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ABSTRACT

Image distortion analysis is a fundamental issue in many image processing problems, including compression, restoration, recognition,
classification, and retrieval. In this work, we investigate the problem of image distortion measurement based on the theories of Kolmogorov
complexity and normalized information distance (NID), which have rarely been studied in the context of image processing. Based on a
wavelet domain Gaussian scale mixture model of images, we approximate NID using a Shannon entropy based method. This leads to a
series of novel distortion measures that are competitive with state-of-the-art image quality assessment approaches.

1. INTRODUCTION

Normalized Information Distance (NID) measure has been shown to be a valid and universal distance metric applicable to similarity mea-
surement of any two objects [1]. Similar to Kolmgorov complexity, the NID is non-computable and a practical solution is to approximate
it using Normalized Compression Distance (NCD) [1, 2], which has led to impressive results in many applications such as construction
of phylogeny trees using DNA sequences [1]. However, NCD did not achieve the same level of success in image similarity applications
[3,4]. A framework of Normalized Conditional Compression Distance (NCCD) was proposed in [3], which shows significantly wider
applicability than existing image similarity/distortion measures. Kolmogorov complexity of an object may also be approximated using
Shannon entropy, given that the object is from an ergodic stationary source [5]. The difficulty is that data that arises in practice in the form
of images or complex video signals can not generally be considered as stationary processes. In fact all images are non-stationary sources in
spatial domain and it is cumbersome to replace Kolmogorov complexity with Shannon entropy without any advanced transformation and
modeling.

In this paper we propose a framework which takes the reference image and the distorted image into the wavelet domain and assumes
local independence among image subbands to approximate Kolmogorov complexity by Shannon’s entropy. Inspired by [6], Gaussian Scale
Mixture (GSM) model is adopted for Natural Scene Statistics (NSS), to further simplify entropy calculations.

2. KOLMOGOROV COMPLEXITY BASED INFORMATION DISTANCES

The Kolmogorov complexity [7] of an object is defined to be the length of the shortest program that can produce that object on a universal
Turing machine and halt: K (x) = min,.;(p)=s {(p). In [1], the authors assume the existence of a general decompressor that can be used
to decompress the presumably shortest program z* to the desired object . However, they note that due to the non-computability of this
concept, a compressor that does the opposite does not have to exist.

The conditional Kolmogorov complexity of x relative to y is denoted by K (x|y). An information distance between z and y can then
be defined as max{ K (z|y), K (y|z)}, which is the maximum of the length of the shortest program that computes z from y and y from z.
To convert it to a normalized symmetric metric, a novel NID measure was introduced in [1]:

max{K (z|y*), K(y|z*)}
max{K(z), K(y)}

NID(z,y) = M
It was proved that NID is a valid distance metric that satisfies the identity and symmetry axioms and the triangular inequality [1].

The real-world application of NID is difficult because Kolmogorov complexity is a non-computable quantity [7]. By using the fact that
K(zy) = K(y|z*) + K(x) = K(z|y*) + K(y) (subject to a logarithmic term), and by approximating Kolmogorov complexity K using
a practical data compressor C', a normalized compression distance (NCD) was proposed in [1] as:

C(ry) —min{C(x), C(y)}

NCD(z,y) = max{C(z), C(y)}

(@)

NCD has been proved to be an effective approximation of NID and achieves superior performance in bioinformatics applications such as
the construction of phylogeny trees using DNA sequences [1].
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When NCD was used to quantify image similarities, it did not achieve the same level of success as in other application fields. For
example, it was reported in [4] that NCD works well when parts are added or subtracted from an image, but struggles when image variations
involve form, material and structure.

To overcome the difficulties in applying NCD for image similarity applications, Normalized Conditional Compression Distance
(NCCD) was proposed in [3]. NCCD uses a general conditional compressor framework to describe the simplest transformation between
two images: K (y|z) ~ Cr(ylz) and K(z|y) ~ Cr(z|y). This leads to a normalized conditional compression distance (NCCD)
measure given by
max{Cr(z|y), Cr(y|z)}

max{C(x),C(y)} '
and the conditional compressor C is defined as follows: Let {T;|¢ = 1,---, N} be the set of transformations, let 7;(x) represent the
transformed image when applying the i-th transform to image z, and let p(7;, =) denote the parameters used in the transformation. Each
type of transformation is also associated with a parameter compressor, and C? denotes the parameter compressor of the i-th transformation.
The conditional compressor can be defined as: Cr(y|z) = min;{Cly — Ti(z)] + C?[p(T;, )] + log,(N)}, where C remains to be a
practical image compressor which encodes the difference between y and the transformed image 7;(x), and the log, (IN') term computes the
number of bits required to encode the selection of one out of IV potential transformations.

