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Abstract—Image Super-Resolution (SR) techniques improve
visual quality by enhancing the spatial resolution of images.
Quality evaluation metrics play a critical role in comparing
and optimizing SR algorithms, but current metrics achieve
only limited success, largely due to the lack of large-scale
quality databases, which are essential for learning accurate and
robust SR quality metrics. In this work, we first build a large-
scale SR image database using a novel semi-automatic labeling
approach, which allows us to label a large number of images with
manageable human workload. The resulting SR Image quality
database with Semi-Automatic Ratings (SISAR), so far the largest
of SR-IQA database, contains 12,600 images of 100 natural
scenes. We train an end-to-end Deep Image SR Quality (DISQ)
model by employing two-stream Deep Neural Networks (DNNs)
for feature extraction, followed by a feature fusion network
for quality prediction. Experimental results demonstrate that
the proposed method outperforms state-of-the-art metrics and
achieves promising generalization performance in cross-database
tests. The SISAR database and DISQ model will be made publicly
available to facilitate reproducible research.

Index Terms—Image Quality Assessment, Image Super-
Resolution, Reduced-Reference.

I. INTRODUCTION

W ITH the rapid development of high-definition displays,
the demand for high resolution image/video content

has been increasing rapidly. To improve the user-end visual ex-
perience, image Super-Resolution (SR) technique is developed
to interpolate High-Resolution (HR) images from their Low-
Resolution (LR) references. Examples of these interpolated
HR images can be seen in Fig. 1. The past two decades
have witnessed a booming of image SR algorithms with
widespread applications including medical image processing,
video surveillance, remote sensing, and face recognition,
among many others. In the SR process, an Image Quality
Assessment (IQA) metric is critical as both a performance
indicator and a guidance for further improvement. However,
the mainstream IQA methods, such as Peak Signal-to-Noise
Ratio (PSNR) and Structural SIMilarity (SSIM) index [1], do
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(a) BICUBIC 2 (b) RLLR 2 (c) SRCNN 2 (d) VDSR 2
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(i) BICUBIC 4 (j) RLLR 4 (k) SRCNN 4 (l) VDSR 4

Fig. 1. Examples of HR images generated by SR. (a-d), (e-h) and (i-l) are
reconstructed HR images via BICUBIC [3], RLLR [4], SRCNN [5] and VDSR
[6] algorithms with scaling factors of 2, 3 and 4 respectively. Quality variations
are observed across both scaling factor and SR methods.

not have high correlation with subjective opinions in image
SR [2].

Existing IQA methods can be divided into two categories:
subjective tests by human observers and objective models by
automatic algorithms. Between them, the more reliable way is
the subjective test, since human users are the ultimate viewers
of images. Several SR methods assess their performances
using small-scale subjective tests [7], [8]. However subjective
test is time-consuming and hard to be embedded into practical
applications. Instead, it is often utilized to construct databases,
which serve as standard testing sets to compare objective
models.

Numerous objective IQA models have also been proposed.
According to the availability of reference, objective models
can be classified into full-reference, reduced-reference and
no-reference IQA models. In a typical image SR problem,
the perfect quality HR image is unavailable as a reference,
therefore, full-reference models are generally inapplicable. In
addition, SR algorithms often introduce mixed impairments,
including blurring, ringing and aliasing artifacts, which are
not well measured by the existing methods [9], [10]. There-
fore, conventional general-purpose reduced-reference and no-
reference IQA models should be redesigned specifically for
image SR problem.
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The key challenge in SR-IQA is how to effectively learn
distinguishing feature representations of various LR and HR
images and then map the features to image quality prediction.
Convolutional Neural Network (CNN) has shown its advantage
in IQA with promising successes in recent years [11]–[13].
Compared with other data-driven models, CNN is capable of
learning features and making quality predictors jointly in an
end-to-end manner. Despite its superiority, CNN has not yet
been well exploited in SR-IQA, for which most methods are
not based on deep learning [9], [10], [14]–[16]. In this work,
we propose a CNN-based SR-IQA algorithm. Considering the
importance of reference information [17], we employ CNNs to
extract the features from both images before and after the SR
process. A two-stream CNN architecture is thereby designed
to simultaneously take the test HR and the corresponding
LR reference images, followed by feature fusion and quality
prediction of the HR image.

The performance of deep learning based models relies heav-
ily on the quality and quantity of training images. Although
several benchmark databases of image SR qualities have been
constructed [9], [15], [18]–[20], they are limited in their sam-
ple sizes. The largest database contains only 1,620 HR images.
A larger image SR database is thus imperative, for which
the biggest challenge is in the enormous workload of human
labeling. In this work, we observe a negatively exponential
decay behavior of subjective scores after iterative downsample-
and-SR processing of natural images. This helps us develop a
large-scale database with reduced human labeling workload.
Experiments on randomly selected samples demonstrate the
high accuracy of this database. Based on this database, we are
able to develop and train the two-stream deep network that
predicts the quality of SR images with a high correlation to
human scores.

Our major contributions are as follows:

1) Developed so far the largest IQA database for image
SR with a novel semi-automatic labeling method, which
greatly reduced the workload of human labeling.

2) Proposed a two-stream deep network that incorporates the
available LR image into the quality evaluation of HR
image. It results in an end-to-end model that jointly learns
perceptually consistent features from the two images and
a quality predictor.

3) Designed a feature fusion method that combines the two-
stream deep CNN, leading to superior performance against
state-of-the-art quality prediction.

