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Abstract Metabolic analysis with high-resolution nuclear magnetic resonance (NMR) en-
ables simultaneous investigation of numerous chemical species in response to biochemical
changes in subjects. When the analysis involves comparing two or more NMR spectra, it is
essential to properly align them because small variations across different spectra influence
the alignment and thus, interfere with direct comparisons between samples. We propose
a new alignment method within the Bayesian modeling framework. The proposed method
allows us to estimate the amplitude and phase shifts simultaneously and to obtain robust re-
sults in the existence of noise. Effectiveness of our proposed method is demonstrated through
real NMR spectra in human plasma and a comparison study with dynamic time warping and
correlated optimized warping, two widely used alignment methods in spectral data.

Keywords Alignment · Amplitude (baseline intensity) variation · Bayesian method ·
Nuclear magnetic resonance (NMR) · Phase (spectral) shift

1 Introduction

Metabolomics approaches that use high-resolution nuclear magnetic resonance (NMR)
spectroscopy have been used to characterize metabolic variations in response to physiolog-
ical alternation, disease states, genetic modification, and nutrition intake (Nicholson et al.
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Fig. 1 A portion of five NMR
spectra varying in both phase and
amplitude

1999, 2002). A variety of techniques are available for studying metabolomics, of these, high-
resolution NMR spectroscopy has advantages in terms of little sample preparation, minimal
cost, and minimal invasiveness (Lindon 2004).

Analysis of NMR spectra is often devoted to a comparison of a set of spectra from dif-
ferent subjects, condition, or time points. Such combinations of multiple samples, each with
a large number of features lead to a huge number of data points and a situation that poses a
great challenge to analytical and computational capabilities. Numerous statistical data min-
ing approaches, such as unsupervised and supervised learning methods, can reduce such
complexity, and thus, facilitate the extraction of implicit patterns and help discriminate
the spectra according to their biological/experimental conditions (Beckonert et al. 2003;
Holmes et al. 2001; Lindon et al. 2001).

In the analysis and modeling of NMR spectra, preprocessing is an important step be-
cause inadequate preprocessing of NMR spectra can make it difficult to extract meaningful
biological interpretations. Specifically, when multiple spectra are being considered, small
variations in spectra caused by concentration, pH, and temperature, may influence the spec-
tral alignment and thus can interfere with direct comparisons between spectra. Hence, it is
crucial to align spectra before applying any subsequent statistical analyses. Figure 1 shows
the portion of five NMR spectra varying in both phase (spectral shift) and amplitude (base-
line intensity variation). This clearly demonstrates the necessity of spectral alignment.

A number of methods have been proposed for the alignment of multiple spectra. Dynamic
time warping (DTW) and correlation optimized warping (COW) are widely used methods
for alignment of spectral data sets (Pravdova et al. 2002; Tomasi et al. 2004). A brief re-
view of the DTW and COW methods is provided in Sect. 2. Other methods include genetic
algorithm-based methods (Forshed et al. 2002; Lee and Woodruff 2004), partial linear fit
(Vogels et al. 1996), reduced set mapping (Torgrip et al. 2003), and principal component
analysis-based methods (Stoyanova et al. 2004). One common problem with the existing
methods is that they often disregard the existence of noise, which is typically observed in
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NMR spectra. Furthermore, almost all existing methods are based on numerical optimiza-
tions that usually require significant computation effort. In practice, however, due to the
high-throughput nature of NMR spectra, faster alignment algorithms are highly desirable.

In the present study we propose a new approach for spectral alignment based on Bayesian
statistical modeling. By formulating the problem within a Bayesian framework, prior knowl-
edge about the shift as well as the noise effect are taken into account in a natural way.
Moreover, the proposed method can simultaneously estimate the spectral shift and baseline
intensity variation in a closed form.

The rest of this paper is organized as follows. Section 2 briefly describes the DTW and
COW algorithms. In Sect. 3, the proposed method is presented in detail. Section 4 presents
the experimental results with real NMR spectra and compares the proposed algorithm with
the DTW and COW algorithms. Finally, concluding remarks are given in Sect. 5.

2 Dynamic time warping and correlation optimized warping

2.1 Dynamic time warping

DTW is originally developed as an alignment method for speech recognition (Sakoe and
Chiba 1971). The DTW algorithm calculates a cumulative distance function that measures
the similarity of two signals which may vary in time. An optimal path can then be found by
dynamic programming. Consider two spectra, T (length |T |) for a reference spectrum and
R (length |R|) for a sample spectrum that needs to be aligned.

A grid plot is constructed with size |T | × |R|. Then a set of warping paths P of M points
is defined as follows:

P = {[T (m)
t ,R(m)

r ], m = 1,2, . . . ,M},
where t and r denote the indices of T and R, respectively. Then an optimal warping path
is determined such that a cumulative distance between the two spectra is minimized. The
cumulative distance between Tt and Rr , D(t, r) is calculated as follows:

D(t, r) = d(t, r) + min[D(t − 1, r),D(t − 1, r − 1),D(t, r − 1)],
where d(t, r) is the local distance between Tt and Rr . More precisely, the cumulative dis-
tance between Tt and Rr is defined as the distance between Tt and Rr plus the minimum
cumulative distance among three allowable predecessors illustrated in Fig. 2.