NCCD(z,y) = (3)

3. PROPOSED METHOD

Assuming statlonarlty and ergodicity for a source with probability measure u, the following two theorems apply [5]: lim,, oo K(,fn) =
H (1), Where x™ is an object of the source X and n shows the length of the object, with K (x™) being Kolmogorov complexity of the
object. However the stationarity and ergodicity assumptions are not true for images and in fact all images are non-stationary sources
in spatial domain, thus we are interested in transform domains where we can model the decomposed signal as stationary. Multiscale
decomposition is one of the choices in this field. To continue with the problem, we take the reference and the distorted images into the
wavelet domain, and assume stationarity, decorrelation and local independence among the image subbands. Based on these assumptions
we have: C(zly) = >, C(@n|yn), where C stands for Kolmogorov complexity of the images and ', and y, are the corresponding
wavelet subbands of the reference image and distorted image. Thus the NID can be reformulated into:

max{zZ 1 C(Cvn) C(?/n)} ’

and based on the stationarity and independence assumptions for wavelet coefficients, we may re-write (4) in Shannon entropy framework:

max{d ", H(zn|yn), > 1y H(ynlzn)}
maX{Z;;l H(-T'n)7 2221 H(y”)} .

To further simplify the results we adopt a wavelet domain Gaussian Scale Mixture (GSM) model by natural scene statistics, which is
similar to the model used in [6]. We also use the same distortion and human visual system (HVS) model used in [6]. In the case that
C'is a GSM representing the coefficients of a natural image we have E = C + N, F = D + N’, where A and N are random fields
of uncorrelated multivariate Gaussian noise that represent the internal neural noise in the HVS. D is a distortion model comprised of a

nal galn and addmve noise: D = gC' + v = gsU + v, and E and F are the reference and the distorted images respectively [6]. Let
Bg (Cl, ...,C N) represent N elements of a subband C}, and D, s E], ? be defined correspondingly. Assuming that S~ = s™
and is given for all the variables' then NID becomes:

NID(z, y) =

“

NID(z,y) = &)

SLIE S Fy)
max({y, H(E,), Y, H(F )}

NID(E, F) =1 — (6)

since I (E; C) quantifies the information extracted by the HVS from an ideal image and I (F’; C') quantiefies the extracted information from
a distorted image, they could be used to replace H(E) and H (F'), respectively [6]. Since NID is a distance metric, 1-NID can be used
as a similarity metric in our Image similarity and quality assessment applications. Here we define a Normalized Information Similarity
(NIS) by 1-NID, which measures the perceptual image similarity by the HVS. According to our distortion and HVS models, the NIS for
two images E and F', as perceived by the HVS, is defined as follows:

NIS(E, F) = Z 1Esi 7 ' @
' max{zjl(ﬁj;gj)vzj I(?j;gﬂ')}

(7) can be further simplified by using the fact that £ and F" are Gaussian for given s and the mutual information of correlated Gaussians
can be calculated based on the determinants of the covariances [8]:

](Ep? ) = llOg[ML ﬁﬁa |CCHC’E|] ?J,B |CCHCF|] (8,9,10)
2 |Cr, )| \C<c,E)| \C<c l

Thence .|s™ is dropped in all notations



Covariance matrices of C, D, E and F are respectively computed to be [8]:
Co =5s’Cu, Cp=g’s’Cu+o021, Cp=sCu+o2l, Cp=g’s’Cu+ (02402, (11,12,13,14)

and we also have:

|C | _ Ce Cer |C | _ Cc Ccr Cec Cecr
ENIZ Cpp Cp |7 CBI=] Cpe  Cg Crc CFr

It can be easily shown that: Cc = s?Cy, Cer = Crr = gs°Cu, Ccr = Cgc = s°Cy and Cor = Crc = gs*Cy. Thus (15),(16)
and (17) can be written as:

» 1Ceml = (15,16,17)

ICa,m| = |[(00 + 02)s” + 0rg°s*|Cu + oa(0r + a)I|, |Ciem)| = |oas’Cul, |Cio,my| = |(of +02)s*Cul,  (18,19,20)

since Cy is a symmetric matrix, a further decomposition of the covariance matrix into C'y = QAQYT form can change (11), (13) and (14)
into the following form [6]:

