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Abstract—In many science and engineering fields that require computational models to predict certain physical quantities, we are
often faced with the selection of the best model under the constraint that only a small sample set can be physically measured. One
such example is the prediction of human perception of visual quality, where sample images live in a high dimensional space with
enormous content variations. We propose a new methodology for model comparison named group maximum differentiation (gMAD)
competition. Given multiple computational models, gMAD maximizes the chances of falsifying a “defender” model using the rest models
as “attackers”. It exploits the sample space to find sample pairs that maximally differentiate the attackers while holding the defender
fixed. Based on the results of the attacking-defending game, we introduce two measures, aggressiveness and resistance, to summarize
the performance of each model at attacking other models and defending attacks from other models, respectively. We demonstrate the
gMAD competition using three examples—image quality, image aesthetics, and streaming video quality-of-experience. Although these
examples focus on visually discriminable quantities, the gMAD methodology can be extended to many other fields, and is especially
useful when the sample space is large, the physical measurement is expensive and the cost of computational prediction is low.

Index Terms—Model comparison, gMAD competition, image quality, image aesthetics, streaming video quality-of-experience.
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1 INTRODUCTION

IN many science and engineering fields, we desire to con-
struct computational models that can predict certain mea-

surable physical quantities. A common constraint we are
often faced with is that the physical measurement process is
costly. As a result, only a small number of samples can be
measured, relative to the large sample space within which
the computational models attempt to make predictions. This
casts major challenges to the validation, comparison, and
improvement of the computational models. One such exam-
ple is the prediction of perceptually discriminable quantities
such as image quality [1], where multiple computational
models for image quality prediction are available and we
are asked which one performs the best.

Model comparison has been a long-standing problem [2].
A common theme of conventional direct model compar-
ison methods is to prepare a number of samples from
the sample space, collect physical measurements as the
ground-truth, and select the model that best fits the ground-
truth measurements in terms of certain statistical criteria.
Such criteria include statistics on (1) prediction accuracy,
e.g., the mean squared error (MSE) [3] and the Pearson’s
linear correlation coefficient [4] between model predictions
and ground truths; (2) prediction monotonicity, e.g., the
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Spearman’s rank correlation coefficient (SRCC) [4] between
model predictions and ground truths; and (3) prediction
consistency, e.g., the outlier ratio that accounts for the per-
centage of unreasonable predictions. Assume the evaluation
is independent, meaning that the models have never seen
the test samples, then such statistics provide a basis for
comparing computational models on a given set of samples.

There are two interrelated problems of direct model com-
parison methods. First, it is commonly believed unfair to
compare models with different complexities solely by their
goodness of fit [5]. The principle of Occam’s razor [6] sug-
gests that for equal goodness of fit, a simpler model is better.
Many model comparison approaches that incorporate a sim-
plicity measure have been proposed, including the Akaike
information criterion [5], the shortest data description [7],
and the Bayesian information criterion [8]. Regardless of
whether the heuristic of picking the simpler model or the
Occam’s razor is well justified, measuring the complexity of
a model is a difficult problem by itself. The most intuitive
idea is to count the number of parameters, but even a single
continuous-valued parameter contains an infinite amount
of information. An alternative measure is the description
length, which depends on the description method, and the
absolute shortest description, i.e., the Kolmogorov complex-
ity [9], is not computable. Thus a question that follows
is whether the complexity in computing the description
length should be counted as part of the model complexity.
Moreover, how to strike a right balance between goodness
of fit and simplicity is a difficult question to answer and
could be application dependent. In addition, recent studies
of deep neural networks suggest that deeper networks with
a gigantic number of parameters could generalize better
than shallower networks with a smaller number of param-
eters [10], adding more complications to model comparison
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methods that incorporate complexity measures.
Second, there is often a major conflict between the large

scale (and possibly high dimensionality) of the sample space
and the limited scale of the affordable physical measure-
ment. For example, consider the space of all visual images.
This sample space is of the same dimension as the pixel
number in the image, which is often in the order of mil-
lions. Collecting ground-truth data via subjective testing is
expensive and time-consuming. Therefore, a typical “large-
scale” subjective experiment allows for a maximum of a
few thousand sample images to be examined, which are
deemed to be extremely sparsely distributed in the sample
space. Model comparison methods based on limited sam-
ples assume that the samples are sufficiently representative,
an assumption that is often doubtful. The verification of
such representativeness is by itself a challenging problem
without enough ground-truth samples.

Conventional direct model comparison methods have
two features in common. First, they provide absolute as-
sessments, meaning that the evaluation of one model is
independent of other models. Model comparison occurs
after such absolute assessments have been performed on
all competing models. Second, all assessments attempt to
prove a model to be correct by measuring its goodness of fit.
An exception is the model falsification methodology [11],
where a model is rejected when certain statistical criteria
between the ground-truth measurements and the model
predictions are outside some prescribed bounds. A signif-
icant departure from conventional direct model compari-
son approaches started from the MAximum Differentiation
(MAD) competition method [12]. Given two computational
models, MAD works by falsifying a model using the second
model in the most efficient way and a model that is more
difficult to be falsified is considered better. To select samples
that maximally discriminate between the two models, MAD
employs a gradient-based iterative algorithm to synthesize
a pair of samples that maximize/minimize the responses of
one model while holding the other fixed. The procedure is
repeated with the roles of the two models switched. Only
such extreme samples are subject to physical measurement.
MAD gives us an opportunity to largely reduce the number
of samples for testing because theoretically only one coun-
terexample is sufficient to falsify a model.