The remaining of this paper is organized as follows. Sec-
tion II introduces the related work. Section III explains the
methodology and process to construct the proposed large-scale
database. Section IV elaborates the proposed deep network,
including network architecture, feature fusion method, and
model training. Section V provides the experimental results.
Finally, the paper is concluded in Section VI.

II. RELATED WORK

Image SR has been an active research topic in recent years.
Existing single image SR algorithms may be divided into three

categories: interpolation-based [3], [4], [23], reconstruction-
based [24]–[26] and learning-based [5], [6], [21], [22], [27],
[28]. Interpolation-based methods are simple, efficient and
of low computational cost but has limited restoration perfor-
mance, because such methods often introduce severe artifacts.
Built upon models of prior domain knowledge, reconstruction-
based methods suppress artifacts better, but often have much
higher computational complexity. Learning-based methods
learn LR-to-HR image mapping from training data.

During the past decades, numerous perceptual IQA metrics
have been proposed to predict the visual quality of images with
full-reference, reduced-reference and no-reference. Among
them, the scope of application of full-reference metric is
limited due to its requirement of unimpaired source. Recently,
researchers have paid more attention to no-reference IQA.
Early no-reference methods were based on Natural Scene
Statistic (NSS) [29]. Common NSS features include wavelet
coefficients [30], locally normalized illumination coefficients
[31]. Learning-based methods have been growing steadily
[32]–[34], which automatically learn the mapping between
image features and the perceptual quality.

Meanwhile, Image Sharpness Assessment (ISA) technique
has emerged as an effective method for IQA [35]. Hassen
et al. identified the Local Phase Coherence (LPC) of images
computed in wavelet transform domain to assess image quality
[36]. Bahrami et al. proposed a fast no-reference ISA method
based on the standard deviation of weighted Maximum Local
Variation (MLV) distribution of images [37]. Blanchet et al.
introduced an indicator of Global Phase Coherence (GPC),
which decreases with blur, noise, and ringing [38]. Li et al.
proposed a no-reference SPArse Representation-based Image
SHarpness index (SPARISH), which used an overcomplete
dictionary learned from natural images to measure the extent
of blur [39]. Hosseini et al. designed two no-reference ISA
metrics, called Synthetic-MaxPol [40] and HVS-MaxPol [35],
which were based on MaxPol convolution kernels and MaxPol
filter library, respectively.

The use of deep learning has been a strong trend in recent
IQA algorithms. Kang et al. designed a shallow CNN to learn
features from contrast normalized image patches [11]. Ma
et al. proposed a multi-task end-to-end learning framework
for no-reference IQA [41]. Yang et al. proposed an end-to-
end SGDNet for no-reference IQA, which introduced saliency
information to facilitate quality prediction [12]. Yan et al.
integrated the NSS features prediction to the deep learning-
based no-reference IQA to improve the representation and
generalization ability [13].

However, most existing IQA methods are not suitable for
SR images, since they are designed for images degraded by
common distortions such as compression, white noise and blur.
The distortions produced by SR are often mixed and more
sophisticated. The study [19] has shown that the popular no-
reference IQA metrics are difficult to predict the perceptual
quality of SR image based on an SR Image Database (SRID).

In a lab testing environment, the pristine reference HR
image may be available when evaluating SR algorithms, for
which objective full-reference metrics are directly applicable.
It was shown that the Mean Squared Error (MSE) is a poor
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Fig. 2. Examples of exponential decay curves: (a) Animal, SRCNN [5], PLCC=0.9882; (b) Building, SAN [21], PLCC=0.9935; (c) Human, RLLR [4],
PLCC=0.9923; (d) Sports, BIUCBIC [3], PLCC=0.9932; (e) Plant, RCAN [22], PLCC=0.9804; (f) Scenery, VDSR [6], PLCC=0.9804.

criterion in many cases [42]. In [43], Thapa et al. adopted
PSNR and SSIM to compare the performance of several SR
algorithms. In SR benchmark study [18], Yang et al. proposed
a subjective IQA database of image SR (namely ECCV-14 in
this paper) to analyze the effectiveness of six common full-
reference IQA indicators. It was shown that these metrics fail
to match the perceptual qualities of HR images. Small-scale
subjective tests have also been carried out. Reibman et al.
evaluated SR enhanced image quality through subjective tests,
and pointed out that the full-reference IQA metrics cannot
always capture visual quality of HR image [44].

In most practical scenarios, the reference HR images are
not available, thus reduced-reference and no-reference IQA
algorithms are preferred. Yeganeh et al. (namely Waterloo-
15), based on which they proposed a weighted pooling of
frequency energy falloff, dominant orientation and spatial
continuity to derive an objective metric for integer-interpolated
images [15]. Zhou et al. proposed a Quality Assessment
Database for Super-resolved images (QADS) and an IQA
method considering the structural and textural components of
images [20]. Chen et al. presented a hybrid quality metric for
non-integer image interpolation that combined both reduced-
reference and no-reference philosophies [14]. Fang et al.
introduced a reduced-reference quality assessment method for
image SR by predicting the energy and texture similarity
between LR and HR images [16]. In [10], Tang et al. proposed
another reduced-reference IQA algorithm for SR reconstructed
images with information gain and texture similarity combining
saliency detection. Ma et al. proposed a no-reference metric by
supervised learning on a database of reference-free HR images
(called CVIU-17 in this paper) [9]. Furthermore, Fang et al.
designed a Blind model based on CNN for SR-IQA (BSRIQA)
[45]. In addition to the SR-IQA works, some generic IQA
database also presented subject-labeled SR images, such as
PieAPP [46], PIPAL [47] and BAPPS [48]. In Table I, we
summarize publicly available information of existing SR-
IQA databases, where PieAPP-SR represents the SR-related
subset of PieAPP. These databases have greatly promoted the
development of SR-IQA metrics.