Ce = Q{s’°A}QT, Cp=Q{s’A+21}QT, Cr = Q{s*s’A + (02 +o2)1}Q7, (21,22,23)
and from (18), (19) and (20) we have:
ICe.m| = 1Qflor + (1+¢*)onls’A + on(or + o) IQT|, |Cepyl = |Q{ons’A}Q"|, [Cierl = |Q{(0r +07)s°A}QT|.
(24,25,26)

Since Q is orthogonal and the middle matrices between Q’s in (24),(25) and (26) are diagonal, calculation of the desired determinants can
be simplified to a great extent [8]:

K K
ICe.r| = [[{lo? + (1 + g")ob]s* N + on(0) + o)}, |Cop| = H{a Ak, [Ceorl = [TH(07 + on)s* Ak}, (27.2829)
= k=1
thus the mutual information relations (8), (9) and (10) are simplified:
N K §2 N K g25?
1 )\k 1 S; )\k
I(Bj;ﬁj):§;;10g2(l+ o2 )s I(aj;?j): 5;; og,(1 m), (30,31
HE ) = 1303 logy (st + (O bl t o) ) o)
ARy 2N (02 + 02)s7 + 039757 e + 03(03 + 07)
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In computation of NIS, we estimate the required parameters (C’, 5, g and &) by following the same path taken by [6, 8].

4. RESULTS

To evaluate the performance of the proposed method, we validate the method against TID2008 [9] database and compare the results with
those of PSNR [8], SSIM [10], IW-SSIM [8], VIF [6], VSNR [11], HVS based PSNR [12], IW-PSNR [8], and MAD [13].

Five evaluation metrics are used to compare the IQA measures. Pearson Linear Correlation Coefficient (PLCC), Mean Absolute Error
(MAE), Root Mean-Squared error (RMS), Spearman’s Rank Correlation Coefficient (SRCC), and Kendall Rank Correlation Coefficient
(KRCC). A thorough explanation of these metrics is found in [8]. Among these metrics, PLCC, MAE and RMS are adopted to evaluate
prediction accuracy, and SRCC and KRCC are employed to assess prediction monotonicity. A better objective IQA measure should have
higher PLCC, SRCC and KRCC while lower MAE and RMS values [8].

To incorporate the information content-based weighing approach proposed in [8] into the proposed NIS framework, we define a local
NIS (LNIS) measure as:

LNIS; = . (33)
max{I(E:; C:),1(F; Co)}
We can then compute an information content-weighted NIS (IW-NIS) measure using:
Z. UJZ'LNISZ‘
IW-NIS = = ———| (34)
Do wi

where w; is the weight assigned to the LNIS value calculated at the i-#h location, and the value of w; is calculated based on the information
content model given in [8]. The test results using the TID2008 database are reported as IW-NIS in Table 1.

Table 1 provides a comparison of the proposed methods with PSNR and state-of-the-art methods. The results of the proposed method
are in bold face. It can be observed that the proposed method perform significantly and consistently better than PSNR and are in general
comparable to many state-of-the-art algorithms. This is impressive as an early attempt to use Kolmogorov complexity and NID theories for
image quality assessment, where many existing methods are in their mature stages.



Table 1. Table 1: Performance comparison based on TID2008 [9] database

Model PLCC MAE RMS SRCC KRCC
PSNR 0.5223 0.8683 1.1435 0.5531 0.4027
SSIM [10] 0.7732 0.6546 0.8511 0.7749 0.5768
IW-SSIM [8] 0.8579 0.5276 0.6895 0.8559 0.6636
VIF [6] 0.8090 0.5990 0.7888 0.7496 0.5863
VSNR [11] 0.6820 0.6908 0.9815 0.7046 0.5340
PSNR-HVS-M [12] | 0.5519 0.8036 1.1190 0.5612 0.4509
MAD [13] 0.7480 0.6641 0.8907 0.7708 0.5734
IW-NIS 0.7811 | 0.6431 | 0.8431 | 0.7276 | 0.5601

5. CONCLUSION

In this paper we extend the application of Kolmogorov complexity and NID to image distortion and image quality assessment by employing
a wavelet domain Gaussian scale mixture model of images and by estimating Kolmogorov complexity based on Shannon entropy approach.
We show that the resulting image similarity measure is competitive with respect to state-of-the-art image quality assessment algorithms
when tested using publicly-available subject-rated large-scale image databases. The proposed method is the first information theoretic
approach towards image quality assessment problem by using Normalized Information Distance (NID) and approximating Kolmogorov
complexity using Shannon’s entropy, and shows its potential for future research in this area.
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