Nevertheless, several limitations of MAD impede its
wide usage in practical applications. First, MAD relies on
gradient information of the two models to solve a con-
strained and possibly nonconvex optimization problem.
This is not plausible for sophisticated computational mod-
els, whose gradients are difficult to compute, if not im-
possible. Second, MAD-synthesized samples may be highly
unnatural [12], whose practical implications on how to
improve existing models in real-world applications may
be limited. Third, it is difficult to control the synthesized
samples to fall in any specific domain of interest, which
may be a subset of the sample space. Fourth, it applies to
two models only and the extension to account for multiple
models is nontrivial.

We aim to develop the principle behind MAD [12] to-
wards an efficient and practical methodology for compar-
ing multiple computational models of measurable physical
quantities. We name our method the group MAximum Dif-

ferentiation (gMAD) competition. When attempting to falsi-
fy a model (denoted as the defender), we work with a large-
scale sample set without performing physical measure-
ments. We search for sample pairs that maximize/minimize
the responses of a group of other models (denoted by at-
tackers), while fix the responses of the defender. The attacks
are optimal in the sense that the defender is most likely to
be falsified by the attackers. gMAD runs this game among
all models until each and every of them has played the de-
fender role once. Psychophysical experiments on generated
sample pairs are then conducted. Moreover, we introduce
the aggressiveness and resistance measures to quantify how
aggressive an attacker is at falsifying a defender and how
resistant a defender is at defending itself against an attack-
er, respectively. The pairwise aggressiveness and resistance
statistics are aggregated into a global ranking. The gMAD
competition is readily extensible, allowing future models to
be added with minimal additional work.

To demonstrate gMAD in a practical setting, we apply it
to the field of image quality assessment (IQA) [1], [3] and
report the competition results on 16 IQA models. Careful
inspections of selected gMAD image pairs shed light on
how to improve existing IQA models and develop next-
generation models. We also explore gMAD in two more
applications—image aesthetics evaluation [13] and stream-
ing video quality-of-experience (QoE) prediction [14].

2 THE GMAD COMPETITION METHODOLOGY

2.1 Problem Formulation and A Toy Example
We assume a sample space S , upon which a physical quan-
tity q ∈ R is measurable for any sample s ∈ S . A group
of computational models {Ci}Mi=1 are also assumed, each of
which takes a sample s as input and makes a prediction
of q(s). The goal is to compare the relative prediction
performance among all models with a limited number of
physical measurements.

The gMAD competition method works with a sample
set O = {si}Ni=1 ⊂ S . gMAD selects the sample set O that
covers the domain of interest within the sample space S .
A good example is the natural image subset in the set of
all possible digital images. Only a very small number of
samples are selected by gMAD for physical measurements
and thus the size of O is not a major concern. As such, O
can be selected to densely cover the domain of interest.

We first illustrate the idea of the gMAD competition
using a toy example as shown in Fig. 1. We assume two
models, Model I and Model II, to predict a continuous quan-
tity q, which varies over an one-dimensional sample space.
The physical measurement of q is expensive at any sample
point, but the computation of model predictions is cheap.
The predictions by Model I and Model II are shown in
Fig. 1(a), where we observe that the models generally agree
with each other but may make very different predictions at
certain sample points. The question is how to determine the
better model with a minimal number of samples being phys-
ically measured. gMAD aims to maximize the efficiency of
falsifying the models by letting them compete. The process
is better explained in a scatter plot (Fig. 1(b)) of Model I
versus Model II. The samples that have the same Model I
response may expect different Model II responses, among
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Fig. 1. A toy example of the gMAD competition. (a) Predictions by Model
I and Model II. (b) Plot of Model II against Model I. (A, B) and (C, D) are
the gMAD sample pairs subject to physical measurement.

which we are interested in two samples corresponding to
the minimal and maximal Model II responses, respectively.
When we go through the Model I axis, the pair with the
maximum response difference of Model II are selected, as
Points A and B in Fig. 1(b). Similarly, the sample pair that
maximize the response difference of Model I for equal Mod-
el II response are selected, as PointsC andD in Fig. 1(b). The
two sample pairs (A,B) and (C,D) are subject to physical
measurement. (A,B) is the best counterexample that Model
II finds to falsify Model I. If the ground-truth q(A) and
q(B) are substantially different, it provides a strong case
to falsify Model I. Similarly, (C,D) could falsify Model II.
The outcome of the test falls in one of the three cases. In
the first case, one model is falsified and the other is not;
a clear winner is obtained. In the second case, no model
is falsified, indicating that the two models have strong

agreement with each other and cannot be differentiated.
In the third case, both models are falsified. Although there
is no clear winner, the results may help us identify model
problems and suggest ways to combine them into a single
better model.

2.2 gMAD Competition Method

We summarize the gMAD competition procedure below.

• Step 1. Apply all M models to all samples in O to
create a model prediction matrix P ∈ RM×N , where
the entry pij is the prediction of q(sj) given by Ci.

• Step 2. Choose C1 as the defender (i = 1). The rest
M − 1 models are the attackers.

• Step 3. Divide the samples into K bins based on
pi (the i-th row), indexed by k ∈ {1, 2, · · · ,K}.
Initialize k to 1.

• Step 4. Group the samples in the k-th bin to a subset
Oik, which are considered to have similar responses
of the defender Ci.

• Step 5. Choose Cj (j 6= i) as the current attacker.
• Step 6. Within Oik, find a pair of samples (slijk, s

u
ijk)

that correspond to the minimal and maximal re-
sponses of Cj . This extremal pair is referred to as the
gMAD counterexample suggested by the attackerCj ,
attempting to falsify the defender Ci at the level k.

• Step 7. Choose another model Cj as the attacker and
repeat Step 6 until all M − 1 attackers are exhausted.

• Step 8. Set k = k + 1 and repeat Steps 4-7 until all
levels are exhausted (k = K).

