEF-SSIM. The fused images are
generated by the implementations from the original authors
with default settings. Since DeepFuse takes two exposures
only, we try several under- and over-exposed combinations,
and choose the fused image that achieves the best MEF-SSIM
for comparison.

Fig. 4 compares Mertens09 [2] and SPD-MEF [5] with
MEF-Net on the source sequence “Studio”. As can be seen,
Mertens09 does not recover the details of the lamp due to the
extreme dynamic range of the scene and excessive Gaussian
smoothing of the weight maps. In addition, the outside ground
appears over-exposed. SPD-MEF does a good job in detail and
color preservation of the indoor scene, but introduces annoying
color and halo artifacts out of the window. We believe the
distortions arise because SPD-MEF prefers strong or even
over-saturated colors, whose weight maps fail to make smooth
transitions across exposures near strong edges. By contrast,
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(a)

(b) (c) (d)

Fig. 5. MEF-Net in comparison with Li13 [4] and GGIF [7]. (a) Source sequence “Lake forest” courtesy of Jianrui Cai. (b) Li3. (c) GGIF. (d) MEF-Net.

MEF-Net produces a more natural appearance with faithful
detail and color reproduction.

Fig. 5 compares Li13 [4] and GGIF [7] with MEF-Net
on the source sequence “Lake forest”. By decomposing the
input sequence into the base and detail layers with Gaussian
filtering, Li13 focuses on fine-detail enhancement only and
fails to capture large-scale luminance variations. Consequently,
apparent halo artifacts emerge. Moreover, the global intensity
of the fused image changes abruptly, resulting in an artifi-
cial and uncomfortable appearance. Inheriting the multi-scale
Laplacian decomposition from Mertens09 [2], GGIF alleviates
the halo artifacts to a just noticeable level, but at the same time
reduces the global contrast. The fused image looks relatively
pale and less detailed. Compared to GGIF, MEF-Net better
preserves the global contrast, and the overall appearance of
the fused image is more natural and appealing.

Fig. 6 compares DeepFuse [6] and MEF-Opt [8] with
MEF-Net on the source sequence “Archway”. The fusion
performance of DeepFuse depends highly on the quality of the
input image pair. If the under- and over-exposed images are
not perfectly complementary, DeepFuse may generate a fused
image of lower perceptual quality than a normally exposed
shot. With only two exposures, it is difficult for DeepFuse
to determine the lighting condition of the scene. The missing
intensity component of MEF-SSIM during optimization makes
the situation worse. As a result, we observe unnatural colors
around the two lamps and reduced details on the wall and floor.
By operating in the space of all images, MEF-Opt has more
freedom than MEF-Net to produce the fused image with finer
details, which is supported by a higher MEF-SSIM value. With
a sensible network architecture, MEF-Net closely matches the
result of MEF-Opt.

2) Quantitative Comparison: We list the quantitative com-
parison results in terms of MEF-SSIM [9] in Table II. It is
not surprising that MEF-Opt [8] achieves the best perfor-
mance because it optimizes MEF-SSIM in the space of all
images. Among the rest of the methods, MEF-Net is closest

to this upper bound, which suggests that the training is highly
effective, and MEF-Net generalizes well to novel content.
Although sharing the same spirit of MEF-SSIM optimization,
DeepFuse [6] performs the worst due to the extremely strict
constraint on the input sequence. We also employ another
subject-calibrated quality model specifically for MEF, namely
MEF-VIF [42], to quantify the fusion performance on the same
90 test sequences. From Table II, we see that MEF-Net is
among the best performing methods. The proposed MEF-Net
is flexible and may be trained to optimize MEF-VIF directly.