Despite the significant effort, existing SR-IQA methods are
limited in three aspects. First, most of them are constrained to
integer scaling factors. Second, the public image SR databases

TABLE I
THE EXISTING SR-IQA DATABASES

Database Source Images Number of
SR Methods

Number of
SR Images Year

ECCV-14 10 9 540 2014
Waterloo-15 13 8 312 2015

CVIU-17 30 9 1,620 2016
SRID 20 8 480 2017

PieAPP-SR 110 5 415 2018
QADS 20 21 980 2019

are limited in size, making it difficult to train SR-IQA models
without encountering serious overfitting problems. Third, there
is no deep learning based model for reduced-reference SR-
IQA.

Focusing on the issues above, we firstly establish a large-
scale image SR database, in which the scaling factor of HR
images can be arbitrary. A reduced-reference CNN-based SR-
IQA method is then proposed, which combines with LR
images as references and is trained on the constructed large-
scale database.

III. PROPOSED LARGE-SCALE SR-IQA DATABASE

Learning-based IQA methods desire large-scale databases
for training. The main challenge in building such databases is
how to label a large number of images with quality ratings. Hu-
man subjective testing is desirable, but is time-consuming and
expensive. Moreover, the fatigue effect when labeling large-
scale datasets often affects the consistency and reliability of
subjective ratings. Here we opt to a semi-automatic approach,
aiming for largely reducing of workload of subjective testing.

A. The Exponential Law in Image SR

To construct a large-scale database that supports deep IQA
models, we need to increase the number of SR images by
an order of magnitude. This requirement inevitably leads
to an explosive growth of the workload of subjective test.
In this work, we address this issue by a semi-automatic
rating mechanism, which is inspired by an observation of
iterative DownSample-SR (DR-SR) that generates a batch of
SR images of regularly distributed quality levels.
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Due to the Nyquist-Shannon theorem, a natural image shows
inferior visual quality after downsampling and its quality
cannot be fully recovered by image DR. As a result, a DS-
SR operation decays visual quality, and with iterative DS-SR,
the quality of image would decay even further. To investigate
the behavior, we perform iterative DS-SR on diverse images
with different image SR algorithms, and conduct subjective
tests to obtain their Mean Opinion Score (MOS) values.
Interestingly, we find that the MOS value decreases with
iteration, approximately following an exponentially decaying
curve (with very few outliers), regardless of the image content
or interpolation method, as shown in Fig. 2. Let Q and t denote
the quality score and the number of SR iterations respectively,
we have

Q(t) = e−bt, t ≥ 0, (1)

where b is a positive constant depending on image content and
SR method. We normalize the quality of pristine HR images to
1, thus all curves pass through a fixed point: Q (0) = 1. Given
b, the quality scores of a set of HR images can be quickly
acquired.

The exponential decay relationship could greatly benefit our
subjective test by reducing the workload. We are able to label a
subset of images with reduced workload and infer the quality
of the remaining images. To examine the feasibility of this
semi-automatic rating, we carry out a dedicated experiment as
follows. Firstly, we randomly select over 500 images of 30
natural scenes and perform iterative DS-SR on these images.
Secondly, we utilize two approaches to obtain the subjective
scores. In the semi-automatic rating, 21 subjects are asked to
score a subset of HR images. Using the exponential decay law
of Eq. (1), we interpolate the MOS values of the remaining
images. Detailed information of this approach is illustrated
in the following Section III. C. In the full subjective test, all
images are scored by all subjects to obtain all MOS values.
Thirdly, we compare the MOS values obtained by the above
two approaches.

In most of IQA tasks, the MOS values tend to converge
with an increased number of subjects, which is termed as data
saturation [49]. Our test in Fig. 3 shows that the data saturation
happens with 15-20 subjects, where the correlation between
MOS values approximates 1. Therefore, we collect 21 groups
of valid scores through subjective experiments to ensure the
number of the subjects is sufficient.

TABLE II
PLCC EVALUATION BETWEEN SEMI-AUTOMATIC RATING AND FULL

SUBJECTIVE TEST

Image Types LR Images HR Images PLCC SRCC KRCC

Animals 7 102 0.9675 0.9558 0.8606
Buildings 7 102 0.9892 0.9482 0.8682
Humans 7 102 0.9771 0.9625 0.8777
Sports 7 102 0.9837 0.9539 0.8716
Plants 4 72 0.9716 0.9261 0.8357

Scenery 4 72 0.9717 0.9701 0.9015

Average 0.9787 0.9522 0.8623

Average Subject Performance 0.9621 0.9250 0.8374

Fig. 3. Data Saturation Curve.

The comparison results are presented in Table II, where
Pearson Linear Correlation Coefficient (PLCC), Spearman
Rank-order Correlation Coefficient (SRCC) and Kendall Rank
Correlation Coefficient (KRCC) are utilized as performance
indicators. The table indicates an encouragingly high correla-
tion between the two approaches. To provide a reference point,
we also compute the correlations between each individual
subject’s labeling and MOS. The average across all subjects is
a meaningful indicator of averaged subject reliability. Clearly,
the semi-automatic rating achieves higher correlation than an
average subject, which is another strong evidence that justifies
the semi-automatic rating approach. Owning the advantages of
low complexity and high accuracy, the semi-automatic rating
is then utilized to generate our large-scale quality database of
image SR.