• Step 9. Choose the next model Ci as the defender by
setting i = i+ 1 and repeat Steps 3-8 until all models
are exhausted (i = M ).

• Step 10. Perform physical measurements on the se-
lected gMAD sample pairs.

– Case 1. Record 2M(M − 1)K physical mea-
surements for all M(M − 1)K sample pairs.

– Case 2. For the defender Ci and the attacker
Cj , find the pair (slij , s

u
ij) = (slijk? , s

u
ijk?),

where

k? = arg max
k∈{1,2,··· ,K}

∣∣∣q(suijk)− q(slijk)
∣∣∣ . (1)

Record 2M(M−1) physical measurements for
M(M − 1) extremal pairs.

• Step 11. Conduct statistical analysis (Section 2.3) on
the physical measurements for model comparison.

In Step 10, two physical measurement processes are
presented. In the first case, the defender is attacked by every
attacker at every response level, while in the second case,
the defender is attacked once by each attacker at the most
differentiable response level. The specific usage of the two
cases is application dependent.
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2.3 Data Analysis Method

Each gMAD sample pair is associated with two models.
We first compare the models in pairs and aggregate the
pairwise statistics into a global ranking via rank aggregation
tools [15]. We introduce the notions of aggressiveness and
resistance. The aggressiveness aij measures how aggressive
the attacker model Ci is at falsifying the defender model Cj
and is computed by

aij =

∑K
k=1 wjkq̄ijk∑K
k=1 wjk

, (2)

where q̄ijk describes the preference to the sample suijk over
slijk selected from the k-th subset with Ci and Cj being
the attacker and the defender, respectively. q̄ijk is obtained
through the physical measurements and the specific ap-
proach could be application dependent (examples given in
Sections 3 and 4). A higher q̄ijk suggests q(suijk) is clearly
larger than q(slijk) and vice versa. When q̄ijk is close to 0,
q(suijk) and q(slijk) are difficult to differentiate. wjk is the
number of samples in the k-th subset, acting as a weight
factor. aij is expected to be non-negative with a larger value
indicating stronger aggressiveness of Ci over Cj . However,
it may be negative in theory, meaning that the order of the
sample pair selected by Ci contradicts the physical mea-
surements. In other words, a negative aij reveals a strong
failure case of Ci. The pairwise aggressiveness statistics of
all models form an aggressiveness matrix A.

The resistance rij measures how resistant the defender
model Ci is to be defeated by the attacker model Cj and is
computed by

rij =

∑K
k=1 wik(1− |q̄jik|)∑K

k=1 wik
. (3)

A higher rij indicates stronger resistance of Ci against
Cj . The pairwise resistance statistics of all models form a
resistance matrix R.

The pairwise comparison results may be aggregated into
a global ranking via the maximum likelihood method for
multiple options [15]. Let µµµx = [µx1 , µ

x
2 , · · · , µxM ] ∈ RM

be the global ranking score vector, where x ∈ {a, r}. We
maximize the log-likelihood of µµµx

arg max
µµµx

∑
ij

xij log
(
Φ(µxi − µxj )

)
subject to

∑
i

µxi = 0,
(4)

where Φ(·) is the standard normal cumulative distribution
function (CDF). The constraint

∑
i µ

x
i = 0 is added to

resolve the translation ambiguity. Other constraints such as
setting the first score to zero µx1 = 0 are also applicable.
The optimization problem in (4) is a convex one and enjoys
efficient solvers. When M = 2, the maximum likelihood
estimate reduces to the Thurstone’s law [16] and has a closed
form solution (assuming µx1 + µx2 = 0)

µx1 = −µx2 = Φ−1
(

x12
x12 + x21

)
, (5)

where Φ−1(·) is the inverse CDF of the standard normal.
The pairwise resistance statistics can be aggregated in a

similar fashion. Other ranking aggregation algorithms such
as hodgeRank [17] and ranking by eigenvectors [18] may
also be applied.

The aggregated aggressiveness and resistance measures
µai and µri represent two different aspects of the model
competitiveness. µai summarizes the success of a model
as an attacker. A larger µai means the model is better at
finding test samples to falsify other models. µri describes
the success of a model as a defender. A larger µri means
the model is more difficult for other models to find failure
cases. µai or µri does not have theoretical advantage over one
another and both measures are useful. In practice, a model
of stronger aggressiveness presumably should also have
stronger resistance, but in theory, they are not necessarily
correlated. It would be interesting to observe the cases when
µai and µri disagree. One such example is when a model
offers highly accurate predictions (consistent rankings) on
most samples in the sample space, but performs poorly on
a small percentage of corner cases, where the competing
models perform well. In this case, the model has strong
aggressiveness to attack other models (using the samples it
predicts accurately), but is vulnerable as a defender (being
easily defeated by other models using the corner cases).
Therefore, the disparity between µai and µri of a model is
highly insightful to reveal the defects of a generally good
model.

2.4 Discussion
The toy example in Section 2.1 is a simplified demonstration
of the gMAD competition. In real-world applications, the
samples could live in a much higher dimensional space, the
number of models under competition could be much larger,
and the domain of interest in the sample space could vary
according to specific applications. In summary, we mention
several useful features of the gMAD competition. First, it is
straightforward and flexible to apply gMAD to sample sets
tuned for specific applications. Second, the number of sam-
ple pairs for physical measurements depends on the model
number only and is independent of the sample size. As a
result, gMAD is an ideal fit in the applications, where the
physical measurement is expensive but the computational
prediction is cheap. In such scenarios, gMAD encourages to
expand the sample set to cover as many cases as possible.
Third, each gMAD sample pair is associated with two
models. The defender believes that the pair would produce
the same response q while the attacker suggests that they are
very different. Fourth, it is cost-effective to add new models
to the competition. No change is necessary for the current
gMAD pairs. The only additional work is to select a total
of 2MK (Case 1 of Step 10) or 2M (Case 2 of Step 10) new
sample pairs for physical measurements.