We take a closer look at the cross resolution general-
izability of MEF-Net. Specifically, we downsample the 90
test sequences to seven resolutions if possible, ranging from
512s to 2048s, and report the average MEF-SSIM scores in
Fig. 7. Despite the fact that MEF-Net is trained on the reso-
lution of 512s, it generalizes remarkably well across a wide
range of unseen resolutions with slight MEF-SSIM decrease.
Meanwhile, we observe a steady uptrend of MEF-Opt [8]
optimized for MEF-SSIM with the increasing resolution. This
may arise because for most MEF algorithms including MEF-
Opt, it is easier to fuse flat regions than structured ones;
when the spatial resolution increases, the flat regions grow
more rapidly than the structured regions (consider the step-
edge images of different sizes). Other MEF methods perform
equally well except for Mertens09 [2], which is not scale-
invariant. Mertens09 employs Laplacian pyramid [24] to avoid
unwanted artifacts during fusion. The standard implementation
of Laplacian pyramid uses a 5×5 lowpass filter, which may not
eliminate high-frequency information before downsampling
(by a factor of two), leading to possible aliasing artifacts across
scales. Therefore, we may only observe scale-invariance when
the image resolutions are related by multipliers of two, which
is verified by approximately the same MEF-SSIM scores
computed at 512s, 1024s, and 2048s in Fig. 7. By replacing
Gaussian filtering with guided filtering, GGIF [7] achieves the
desired scale-invariance within the same framework.
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(a)

(b) (c) (d)

Fig. 6. MEF-Net in comparison with DeepFuse [6] and MEF-Opt [8]. (a) Source sequence “Archway” courtesy of Jianrui Cai. (b) DeepFuse. (c) MEF-Opt.
(d) MEF-Net.

TABLE II
AVERAGE MEF-SSIM [9] AND MEF-VIF [42] SCORES OF DIFFERENT MEF METHODS AGAINST MEF-NET ON 90 TEST SEQUENCES COMPUTED AT

FULL RESOLUTION. BOTH MEF-SSIM AND MEF-VIF SCORES RANGE FROM 0 TO 1 WITH A HIGHER VALUE INDICATING BETTER PERCEPTUAL QUALITY

MEF method Mertens09 [2] Li13 [4] SPD-MEF [5] GGIF [7] DeepFuse [6] MEF-Opt [8] MEF-Net
MEF-SSIM [9] 0.923 0.945 0.953 0.958 0.862 0.978 0.964
MEF-VIF [42] 0.969 0.967 0.956 0.972 0.926 0.952 0.967
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MEF-Opt

MEF-Net

Fig. 7. Cross resolution generalization. MEF-Net generalizes well across a
wide range of resolutions, which are never seen during training.

3) Computational Complexity and Running Time: We con-
duct a computational complexity comparison of MEF methods
in terms of the number of floating point operations. We assume
that the number of input channels is K, each of which contains
M pixels, and the window size used to compute local statistics
is N2. All competing MEF algorithms have a complexity of

O(KMN2), except for MEF-Opt [8] which has a complexity
of O(IKMN2), where I is the number of iterations. Ide-
ally, the computation across the channel dimension can be
parallelized and the value of K should have little impact on
the running time (given sufficient code optimization). Due
to the fact that N2 � M , the spatial resolution M is the
dominant term. MEF-Net enjoys the lowest computational
complexity because it restricts most of the computation at a
fixed low resolution, while the competing MEF algorithms
need to perform all computation at full resolution.