B. Source Images and SR Algorithms

The first step to construct the database is to collect a batch of
HR images generated by SR algorithms. In the semi-automatic
rating approach, it is achieved by iterative DS-SR on source
images. The source images are selected to cover diversified
scenes including animals, buildings, humans, sports, plants
and scenery. In total, 100 natural images of 1024 × 768
resolution are selected. Then, six typical SR algorithms are
employed to generate HR images, including two interpolation-
based methods (BICUBIC [3], RLLR [4]), two learning-based
SR methods (SRCNN [5], VDSR [6]) and two GAN-based
SR methods(RCAN [22], SAN [21]). In particular, SRCNN,
VDSR, RCAN and SAN are constrained to image SR with
integer scaling factors. We integrate these four methods and
the BICUBIC algorithm to achieve non-integer image SR. In
order to obtain HR images with varying qualities, different
scaling factors, including 1.5, 2, 2.7, 3, 3.6 and 4, are utilized
in the iterative DS-SR process. Different SR algorithms have
different performance, resulting in different quality ranges
under the same scaling factor and DS-SR iterations, which is
unfavorable to the application of Eq. (1). To avoid this issue,
we employ different scaling factors and different iteration
frequencies for different SR algorithms, as shown in Table
III. In particular, the scaling factor and iteration frequency are
constrained to avoid fatal quality error of images, which are
impractical in real-world applications.
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TABLE III
COMPOSITION OF SISAR DATABASE

Source Images Algorithms Factors Iteration
Frequency

Total of
HR Images

100 BICUBIC
RLLR 1.5, 2, 2.7 8, 7, 6 4200

100 SRCNN
VDSR 2 7 1400

100 SRCNN+BICUBIC
VDSR+BICUBIC 1.5, 2.7 8, 6 2800

100 RCAN
SAN 3, 4 7 2800

100 RCAN+BICUBIC
SAN+BICUBIC 3.6 7 1400

(a) MOS: 0.7769 (b) MOS: 0.6036 (c) MOS: 0.4290

(d) MOS: 0.2831 (e) MOS: 0.1709 (f) MOS: 0.0958

Fig. 4. Sample HR Images created by SR algorithms.

From Table III, there are 12,600 HR images generated by
100 natural LR images. These LR images are processed by 10
SR algorithms or combinations of algorithms, with 6 scaling
factors and a maximum iteration frequency of 8. In total, there
are 12,600 HR images generated by image SR. An example
of HR images of the same source is presented in Fig. 4, where
the SR algorithm BICUBIC is used with a scaling factor of 2.

C. Semi-automatic Labeling

We use the semi-automatic rating approach to label the
aforementioned 12,600 HR images. Each batch of images
are processed by three steps: firstly, a subset of this batch
is selected and subject-labeled to obtain the MOS values;
secondly, the parameter b is derived by Eq. (1) and the above
MOS values; thirdly, the inferred MOS (iMOS) values of the
remaining images are calculated with Eq. (1) and b.

The size of subset should achieve a tradeoff between com-
plexity and accuracy. A larger subset for subjective labeling
may increase the overall accuracy but also leads to higher
complexity. However, the formulation of Eq. (1) implies that
the whole curve may be determined by one point, which
we call the anchor point in this work. The anchor point is
primarily set at the bottom half of the curve, or the second half
of iteration frequency. Experimental results with 18 batches
of images generated by different SR algorithms and factors

show that in all cases, the correlations between semi-automatic
rating and full subjective test are very high. In other words,
the position of the anchor point has little impact on the
interpretation performance, which may be contributed to the
effectiveness of Eq. (1). As a result, we randomly select the
anchor point at the bottom half of curve.

Subjective testing is conducted on the anchor point in the
database, which is the most time-consuming part in our test.
We recruit 23 subjects aged between 20 and 30 with regular
visual acuities. The testing procedure follows the Double
Stimulus Continuous Quality Scale (DSCQS) method defined
in ITU R BT. 500-13 [50], where all images are randomly
sorted and presented with unimpaired references. The user
grading follows the rule of Absolute Category Rating (ACR)-
11 scores. After statistical analysis, the scores of 2 subjects
are identified to be outliers while the remaining 21 scores are
averaged to obtain the MOS values. Then the MOS values are
normalized to [0,1] with the maximum value 10 in ACR-11.
Substituting the MOS value of anchor point into Eq. (1), we
obtain the parameter b as:

b = − ln(MOS)

k
, (2)

where k is the number of iterations for the anchor point. With
the value b we can derive all iMOS values by Eq. (1).

By the above process, we construct the SR Image qual-
ity database with Semi-Automatic Ratings (SISAR), which
contains a total of 12,600 labeled HR images generated by
SR. Among them, only 1,800 images are manually labeled
with a workload of 3 hours per subject while the other
images are calculated by Eq. (1). By contrast, a full subjective
test of all images takes 21 hours per subject. Therefore, the
semi-automatic rating significantly reduces the workload of
subjective test but generates iMOS values that are highly
correlated to human ratings.

D. Summary of SISAR Database

The 12,600 HR images in the SISAR database are generated
by six scaling factors with ten types of SR algorithms that
include six SR algorithms (BICUBIC, RLLR, SRCNN, VDSR,
RCAN and SAN) and four combined SR operations (SR-
CNN+BICUBIC, VDSR+BICUBIC, RCAN+BICUBIC and
SAN+BICUBIC). The proposed database covers diverse image
contents as shown in Table IV. The histogram of the final
iMOS values obtained by the proposed semi-automatic rating
approach are shown in Fig. 5, where it appears that the test
HR images well cover the full range of quality levels.