3 APPLICATION TO IQA MODELS

In this section, we apply the gMAD competition to compu-
tational models of perceived image quality [20].

3.1 Background
Digital images undergo many transformations in their life-
time [21], any of which may introduce distortions, resulting
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Fig. 2. Sample images in [19]. (a) Human. (b) Animal. (c) Plant. (d) Landscape. (e) Cityscape. (f) Still-life. (g) Transportation.

in visual quality degradation [3]. Being able to automati-
cally predict the perceived image quality by humans is of
fundamental importance in image processing and computer
vision. Depending on the availability of a distortion-free
reference image, computational IQA models may be cate-
gorized into full-reference (FR), reduced-reference (RR) and
no-reference (NR) methods, where the reference image is
fully, partially, and completely not accessible, respectively.

Depending on how test images are presented to human
subjects, subjective testing for collecting ground-truth image
quality measurements may be roughly classified into three
categories: the single-stimulus method, the paired compar-
ison method, and the multiple-stimulus method [22]. In a
single-stimulus experiment, one test image is shown at a
time and is given ratings of image quality independently. In
a paired comparison experiment, a pair of images are shown
simultaneously and the subjects are asked which image has
better quality. In a multiple-stimulus experiment, multiple
images are shown and the subjects rate them based on their
perceptual quality. Given n test images, O(n) evaluations
are needed for single-stimulus and multiple-stimulus meth-
ods, and O(n2) for paired comparison. Although the paired
comparison method is often preferred to collect reliable
subjective measurements, an exhaustive paired comparison
is impractical when n is large. Many methods have been
proposed to improve its efficiency. Four types of balanced
subset designs were developed in the 1950’s [23], among
which the square design became popular. An alternative
method was to randomly select a small subset of image
pairs. It was shown that at least O(n log n) distinct pairs are
necessary for large random graphs to guarantee the graph
connectivity and to achieve a robust global ranking [17].
In [24], a Swiss competition principle was adopted with a
decreased complexity of O(n log n).

Computational IQA models are typically tested using

conventional direct model comparison methods on existing
small-scale image quality databases (e.g., LIVE [25] and
TID2013 [24]). The goodness of fit is usually measured
by the correlation between subjective mean opinion scores
(MOS) and objective model predictions. As previously dis-
cussed, only a few thousand images can be evaluated by
humans due to the limited scale of affordable subjective test-
ing. Moreover, given the combination of reference images,
distortion types, and distortion levels, only a few dozen
reference images may be included. It is difficult to justify
how the few reference images can provide a sufficient repre-
sentation of real-world content variations. In addition, state-
of-the-art IQA models often involve supervised learning or
manual parameter adjustments to boost the performance on
existing databases. Therefore, it is questionable whether the
reported competitive performance can be generalized to the
real-world images with much richer content variations and
quality degradations.

Wang and Simoncelli adopted MAD [12], [26] to compare
two FR-IQA models—the MSE and the structural similarity
(SSIM) index [27], and showed that MSE is more easily falsi-
fied by SSIM [12]. MAD relies on gradient computation in a
constrained optimization process to synthesize test images
and is not applicable to advanced IQA models, which are
often non-differentiable. Recently, Ma et al. introduced three
evaluation criteria [19], namely the pristine/distorted image
discriminability test (D-Test), the listwise ranking consisten-
cy test (L-Test), and the pairwise preference consistency test
(P-Test) for IQA models, which do not call for subjective
testing. However, the preparations of these tests require
reference images and degradation specifications [19].
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3.2 Experimental Setup

3.2.1 Database

We choose the Waterloo Exploration Database [19] to con-
stitute the test sample set. It contains 4, 744 high-quality
natural images and spans a great deal of image content,
including human, animal, plant, landscape, cityscape, still-
life, and transportation. Sample images are shown in Fig. 2.
Four distortion types—JPEG and JPEG2000 compression,
white Gaussian noise contamination, and Gaussian blur—
each with five distortion levels are used to generate 94, 880
distorted images. As a result, the Exploration database
contains a total of 99, 624 images, which is currently the
largest one used by the IQA community. The database
focuses on the four aforementioned distortion types because
many state-of-the-art IQA models declare themselves for
successfully handling them [28]–[32] on small-scale IQA
databases. Whether these models survive from the gMAD
competition on the Exploration database provides strong
evidence of their generalizability in the real world.

3.2.2 Computational IQA Models

A total of 16 computational IQA models are selected to
participate in the gMAD competition to cover a wide variety
of IQA methodologies with emphasis on NR models. These
include FR models 1) PSNR, 2) SSIM [27], 3) MS-SSIM [33],
4) FSIM [34], and NR models 5) BIQI [28], 6) BLINDS II [35],
7) BRISQUE [36], 8) CORNIA [29], 9) DIIVINE [37], 10) IL-
NIQE [38], 11) LPSI [39], 12) M3 [40], 13) NFERM [41], 14)
NIQE [30], 15) QAC [42] and 16) TCLT [43]. The gradients
of most models are extremely difficult to compute or ap-
proximate, therefore limiting the pairwise comparison using
MAD [12]. The implementations of all models are obtained
from the original authors. For IQA models that involve
training, we use all images in the LIVE database [25]. To
make a consistent comparison, we adopt a logistic nonlinear
function to map all model predictions into the same per-
ceptual scale [0, 100] with a higher value indicating better
perceptual quality.