We compare the running time of MEF-Net with existing
MEF methods on input sequences of different spatial resolu-
tions or different numbers of exposures. The testing platform
is a computer with an Intel i7-6900K 3.2GHz CPU and an
Nvidia Titan X GPU. Mertens09 [2], Li13 [4], SPD-MEF [5],
and GGIF [7] utilize CPU, while DeepFuse [6] and MEF-
Opt [8] exploit GPU. We do not report the running time of
DeepFuse on sequences of different numbers of exposures
due to its strict input constraint. We reduce the maximum
iteration number of MEF-Opt to 100 for the ease of drawing.
The results are shown in Fig. 8. On the GPU, MEF-Net takes
less than 10 ms to process sequences with resolutions ranging
from 512s to 2048s and exposure numbers ranging from three
to nine, which is 10× and 1000× faster than DeepFuse and
SPD-MEF, respectively. More importantly, MEF-Net runs in
approximately constant time in spite of the growing spatial
resolution and the number of exposures. On CPU, MEF-Net
is still significantly faster than most MEF methods except for
the GPU-mode DeepFuse.
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Fig. 8. Running time comparison. (a) Different spatial resolutions with the
number of exposures fixed to 3. (b) Different numbers of exposures with the
spatial resolution fixed to 1024s.

TABLE III
AVERAGE MEF-SSIM [9] SCORES OF MEF-NET AND ITS VARIANTS

NEF-Net variants MEF-SSIM [9]
Guided filtering as post-processing 0.953
Bilinear upsampling trained end-to-end 0.961
MEF-Net (guided filtering trained end-to-end) 0.964

In summary, we have empirically shown that the proposed
MEF-Net, characterized by CAN and guided filtering, trained
end-to-end, achieves the three desirable properties— flexibility,
speed, and quality—in MEF.

TABLE IV
AVERAGE MEF-SSIM [9] SCORES AS A FUNCTION OF INPUT

RESOLUTION, DEPTH, AND WIDTH OF CAN IN MEF-NET. THE DEFAULT
SETTING IS HIGHLIGHTED IN BOLD

Input res 32 64 128 256
MEF-SSIM 0.950 0.960 0.964 0.967

Depth 4 5 6 7 8 9
MEF-SSIM 0.961 0.963 0.963 0.964 0.965 0.965

Width 8 16 24 32 48 64
MEF-SSIM 0.953 0.963 0.964 0.966 0.967 0.967

TABLE V
AVERAGE MEF-SSIM [9] SCORES AS A FUNCTION OF THE

REGULARIZATION PARAMETER λa AND THE RADIUS r IN THE GUIDED
FILTER. THE DEFAULT SETTING IS HIGHLIGHTED IN BOLD

λa 10−1 10−2 10−4 10−6 10−8

MEF-SSIM 0.961 0.961 0.964 0.962 0.961

r 1 2 4 8 16
MEF-SSIM 0.964 0.963 0.959 0.956 0.950

B. Ablation Experiments

We conduct comprehensive ablation experiments to single
out the contribution of each component in MEF-Net. We
first train MEF-Net on low-resolution sequences solely. After
training, the guided filter is adopted as a post-processing
step to jointly upsample the low-resolution weight maps for
final fusion. We then train MEF-Net with the guided filter
replaced by the simple bilinear upsampler. The MEF-SSIM [9]
results are listed in Table III, where we see that integrating
upsampling techniques with the preceding CAN for end-to-
end training significantly boosts MEF-SSIM. This verifies
the power of end-to-end training, where MEF-Net is directly
supervised by the high-resolution input sequences. Additional
performance gain can be obtained by guided filtering over
bilinear upsampling. We also provide a visual demonstration in
Fig. 9 and find that guided filtering as post-processing exhibits
over-exposure out of the window, while bilinear upsampling
trained end-to-end shows black banding artifacts due to the
excessively coarse weight maps. Guided filtering trained end-
to-end for joint upsampling achieves the best visual quality,
and is the key component of MEF-Net.

We next evaluate the effect of input resolution, depth,
and width of CAN on the performance of MEF-Net. The
depth and width represent the number of convolution layers
and the number of feature maps in each intermediate layer,
respectively. A shallower CAN implies a smaller receptive
field. The results are listed in Table IV, from which we have
several interesting observations. First, MEF-SSIM increases
with input resolution, depth, and width as expected. Second, by
changing the input resolution from 128s to 256s, we observe
marginal MEF-SSIM improvement by 0.003. Third, MEF-Net
achieves satisfactory performance with a fairly shallow and
compact architecture (e.g., with 16 feature maps per layer or
a depth of five).