TABLE IV
COMPOSITION OF SISAR DATABASE

Animals Buildings Humans Sports Plants Scenery

Source Images 20 20 20 20 11 9
HR Images 2520 2520 2520 2520 1386 1134
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Fig. 5. Histogram of the iMOS Values in the SISAR database.

IV. PROPOSED DEEP SR-IQA MODEL

We propose an end-to-end reduced-reference method for
SR-IQA. The proposed model, namely Deep Image Super-
resolution Quality (DISQ) index, is a two-stream CNN to
evaluate the perceptual quality of HR images with LR images
as references. The network architecture is illustrated in Fig. 6.
Firstly, the HR and LR images are fed into different streams
of CNN to extract global image features. Then, a feature
fusion step is conducted in order to combine discriminative
features for the quality regression. Finally, the fused features
are regressed onto the quality score of HR image by fully
connected layers. In the following subsections, the network
structure, feature fusion and model training will be discussed
in detail.

A. Network Architecture

The proposed DISQ is built on an end-to-end learning
framework that estimates the quality score of an HR image
with both the HR image and its corresponding LR image
as inputs. All images are first split into non-overlapping
patches and then fed into sub-streams of network for feature
extraction and pooling to obtain global features. Considering
the diversity of SR factors including non-integer ones, it is
difficult to process all types of patches with a unified network.
The proposed DISQ firsts utilize two convolutional modules
to assemble patch-level features to obtain global features of
the input LR and HR images, respectively. Then, the feature
fusion module is employed to reduce all features to the same
dimension through pooling and feature subtraction. Finally,
the fully connected module is used to construct the mapping
between the fused features and the quality of HR images.

The sub-streams of network are inspired by the architecture
of VGG-16 network [51]. In the convolutional modules, all
convolutions have a kernel size of 3×3 with altered kernels.
Combining with max-pooling layers with a stride of 2, the
network extracts local features while reducing the size of the
feature maps. We employ Rectified Linear Unit (ReLU) as the
nonlinear activation function. The first convolutional module,
named as CNNLR, is designed to learn features of LR images.

The inputs are the patches of an LR image with the size of
32×32. Another convolutional module, denoted as CNNHR,
is a feature extractor of HR images. We divide each HR
image into 128×128 patches as inputs to generate feature maps
of a whole HR image. To facilitate feature fusion, the two
CNNs contain 2 and 4 max-pooling layers correspondingly,
and several convolutional layers to obtain features with similar
shapes.

After feature fusion, the fused features are fed into the fully
connected module to be regressed onto the perceptual scores.
There are four fully connected layers with 2048, 1024, 256 and
1 neurons, respectively. We apply dropout into the first three
fully connected layers with a probability of 0.5. By randomly
masking out the neurons, dropout helps prevent overfitting.
The last layer is a simple linear regression with a scalar output
that predicts the quality score.

B. Feature Fusion

We adopt CNNLR and CNNHR as the feature extractors to
produce the assembled patch-level feature maps FH and FL

directly from the input HR image patches Ip and LR image
patches Irp, respectively. According to the internal structure
of two convolutional modules, we can calculate the shape of
output feature maps.

Feature Extraction:
FL = CNNLR(Irp; θ1), shape = (NL, 8, 8, 512),

FH = CNNHR(Ip; θ2), shape = (NH, 8, 8, 512).

(3)

Here θ1 and θ2 indicate the parameters of CNNs. NH and NL

denote the numbers of HR and LR image patches. The FH

and FL are collections of image patch features.
In order to transform the patch-level features into the image-

level features, we first perform a pooling operation before
image feature fusion. Specifically, the feature map is pooled
into one mean tensor, max tensor and min tensor in the first
dimension. Then the three tensors are concatenated into a new
feature set without any further modifications.

Feature Pooling:
Fmean = mean(F ; axis = 1), shape = (1, 8, 8, 512),

Fmax = max(F ; axis = 1), shape = (1, 8, 8, 512),

Fmin = min(F ; axis = 1), shape = (1, 8, 8, 512),

Fpool = (Fmean, Fmax, Fmin), shape = (3, 8, 8, 512).

(4)

After feature pooling, there are two pooled global features
FHpool and FLpool with identical structure created by FH and
FL, respectively. We fuse the extracted image feature maps
FHpool and FLpool before inputting to the regression part of the
network. In image SR, the HR images are reconstructed based
on the global information of LR images, which renders the
difference between HR and LR image features to a meaningful
representation in the feature space. In order to calculate their
distance, the feature fusion step follows [17]:

Feature Fusion: Ffuse = FHpool − FLpool. (5)

Idealy, FLpool in Eq. (5) should be replaced by F 0
Hpool,

where F 0
Hpool denotes the pooled feature set of the perfect
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Fig. 6. Proposed DISQ Framework.

HR image. However, this perfect image is unfortunately un-
available. To investigate the impact of replacing F 0

Hpool with
FLpool, we carry out two empirical studies. First, we perform
test on a reference image and several corresponding LR images
to calculate the difference of F 0

Hpool and FLpool. The results
are given in Table V, which shows that the MSE of the two
features are negligible relative to FHpool−FLpool. Second, we
compute the correlation between the norm of FHpool−FLpool

and subjective scores of images. The results shown in Fig. 7
suggest that the correlation is strong. These empirical studies
lead us to adopt Eq. (5). Furthermore, the effectiveness of
this fusion method is also validated by experiments in the
following Section V.C.