We define six quality levels (K = 6) evenly spaced on
the quality scale with a good coverage from low- to high-
quality. The quality range for each level is one standard
deviation (std) of MOSs in LIVE [25] so as to guarantee that
the images in the same level have similar quality by the
defender model. The attacker models then search for gMAD
image pairs from the six levels, as described in Section 2. On
the scatter plot, finding a gMAD image pair corresponds to
selecting points that have the longest distance in a given row
or column, as exemplified in Fig. 3, where SSIM [27] com-
petes with MS-SSIM [33]. The corresponding image pairs are
shown in Fig. 4, from which we may obtain a first impres-
sion on their relative performance in gMAD. Specifically, the
images in the first row of Fig. 4 exhibit approximately the
same perceptual quality (in agreement with MS-SSIM [33])
and those in the second row have drastically different
perceptual quality (in disagreement with SSIM [27]). This
suggests that MS-SSIM is a solid improvement over SSIM.
In the end, a total of 16× (16−1)×6 = 1, 440 gMAD image
pairs are chosen for the subsequent subjective experiment.
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Fig. 3. gMAD image pairs from the Waterloo Exploration Database [19].
The image pair (A,B) is selected by maximizing/minimizing SSIM
while holding MS-SSIM fixed. Similarly, (C,D) is selected by maximiz-
ing/minimizing MS-SSIM while holding SSIM fixed.
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Fig. 4. gMAD image pairs between SSIM and MS-SSIM. Images (a)-(d)
correspond to points A-D in Fig. 3. (a) MS-SSIM = 30, SSIM = 53. (b)
MS-SSIM = 30, SSIM = 13. (c) SSIM = 30, MS-SSIM = 78. (d) SSIM =
30, MS-SSIM = 13.

3.3 Subjective Testing

A subjective user study is conducted in an office environ-
ment with a normal indoor illumination level. The display
is a true-color LCD monitor at a resolution of 2, 560× 1, 600
pixels and is calibrated in accordance with the recom-
mendations of ITU-R BT.500 [22]. A customized MATLAB
interface is created to render an image pair at their exact
pixel resolutions but in random spatial order. A scale-
and-slider applet is used for assigning a quality score, as
shown in Fig. 5. A total of 31 naı̈ve human subjects (16
males and 15 females) of age 22 to 30, participate in the
subjective experiment. All subjects have a normal or correct-
to-normal visual acuity. Sample image pairs (independent
of the test pairs) are shown to the subjects in a training
session to familiarize them with image distortions and the
experimental procedure. For each gMAD image pair, the
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Fig. 5. User interface for subjective testing.

subjects can assign a score between−100 and 100 to indicate
their preference to either the left image [−100,−20] (labeled
as “left is better”) or the right image [20, 100] (labeled as
“right is better”). When the subjects are uncertain about
their decision, they can also assign a score between [−20, 20]
(labeled as “uncertain”), where a score of zero indicates
completely neutral. The proposed soft version of the paired
comparison method better captures the subjects’ confidence
when expressing their preference. We divide the experiment
into four sessions, each of which is limited to a maximum
of 30 minutes. The subjects are asked to take a five-minute
break to minimize the influence of the fatigue effect. All
subjects participate in all sessions.

3.4 Data Analysis
We adopt the outlier detection and subject rejection algo-
rithm suggested in [22] to screen the raw subjective data.
Specifically, a score for an image pair is considered to be
an outlier if it is outside two stds for the Gaussian case or
outside

√
20 stds for the non-Gaussian case. A subject is

removed if more than 5% of his/her evaluations are outliers.
As a result, one subject is rejected. Among all scores given
by the valid subjects, about 1.4% of them are identified as
outliers and are removed subsequently.

We average the subjective measurements of each gMAD
image pair and compute the pairwise aggressiveness and
resistance statistics for every pair of 16 IQA models. Fig. 6
shows the aggressiveness matrix A and the resistance ma-
trix R, where the higher value of an entry (warmer color),
the stronger aggressiveness or resistance of the correspond-
ing row model against the column model.

We aggregate the pairwise comparison results into a
global ranking via the maximum likelihood method for
multiple options. Fig. 7 shows the results, from which we
have several interesting observations. First, an IQA model
with stronger aggressiveness generally exhibits stronger
resistance. Second, FR-IQA models are generally better than
NR-IQA ones, which is not surprising because FR models
make use of reference images. Third, the best performance
is obtained by MS-SSIM [33], which is a multi-scale ver-
sion of SSIM [27] and a significant improvement upon it.
This suggests that multi-scale analysis is beneficial to IQA.
Fourth, CORNIA [29], NIQE [30], and ILNIQE [38] perform
the best among all NR-IQA models. They are derived from
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Fig. 6. Pairwise comparison results of the 16 IQA models. (a) Ag-
gressiveness matrix. (b) Resistance matrix. Each entry indicates the
aggressiveness/resistance of the row model against the column model.
A−AT and R−RT are drawn here for better visibility.

perception- and distortion-relevant natural scene statistics,
which map raw images into a perceptually meaningful
space for comparison. Finally, machine learning-based IQA
models, though outstanding on small-scale IQA databases,
generally do not perform well in the current gMAD com-
petition. This may be because the training samples are not
sufficient to represent the population of real-world natural
images and thus the risk of overfitting is high.

3.5 Further Testing
The conventional direct model comparison method and
the proposed gMAD competition test different aspects of
computational models. The former evaluates the overall
goodness of fit, while the latter focuses on falsifying a
model in the most efficient way. They are complementary
and are not intended to replace one with the other. It
is interesting to observe how much they align with each
other in terms of model ranking performance in real-world
applications. Presumably, a model that is outstanding in
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Fig. 7. Global ranking results of the 16 IQA models.