We also assess the role of the regularization parameter
λa and the radius r in the guided filter. λa controls the
smoothness of Ak, which is evident in Eq. (6). r also affects
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(a)

(b) (c) (d)

Fig. 9. MEF-Net in comparison with its variants. (a) Source sequence “House” courtesy of Tom Mertens. (b) Guided filtering as post-processing. (c) Bilinear
upsampling trained end-to-end. (d) MEF-Net (guided filtering trained end-to-end).

(a) (b)

Fig. 10. Emergence of the dot artifacts with a small regularization parameter
λa in the guided filter. (a) λa = 10−8. (b) λa = 10−4 (default).

the smoothness of Ak in a less direct way. A large λa (or r)
generates a smooth Ŵk and may not be good at preserving
fine details, leading to a decrease of MEF-SSIM in Table V. A
small λa produces a relatively noisy Ŵk and may introduce
dot artifacts, as shown in Fig. 10. Our default setting achieves
the best performance.

C. MEF-Net as A Universal MEF Approximator

In this subsection, we exploit the fast speed of MEF-
Net and use it as a universal approximator to accelerate
existing MEF methods. Specifically, we first apply the target
MEF method to our dataset. The generated fused images are
considered as the ground truths. We then train MEF-Net on
input/output pairs that contain the exposure sequences and
the corresponding fused images. The training procedure is the
same as Section III-D, except that we optimize a perceptual
image quality metric—SSIM [43] in the RGB space. We
have also experimented with the mean squared error (MSE)
suggested in [14], [19], but obtain inferior approximation
accuracy.

Fig. 11 shows the visual results of MEF-Net in approxi-
mating SPD-MEF [5] and GGIF [7] on the source sequence

“Stone house”. Although the two MEF methods produce dif-
ferent overall appearances, MEF-Net is able to closely match
them. On the 90 test sequences, the approximation accuracy
in terms of SSIM for SPD-MEF and GGIF is 0.961 and
0.976, respectively, demonstrating the promise of MEF-Net
as a universal MEF approximator. On sequences of resolution
1024s, we speed up SPD-MEF and GGIF more than 1000 and
100 times, respectively.

V. CONCLUSION AND DISCUSSION

We have introduced MEF-Net, a fast MEF method based on
deep guided learning. The core idea of MEF-Net is to predict
the low-resolution weight maps using a CAN and jointly
upsample them with a guided filter for final weighted fusion.
The high speed of MEF-Net is achieved by restricting the
main computation at a fixed low resolution and parallelizing
the computation across exposures. The visual improvement of
the fused images is achieved by end-to-end training with MEF-
SSIM measured at full resolution. In addition, we demonstrate
the promise of MEF-Net as a universal MEF approximator to
accelerate existing and future MEF methods.

The current MEF-Net works with static scenes only. How to
extend it to account for dynamic scenes is an interesting and
challenging problem yet to be explored. The major impediment
here is the lack of perceptual image quality metrics for
dynamic scenes or ground truths for supervision. Kalantari
and Ramamoorthi [16] put substantial effort in capturing static
and dynamic exposure brackets of the same scene and treated
the static sequences as a form of ground truths. Cai et al. [20]
made use of 13 existing MEF and HDR deghosting methods to
generate a set of candidates and manually picked the best ones
as the ground truths. Both processes are expensive and time-
consuming, which limit the number of collected sequences. In
addition, we desire more flexible and faster MEF methods for
dynamic scenes.
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(a) (b)

(c) (d)

Fig. 11. MEF-Net as a universal approximator. (a) SPD-MEF [5]. (b) SPD-
MEF approximated by MEF-Net. (c) GGIF [7]. (d) GGIF approximated by
MEF-Net. Source sequence “Stone house” courtesy of Jianrui Cai.
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