TABLE V
MSE BETWEEN F 0

Hpool AND FLpool , WHICH IS RELATIVELY SMALL

COMPARE WITH THE MSE BETWEEN FHpool AND FLpool ( 10−2)

Downsample
by 2

Downsample
by 2.5

Downsample
by 2.7

Downsample
by 3

MSE 3.357E-03 3.363E-03 3.401E-03 3.380E-03

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

Norm of FHpool - FLpool

M
O
S

Fig. 7. Correlation between MOS and the Norm of FHpool − FLpool.

C. Model Learning

For an input HR image I and a reference LR image Ir, the
proposed SR-IQA network M is used to predict the perceptual
quality of HR image Qpred:

Qpred =M((Ir, I); θ), (6)

where θ indicates all parameters of this network.
Denote the ground truth quality of the input as Qgt. The

training goal of network M is to find the optimal parameter
setting, so as to minimize the overall quality prediction loss
between Qpred and Qgt of all HR images in the training
dataset. We apply the MSE as loss function in the training
process, which is widely used in various regression tasks.
Moreover, in order to avoid overfitting, l2-norm is added to
the loss as a penalty term. Thus, the loss function is:

Loss =
1

N

N∑
i=0

‖Qpred,i −Qgt,i‖2 + λ ‖θ‖2 , (7)

where the subscript i of Qpred,i and Qgt,i represent the pre-
dicted quality and group truth of the i-th image, respectively.
λ is the regularization coefficient set to 0.0005 in our work.

The Adam optimizer [52] is adopted to minimize the loss
function. The main advantage of Adam is that after bias
correction, the learning rate of each epoch has a definite range,
which makes the parameters more stable. The learning rate
is η=0.0001, and other parameters of Adam optimizer are
of default settings. During model training, each batch only
contains one HR image and the corresponding LR image, and
the batch size is equal to 1 strictly. The number of the training
epochs is set to 9.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
DISQ model and compare it with 16 other IQA metrics on four
datasets. The cross-database test is also performed to assess
the generalizability of the algorithms.

A. Experimental Setups

Databases: We train the DISQ model on the proposed
SISAR database. To verify the generalizability of the proposed
method, we also employ four publicly available databases,
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Fig. 8. Typical HR images of SISAR (line 1), Waterloo-15 (line 2), CVIU-17 (line 3), QADS (line 4) and PieAPP-SR (line 5).

Waterloo-15 [15], CVIU-17 [9], QADS [20] and PieAPP-SR
[46], for cross-database validations. Typical images of these
databases are listed in Fig. 8. In particular, the SRID database
in Table I is unavailable for test and ECCV-14 is a subset of
CVIU-17. As a result, they are not tested in our work.

SISAR contains 12,600 HR images. We divide it into
training and test sets with a 80/20 split and no content
overlapped, and utilize the 5-fold cross-validation to evaluate
the performance of DISQ. The performance presented in the
Table VI is the average performance of all test sets.

Waterloo-15 is an interpolation image database containing
312 interpolated HR images and the corresponding LR images
from 13 source images [15]. The HR images were created by
eight interpolation algorithms combined with scaling factors
of 2, 4 and 8.

CVIU-17 is a collection of 180 LR images and 1,620 HR
images, which were generated by nine SR methods and six
integer scaling factors. The database is an extension of ECCV-
14 [18], which contains 540 HR images.

QADS is a super-resolved image database, which created
980 HR images using 21 image SR methods from 20 reference
images.

PieAPP-SR is a collection of all SR images in the PieAPP
[46], which contains 415 SR images generated by Aplus [53],
SRCNN [5] algorithms and so on.

The score ranges and types are not unified in these database,

we choose the settings of SISAR as our standard in these
experiments. Subjective scores on the other three databases
are linearly scaled to the range of [0,1].

Evaluation: We use two common measurements to evaluate
the performance of our algorithm by calculating the correlation
between the subjective and objective quality scores: PLCC
and SRCC. PLCC is used to measure the accuracy of IQA
algorithms. SRCC is used to evaluate the monotonicity of
quality predictions. For these metrics, a higher value up to
1 indicates better performance of a specific IQA method.
The results in this work are the average values obtained
by calculating the correlation coefficients based on different
image contents.

B. Performance Comparison

The performance evaluation results of the proposed DISQ
model are listed in Table VI and compared with other IQA
methods, where the best results are shown in bold and
the second-best results are in bold italics, respectively. The
compared algorithms include four no-reference IQA methods
(DIIVIVE [30], BRISQUE [31], HOSA [32], CNN-IQA [11])
designed for general distorted images, six no-reference ISA
indicators (LPC-SI [36], MLV [37], GPC [38], SPARISH
[39], Synthetic-MaxPol [40], HVS-MaxPol [35]), two focus
quality assessment algorithms (FQPath [54], FocusLiteNN
[55]), and four related SR-IQA works (NSS-SR [15], HYQM
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TABLE VI
PERFORMANCE COMPARISON OF IQA METHODS