TABLE 1
SRCC results between K = 6 as the reference and other K values

SRCC Aggressiveness Resistance
K = 1 0.930 0.885
K = 2 0.929 0.906
K = 3 0.965 0.968
K = 4 0.982 0.985
K = 5 0.997 0.985

one testing methodology is likely to do well in another.
Here, we test IQA models on a small subject-rated database,
to which both model comparison methods are applicable,
and compare their ranking results. Specifically, we choose
the CSIQ [44] database, which contains 30 pristine-quality
and 866 distorted images with six distortion types and five
distortion levels. Each image is associated with a MOS,
which spans the range [0, 1] with 1 indicating the worst
perceptual quality. We test the 16 IQA models using gMAD
and the MSE between model predictions and MOSs (a con-
ventional direct model comparison method). The subjective
measurement q̄ijk of a gMAD image pair is computed by
the MOS difference between the two images.

We compare the global ranking results by the aggres-
siveness/resistance of gMAD and MSE, and find that they
are well correlated (an SRCC of 0.953/0.941), suggesting
general agreement between gMAD and the direct model
comparison method on CSIQ [44]. We also compare the
aggressiveness/resistance ranking on CSIQ with that on
the Waterloo Exploration Database [19] and observe an
SRCC of 0.618/0.726. The performance discrepancy may be
explained by the large difference between the two databas-
es [5] in terms of their sizes and content variations. In
general, gMAD benefits from larger image sets of greater
diversity, which makes it easier to falsify an IQA model and
to differentiate similar models.

To investigate the impact of the number of quality lev-
els K on the global ranking, we experiment with K ∈
{1, 2, 3, 4, 5, 6}. For small K values, we are only able to
compare IQA models on certain quality levels. For example,
for K = 1, we choose the low-quality level to search
for gMAD image pairs. We adopt the global ranking with
K = 6 as the reference (Fig. 7) and compute the SRCC with

other K values. The results are shown in Table 1, where
we see that K has little impact on the global ranking. The
robustness of the gMAD ranking with respect to K in our
experiment may be because a less competitive IQA model
tends to perform poorly at all quality levels. As a result, the
results at limited quality levels are representative for the full
quality range.

4 MORE APPLICATIONS

The application scope of gMAD is broad in the sense that it
can be used to compare any group of computational models
that predict certain physical quantities. In this section, we
demonstrate the gMAD competition methodology with two
more examples of perceptually discriminable quantities—
image aesthetics and streaming video QoE.

4.1 Comparison of Image Aesthetics Models
Image aesthetics refers to the experience of beauty for sub-
jects when viewing an image [50]. It is generally believed
that image aesthetics is determined by a combination of low-
level features such as composition, lighting, color arrange-
ment and camera settings, and high-level semantics such as
simplicity, realism, content type and topic emphasis [51]. A
successful computational image aesthetics model plays an
important role in many fields such as image editing, image
retrieval, and personal photo management.

Computational image aesthetics assessment is not an
easy task. Most existing image aesthetics models only make
a binary decision on whether an image is a high-quality
professional photo or a low-quality snapshot [13], [50].
Consequently, those models can only be tested on subject-
rated image aesthetics databases with binary annotation-
s [51]. In practice, the perceived aesthetics of real-world
images is much more diverse than just two levels, and thus
continuous-valued models are highly desirable.

Here we aim to apply gMAD to compare continuous-
valued aesthetics models. We first randomly select more
than 170, 000 images from ImageNet [45] as the test sample
set, whose content and aesthetics levels are diverse. Sample
images are shown in Fig. 8. We select four image aesthetics
models, including GIST+SVR [46], aesthetics-aware features
with SVR (AAF+SVR) [47], Jin16 [49], and Kong16 [48]. We
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Sample images from ImageNet [45] used for the gMAD competition of image aesthetics models. (a)-(h) Images with increasing degrees of
perceived aesthetics according to our subjective testing.

TABLE 2
Pairwise comparison results of image aesthetics models in the gMAD competition. Row model: attacker. Column model: defender

Aesthetics model
Aggressiveness Resistance

GIST+SVR AAF+SVR Kong16 Jin16 GIST+SVR AAF+SVR Kong16 Jin16
[46] [47] [48] [49] [46] [47] [47] [49]

GIST+SVR — 0.216 0.103 0.031 — 0.686 0.713 0.541
AAF+SVR 0.314 — 0.182 0.160 0.662 — 0.708 0.534
Kong16 0.287 0.292 — 0.299 0.741 0.648 — 0.422
Jin16 0.459 0.466 0.578 — 0.934 0.810 0.701 —

implement GIST+SVR and AAF+SVR algorithms by our-
selves, and the program packages of the other two models
are obtained from the original authors. For GIST [46], we
work with five scales, four orientations and 16 blocks, and
process RGB channels separately, resulting in a total of
5× 4× 16× 3 = 960 features per image. Linear SVR [52] is
adopted with hyperparameters optimized for the best pre-
diction. For AAF, we choose the 1, 323-dimensional features
proposed by Mavridaki and Mezaris [47], who implement a
set of generally accepted photographic rules such as simplic-
ity, colorfulness, sharpness, image pattern, and composition.
Linear SVR with the same hyperparameter optimization
strategy is adopted. Jin16 [49] is a convolutional neural net-
work (CNN)-based algorithm that inherits the VGG16 [53]
architecture and fine-tunes the weights using a weighted
MSE loss. Kong16 [48] is another CNN-based model that
fine-tunes the weights from AlexNet [54] using a weighted
sum of a regression loss, a pairwise ranking loss, and an at-
tribute loss. We train and validate GIST+SVR and AFF+SVR
on AVA [55]. The weights of Jin16 [49] and Kong16 [48] fine-
tuned on AVA [55] and AADB [48], respectively, are used
for testing. Finally, we use the Waterloo IAA Database [56]
to map all model predictions into the same perceptual space
for comparison.

We choose three aesthetics levels and generate 4×3×3 =
36 gMAD image pairs. The subjective testing procedure is
similar to that described in Section 3.3 and we highlight
the differences here. 30 subjects, 18 males and 12 females,
participate in the experiment. Each subject takes about ten
minutes to finish rating all the pairs. After running the
outlier detection and subject rejection algorithm, all subjects
are valid and 2.1% of the subjective measurements are

TABLE 3
Global ranking results of image aesthetics models in gMAD

Aesthetics model Aggressiveness Resistance
GIST+SVR [46] −0.577 −0.097
AAF+SVR [47] −0.189 −0.064
Kong16 [48] 0.145 −0.098
Jin16 [49] 0.621 0.260

(a) (b)

(c) (d)

Fig. 9. gMAD competition between Jin16 [49] and Kong16 [48] at the
high-aesthetics level. (a) Best Jin16 for fixed Kong16. (b) Worst Jin16
for fixed Kong16. (c) Best Kong16 for fixed Jin16. (d) Worst Kong16 for
fixed Jin16.

outliers.
We list the pairwise and global ranking results of the

four image aesthetics models in terms of aggressiveness and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Sample frames from the proposed streaming video database for the gMAD competition of QoE models. (a) YellowStone: natural, high
motion. (b) StreetDance: outdoor, high motion. (c) SplitTrailer: human, high motion. (d) CSGO: animation, high motion. (e) UCLY: indoor, slow
motion. (f) WildAnimal: animal, slow motion. (g) Rose: plant, slow motion. (h) Food: still-life, slow motion.

TABLE 4
Encoding ladder of video clips. kbps: kB per second

Representation Bitrate (kbps) Resolution
Bad 235 320× 240
Poor 560 512× 384
Fair 1, 050 640× 480
Good 2, 350 1, 280× 720
Excellent 5, 800 1, 920× 1, 080

resistance in Tables 2 and 3, respectively. It can be observed
that Jin16 [49], a CNN-based model, exhibits the strongest
aggressiveness and resistance. To take a closer look, we
show two gMAD image pairs, where Jin16 competes with
Kong16 [48] at the high-aesthetics level in Fig. 9. It is
clear that Jin16 successfully falsifies Kong16 by finding the
image pair in the first row, where image (a) looks more
beautiful than image (b) for most subjects. Meanwhile, Jin16
survives from the attack by Kong16 as evidenced by similar
aesthetics of the image pair in the second row according
to our subjective testing. We conjecture that the superiority
of Jin16 over Kong16 arises because 1) the backbone of
Jin16—VGG16 [53]—might be easier to generalize to novel
tasks than AlexNet [54] used in Kong16; 2) the weighted
loss that offsets the aesthetics level imbalance in Jin16 has
more potentials to improve the performance than adding the
pairwise ranking and attribute losses in Kong16. Moreover,
it is not surprising that the general-purpose feature repre-
sentation GIST [46] for holistic scene modeling is defeated
by AAF [47] under the same training configuration. After all,
the AAF representation is motivated by years of practices
of professional photographers and thus is more relevant
to image aesthetics. Finally, the hand-crafted AAF repre-
sentation is slightly better in terms of resistance than the
end-to-end optimized Kong16 [48]. This suggests that more
training data, novel network architectures, and advanced
optimization techniques are needed to learn more robust
end-to-end aesthetics models.

4.2 Comparison of Streaming Video QoE Models

Video streaming services have gained increasing popular-
ity due to the fast deployment of network infrastructures
and the proliferation of smart mobile devices. Being able
to predict the QoE of end users is of great importance
because it plays a critical role in the user choices of video
streaming services [57]. Three major factors affect the QoE
for HTTP adaptive streaming (HAS) [58], [59]. The first
is the presentation quality of video segments encoded in
different bitrates, spatial resolutions, and frame rates. The
second is the stalling events due to poor or unstable network
conditions, characterized by their frequencies and time
durations. The third is the switchings of video segments
of different bitrates, spatial resolutions, and frame rates
from one time segment to another, adapting to varying
network conditions. Developing computational QoE models
that jointly consider these factors and their interactions
is a challenging task. In recent years, many QoE models
have been developed [14], [60], but most of them have not
been calibrated against subjective data with sufficient video
content variations and distortion types. Note that the largest
subject-rated streaming video database so far only contains
hundreds of videos [61].

We build a large-scale streaming video database as the
playground for the gMAD competition of computational
QoE models. Specifically, we first download 50 high-quality
4K videos with 24-30 frames per second (fps) from the In-
ternet, which carry a Creative Commons license. We down-
sample all videos to 1, 920×1, 080 to further damp possible
compression artifacts. They are selected to cover sufficient
content variations and motion patterns. Sample frames of
representative videos are shown in Fig. 10. From each video
we extract a ten-second video clip, which is further divided
into five non-overlapping two-second segments. Each seg-
ment is encoded using H.264 into five representations se-
lected from the Netflix’s encoding ladder [62], representing
“bad”, “poor”, “fair”, “good”, and “excellent” presentation
quality, respectively. The details of the encoding ladder
are given in Table 4. After that, we prepend a stalling
event to each encoded segment with a time duration of
zero, two, or four seconds, representing “no”, “short”, and
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“long” stalling, respectively. We concatenate all possible
combinations of two-second segments from the same source
content along with the stalling events, resulting in a total of
35 × 55 × 50 = 37, 968, 750 test video clips.