Waterloo-15 CVIU-17 QADS PieAPP-SR SISAR
Methods PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DIIVIVE 0.6202 0.5827 0.4602 0.4580 0.4404 0.4654 0.5828 0.6731 0.5797 0.5685
BRISQUE 0.7527 0.7626 0.5025 0.4644 0.5242 0.5461 — — 0.5882 0.6016
CNN-IQA 0.5282 0.6339 0.3112 0.3067 0.4251 0.4959 0.5370 0.4707 0.8523 0.8568
HOSA 0.8287 0.8236 0.5927 0.5450 0.6343 0.6409 0.8009 0.7931 0.5372 0.5197
LPC-SI 0.8017 0.4689 0.4547 0.4164 0.5027 0.4902 0.6420 0.5939 0.7854 0.6563
MLV 0.7313 0.3508 0.5655 0.4628 0.2471 0.2456 0.3084 0.3244 0.7659 0.5561
GPC 0.8310 0.5058 0.5878 0.5576 0.4002 0.4470 0.7222 0.7476 0.5545 0.7394
SPARISH 0.6988 0.6584 0.4711 0.4390 0.5849 0.6530 0.7956 0.7858 0.6444 0.6910
Synthetic-MaxPol 0.5909 0.2938 0.4920 0.4537 0.4057 0.3845 0.6376 0.6301 0.5838 0.4948
HVS-MaxPol 0.7905 0.7272 0.5448 0.5557 0.5918 0.5876 0.7410 0.7197 0.5886 0.3920
FQPath 0.8038 0.7544 0.5122 0.5111 0.4879 0.4750 0.7201 0.5506 0.4445 0.4091
FocusLiteNN 0.6887 0.6979 0.4843 0.5205 0.5667 0.5643 0.6322 0.5680 0.8739 0.8760
NSS-SR 0.7733 0.6000 0.5504 0.4993 0.3670 0.2160 0.4383 0.1143 0.4507 0.3824
HYQM 0.4108 0.2096 0.2225 0.1125 0.4506 0.4443 0.7469 0.4480 0.5613 0.5046
LNQM 0.7488 0.7022 — — 0.7220 0.7274 0.8105 0.7679 0.6337 0.5806
BSRIQA 0.7282 0.6767 0.4938 0.5841 0.6515 0.6732 0.8155 0.8141 0.8863 0.8832

DISQ 0.8577 0.8373 0.6690 0.5774 0.7754 0.7716 0.8427 0.8073 0.9032 0.9051

[14], LNQM [9], BSRIQA [45]). The source codes of these
metrics are obtained from the authors’ public websites. Among
them, the CNN-IQA, FocusLiteNN and BSRIQA are data-
driven algorithms, and are retrained on the SISAR database
following the available codes to realize model convergence.
For the machine-learning based LNQM method, its training
code is publicly unavailable, thus its results are provided for all
databases except for its training set CVIU-17. The BRISQUE
method encounters errors when processing PieAPP-SR thus
the corresponding results are not presented. From Table VI,
we have the following observations:

First, DISQ obtains the highest PLCC and SRCC on the
Waterloo-15 database, and the GPC and HOSA achieves the
second best performance on PLCC and SRCC, respectively.
In this database, all images were interpolated with integers.
The results show that the proposed DISQ algorithm can well
generalize the interpolated images with integer scaling factors.

Second, DISQ achieves a promising performance on the
CVIU-17 database, while other metrics present moderate per-
formances. CVIU-17 was created by several popular image SR
algorithms, in which HR images are not limited to the common
distortions. Therefore, the features modeled in common IQA
methods cannot cover diverse visual contents. Although NSS-
SR and NYQM are designed for image SR, they do not work
well on this database, because the hand-crafted features of
these methods are built specifically for image interpolation.

Third, most non-SR-IQA methods are less effective on the
QADS database. DISQ and LNQM, show excellent perfor-
mance in comparison with other methods. Between them,
DISQ utilizes the large-scale database and deep learning to
effectively extract intrinsic features, and shows much bet-
ter performance. The moderate performance of the retrained
CNN-based CNN-IQA, FocusLiteNN and BSRIQA may be
attributed to the relatively shallow network depth.

Fourth, the proposed DISQ presents the highest PLCC
on PieAPP-SR, and the BSRIQA achieves the best SRCC
performance. Both of them are CNN-based SR-IQA methods,

which can predict the quality of SR images more accurately
than other methods. Moreover, DISQ ranks the second in terms
of SRCC.

Fifth, it can be clearly observed that DISQ outperforms
other metrics on the SISAR database. The retrained CNN-
IQA, FocusLiteNN and BSRIQA achieve good performance,
and most no-reference ISA algorithms show a moderate cor-
relation with SISAR database. However, the performance of
the retrained models drops significantly on other databases.

To fairly investigate model generalization ability, Table VII
reports the average performances of the date-driven methods
trained on SISAR under comparison on other benchmark
databases, and the best results are highlighted in bold. As can
be observed, DISQ achieves the best average performance in
cross-database experiments. The results demonstrate the high
generalization ability of the proposed DISQ model.

TABLE VII
PERFORMANCE COMPARISON OF THE CNN-BASED METHODS TRAINED

ON SISAR

CNN-based Methods PLCC SRCC

CNN-IQA 0.4504 0.4768
FocusLiteNN 0.5930 0.5877
BSRIQA 0.6723 0.6870
DISQ 0.7862 0.7487

C. Ablation Study

To evaluate the contribution of each component in the
proposed DISQ method, we conduct a series of ablation
experiments. The ablation results are presented in Table VIII
to XI. The best results are highlighted in bold.