We let three computational QoE models play the gMAD
game. These are Liu12 [63], Yin15 [64], and SQI [58]. Li-
u12 [63] adopts the bitrate and the stalling percentage as
two features. On top of Liu12, Yin15 [64] adds two more
features—the switching magnitude and the initial buffering
duration. Linear regression is used for the two models.
Instead of using the bitrate as the indication of presentation
quality, SQI [58] resorts to advanced video quality models
such as SSIMplus [65] to predict presentation quality and
considers the interactions between video presentation qual-
ity and playback stalling experiences. We make use of the
Waterloo QoE Database [58] and map all model responses
to the same perceptual scale.

We choose three QoE levels and generate 3× 2× 3 = 18
gMAD video pairs. 30 subjects participate in the subjective
experiment. Two video clips in the same pair are played
consecutively but in random order. Subjects are allowed to
replay them until they are confident about their judgment
on the relative QoE for the two video clips. Each subject
takes about 20 minutes to finish the experiment. After
subjective data screening, no subject is rejected and 3.0%
of the subjective measurements are identified as outliers.

The pairwise and global ranking results of Liu12 [63],
Yin15 [64], and SQI [58] are listed in Tables 5 and 6, respec-
tively. It appears that SQI outperforms the other two QoE
models in terms of both aggressiveness and resistance. We
also show the gMAD video pairs between SQI and Yin15
in Fig. 11, where we find that SQI defeats Yin15 at all
QoE levels. For example, at the mid-QoE level in Fig. 11(a),
Yin15 regards a video sequence of smooth playout (small
quality oscillation between excellent and good quality with-
out any stalling) to have similar QoE to a video sequence
significantly interrupted by multiple stalling events. The
better performance of SQI may arise from that SQI replaces
the bitrate with SSIMplus [65], which is a human visual
system inspired model and is in close agreement with hu-
man perception of presentation quality. Taking into account
the interactions between presentation quality and stalling
events may be another important ingredient for SQI to
win the competition. However, SQI does not consider the
quality switching effect to the overall QoE. We believe a
joint modeling of video presentation quality, stalling events,
and switchings is a potential direction to further improve
SQI. Compared to Liu12, Yin15 adds two more features,
attempting to model the switching and initial buffering
effects. Unfortunately, we observe a performance degrada-
tion through the gMAD competition. This may be because
Yin15 captures the switching effect with an oversimplified
measure—the absolute difference between the bitrates of
two consecutive video segments, which may in turn ham-
per the overall performance. Specifically, the bitrate and
its difference exhibit a strong nonlinearity and (possibly
non-monotonicity) to the overall QoE. Incorporating it into
the model linearly may not be an appropriate choice. In
addition, the results in [59] show that users have clearly
different behaviors when experiencing positive and nega-
tive adaptations. In other words, the switching direction
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Fig. 11. gMAD competition between Yin15 [64] and SQI [58]. (a) Yin15
as defender. (b) SQI as defender. Video playout sequences at different
video quality levels (as listed in Table 4) and the stalling events are
represented using different color bars. The gMAD competitions are
performed at high-, mid-, and low-QoE levels, respectively.

TABLE 6
Global ranking results of QoE models in the gMAD competition

QoE model Aggressiveness Resistance
Liu12 [63] −0.106 0.010
Yin15 [64] −0.161 −0.112
SQI [58] 0.267 0.102

matters, but the absolute operation in Yin15 ignores such
information. In summary, modeling user experience when
viewing streaming videos is challenging and the current
models only work to some degrees. A complete treatment
of the aforementioned three factors is desirable to better
predict streaming video QoE.
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TABLE 5
Pairwise comparison results of QoE models in the gMAD competition. Row model: attacker. Column model: defender

QoE model Aggressiveness Resistance
Liu12 [63] Yin15 [64] SQI [58] Liu12 [63] Yin15 [64] SQI [58]

Liu12 [63] — 0.000 0.687 — 0.570 0.434
Yin15 [64] 0.430 — 0.077 0.636 — 0.223
SQI [58] 0.566 0.777 — 0.313 0.499 —

5 CONCLUSION AND DISCUSSION

We propose a new methodology, namely the gMAD compe-
tition, for efficient comparison of computational predictive
models. Aiming for maximizing the speed of falsifying
models, gMAD automatically searches from a large-scale
sample set for a small number of model-dependent sample
pairs. gMAD is particularly useful when the sample space
is large, the physical quantity being predicted is expensive
to measure, and the model prediction is cheap to compute.
Unlike conventional direct model comparison approach-
es [3]–[5], the number of physical measurements required
by the gMAD competition does not scale with the size
of the sample space and only depends on the number of
competing models. This feature allows gMAD to exploit a
sample set of arbitrary size with a low and manageable cost.
gMAD also provides two well-defined measures (aggres-
siveness and resistance) to indicate the relative performance
of computational models, through which useful insights
may be gained to design better models.

Although the current work demonstrates gMAD using
three perceptually discriminable quantities—image quality,
image aesthetics, and video QoE—there are a much wider
variety of scenarios that gMAD can come into play. To give
a few examples, these include comparisons of image/video
emotion predictors in the field of cognitive vision [50], the
relative attributes (sportiness and furriness) estimators in
the field of semantic image search [66], machine translation
quality estimators in the field of computational linguistic-
s [67], and thermal comfort models in the field of thermal
environment of buildings [68].

The current gMAD requires computational models to
produce continuous-valued responses. How to adapt gMAD
to account for discrete-valued models has great potentials
to impact other computer vision and machine learning
applications. For example, instead of building a database
larger than ImageNet [45] for testing, it is of great interest to
see how existing image classification algorithms behave in
a discrete version of gMAD setting. In addition, the current
gMAD requires computational models to be scalar-valued,
manifesting themselves in predicting a measurable quantity.
It is interesting to extend gMAD to work with vector-
valued models, for example, to compare different feature
representations in a computational vision task [69].
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