1) Influence of the references LR images: In this experi-
ment, we exclude the reference LR image in our model, result-
ing in a network with CNNHR and fully connected modules
only. This no-reference model is trained on SISAR under the
same parameter settings and training steps as the proposed
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TABLE VIII
DISQ PERFORMANCE COMPARISON WITH OR WITHOUT LR IMAGE AS REFERENCE

Models SISAR Waterloo-15 CVIU-17 QADS PieAPP-SR

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

w/o 0.8805 0.8867 0.7473 0.6522 0.5502 0.4543 0.5740 0.5691 0.5857 0.5886
w/ 0.9032 0.9051 0.8577 0.8373 0.6690 0.5774 0.7754 0.7716 0.8427 0.8073

TABLE IX
DISQ PERFORMANCE COMPARISON FOR DIFFERENT SETTINGS OF PATCH SIZES

Patch Sizes SISAR Waterloo-15 CVIU-17 QADS PieAPP-SR Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

LR-32, HR-128 0.9032 0.9051 0.8577 0.8373 0.6690 0.5774 0.7754 0.7716 0.8427 0.8073 0.8096 0.7799
LR-32, HR-256 0.9252 0.9240 0.7570 0.7719 0.5185 0.5247 0.6455 0.6488 0.6185 0.6103 0.6929 0.6959
LR-64, HR-128 0.9016 0.9119 0.8356 0.8060 0.4745 0.6002 0.6596 0.7075 0.8123 0.7473 0.7367 0.7546
LR-64, HR-256 0.9025 0.9012 0.8675 0.8469 0.5412 0.5419 0.6836 0.6755 0.4600 0.5226 0.6910 0.6976
LR-128, HR-256 0.9096 0.9019 0.7645 0.8140 0.6137 0.6255 0.6508 0.5871 0.5782 0.5415 0.7034 0.6940

TABLE X
DISQ PERFORMANCE COMPARISON OF DIFFERENT FEATURE POOLING METHODS

Models SISAR Waterloo-15 CVIU-17 QADS PieAPP-SR

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Max Pooling 0.9039 0.9119 0.8161 0.7854 0.5311 0.4788 0.5751 0.5634 0.7485 0.7107
Mean Pooling 0.8868 0.8944 0.8451 0.8148 0.6462 0.6058 0.6212 0.5722 0.7051 0.7312
Min Pooling 0.8492 0.8572 0.6876 0.6646 0.4310 0.4632 0.4343 0.4230 0.5171 0.4682

Joint Pooling 0.9032 0.9051 0.8577 0.8373 0.6690 0.5774 0.7754 0.7716 0.8427 0.8073

TABLE XI
DISQ PERFORMANCE COMPARISON USING DIFFERENT FEATURE FUSION METHODS

Fusion Methods
& Shape of Ffuse

SISAR Waterloo-15 CVIU-17 QADS PieAPP-SR

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Method 1: (3, 8, 8, 512) 0.9032 0.9051 0.8577 0.8373 0.6690 0.5774 0.7754 0.7716 0.8427 0.8073
Method 2: (6, 8, 8, 512) 0.8768 0.8707 0.8348 0.8029 0.5447 0.5933 0.6983 0.6740 0.7334 0.6832
Method 3: (9, 8, 8, 512) 0.8944 0.9001 0.8559 0.8435 0.5521 0.4885 0.6474 0.6359 0.6819 0.7292

reduced-reference DISQ model. Its testing performance on
different databases is listed in Table VIII.

Compared with two-stream DISQ model, the no-reference
model achieves inferior performance, which justifies the effec-
tiveness of introducing LR image as reference in our model.

2) Selection of image patch sizes: The DISQ model utilizes
a two-steam CNN network to process LR and HR images,
where these images are split into patches. Table IX lists the
performance of the models with different patch sizes on several
databases under the same training settings. The experimental
results show that the DISQ model presents the best average
performance on five databases with the patch sizes of 32×32
and 128×128.

3) Selection of feature map pooling method: In the pro-
posed network, the feature map is pooled into a concatenated
tensor, which is described in Section IV.B. Previous studies
[11], [45] have proved that the concatenated pooling feature
has certain advantages compared with common mean pooling
or max pooling. To intuitively illustrate the effectiveness of
the joint features, we report the performance comparison of

different pooling methods under identical training epochs in
Table X. The results show that the joint pooling method
significantly improves the accuracy of quality prediction, and
the performance of the min pooling is the lowest. The merged
feature map possesses rich and robust image features, which
contributes to the mapping from image features to quality.

4) Effectiveness of feature fusion methods: We incorporate
the LR and HR image features in two other methods, which
were also discussed in [17]. In summary, the global image
features FHpool and FLpool are merged in the following three
methods

Method 1: Ffuse1 = FHpool − FLpool,

Method 2: Ffuse2 = (FHpool, FLpool),

Method 3: Ffuse3 = (FHpool, FLpool, FHpool − FLpool).

Under the same training settings, the performance of our
model combined with different feature fusion methods are pro-
vided in Table XI. Method 1 exhibits the optimal performance
with the fewest parameters on most databases. The network
that merges FHpool and FLpool in Method 2 is theoretically
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capable of learning FHpool − FLpool in the regression part.
However, the performance is worse than Method 1. Method
3 unites the first two but fails to further improve the quality
prediction accuracy on most benchmarks even with an increas-
ing number of parameters. With better or similar performance,
Method 1 uses only 1/2 and 1/3 of the numbers of parameters
when compared with Methods 2 and 3, respectively.

VI. CONCLUSIONS

In this work, we exploit the quality distribution of itera-
tive DS-SR operations and propose a semi-automatic rating
approach that greatly reduces the labeling workload whilst
keeping high labeling accuracy. With this approach, we build
SISAR, the largest-of-its-kind database for SR-IQA. Then,
we propose an end-to-end DISQ model for SR-IQA, which
uses a two-stream DNN for feature extraction, followed by
a feature fusion network for quality prediction. By training
on the SISAR database, the DISQ model achieves superior
performance than state-of-the-art SR-IQA algorithms. Cross-
database validation also reveals the generalization ability of
our DISQ model. The proposed database and quality model
will be made publicly available to facilitate reproducible
research.
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