2.2 Correlation optimized warping

The COW algorithm is introduced by Nielsen et al. (1998) for correcting misalignment
of chromatographic spectra. Compared with DTW that identifies the optimal alignment by

Fig. 2 Three allowable paths to
compute the D(t, r) in the DTW
algorithm
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minimizing the cumulative distance between the reference and sample spectra, COW finds
the optimal warping path by maximizing the overall correlation between the reference and
sample spectra. Figure 3 shows the graphical illustration of the COW algorithm. T is a
reference spectrum with length LT and R is a sample spectrum with length LR . Initially, the
sample spectrum (R) is divided into N sections with the length of m. Similarly, the reference
spectrum (T ) is also divided into N sections. When the length of T and R differs, each
section in R is stretched or shrinked by linear interpolation within the range (� − t,� + t),
so that the spectrum R′ with the same length as T is obtained (see Fig. 3a). The parameter t ,
so called “slack parameter” defines the maximum length increase (+t ) or length decrease
(−t ). � characterizes the length difference between the reference and sample spectra and is
obtained by � = (LT /N) − m.

For implementation, two matrices (i.e., M and N) of size (LT + 1) × (N + 1) are con-
structed. The first matrix M is initialized by assigning zero to the element (LT + 1,N + 1)

and minus infinity to the rest of the elements. Correlation between the section belonging
to the reference spectrum, denoted as ζT , and interpolated section of the sample spectrum,
denoted as, ζR′ is computed from the following equation:

ρ = (ζT − ζ T )T (ζR′ − ζR′)

σζT σζR′
, (1)

where ζ T and σζT are mean and standard deviation of ζT . Similarly, ζR′ and σζR′ are mean
and standard deviation of ζR′ .

In order to find the optimal path, the correlation values for all the possible warpings in
the range [� − t,� + t] are calculated in each section.

Calculation starts from the last section and moves toward to the first section. From the
second last section, all possible correlation values are cumulated to the correlation values ob-
tained from the previous step.The second matrix N is constructed, keeping only the highest
cumulative correlation value in each section. Once N is completely determined, the optimal
path is selected by backtracking.

Fig. 3 Graphical illustration of COW
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3 Proposed method

3.1 Bayesian alignment method

Let x(ω) and y(ω) be two spectra to be aligned, where ω is the frequency index of the
spectra. In the ideal case, the two spectra represent the same spectral structure but are shifted
versions of each other in both the frequency and the intensity directions. Thus, we can write

y(ω) = x(ω + �ω) + �a, (2)

where �ω and �a the spectral shift and the baseline intensity variation, respectively. A Tay-
lor series expansion of the right hand side at ω0 yields

y(ω0) = x(ω0) + �ω
dx

dω

∣
∣
∣
∣
ω0

+ (�ω)2

2!
d2x

dω2

∣
∣
∣
∣
ω0

+· · · + �a. (3)

In practice, the amount of the spectral shift and the baseline intensity variation are typically
not fixed, but varies smoothly along the frequency axis. Therefore, (3) is only approxi-
mately true for a local spectral region-of-interest (SROI). In addition, the NMR spectral
data acquired is discrete along the frequency axis. Assume that there are N discrete points
within an SROI from the two spectra. We denote them as {x(ω1), x(ω2), . . . , x(ωN)} and
{y(ω1), y(ω2), . . . , y(ωN)}, respectively. Also assume that the frequency shift �ω is small,
so that the second and higher order terms can be ignored. We can then write

y = x + �ωx′ + �a1, (4)

where x = [x(ω1), x(ω2), . . . , x(ωN)]T , y = [y(ω1), y(ω2), . . . , y(ωN)]T , x′ = [ dx
dω

|ω1 ,
dx
dω

|ω2 , . . . ,
dx
dω

|ωN
]T , and 1 is an N dimensional column vector with all entries equaling 1.

Reorganizing (4) into a matrix operation format, we obtain

�x = Ac, (5)

where �x = y−x, A = [x′ 1], and c = [�ω �a]T is a column vector containing the amount
of shifts we would like to estimate.

Motivated by the Bayesian approach in optical flow estimation (Simoncelli et al. 1991),
to account for the noise effect in a stochastic framework, we model

ε = �x − Ac (6)

as a zero-mean Gaussian random vector, in which all entries are independently and iden-
tically distributed Gaussian random variables. The covariance matrix of ε is thus diagonal
and is denoted as �nI, where �n is the noise variance and I is the identity matrix. We can
then write the probability density function (pdf) of ε for a given c as

p(ε|c) ∝ exp

{

− (�x − Ac)T (�x − Ac)
2�n

}

. (7)

Here we have used the fact that the covariance matrix is diagonal and ignored the constant
in front of the Gaussian pdf (because the constant has no effect on the final solution). Based
on Bayes’ rule, we have

p(c|ε) ∝ p(ε|c)p(c). (8)
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For the prior distribution p(c), we model it using a zero-mean Gaussian with a diagonal
covariance matrix �p :

p(c) ∝ exp

{

−1

2
cT �−1

p c
}

. (9)

Finally, the pdf of the posterior distribution is computed as

p(c|ε) ∝ exp

{

− (�x − Ac)T (�x − Ac)
2�n

}

exp

{

−1

2
cT �−1

p c
}

= exp

{

−1

2

[

cT

(
AT A
�n

+ �−1
p

)

c+2AT �x
�n

c + �xT �x
�n

]}

∝ exp

{

−1

2
(c − mc)

T �−1
c (c − mc)

}

, (10)

where

mc = �c

AT �x
�n

,�c =
(

AT A
�n

+ �−1
p

)−1

. (11)

This posterior pdf is also Gaussian with a mean vector mc and a covariance matrix �c .
Therefore, the Bayes least square (BLS) as well as the Bayes maximum a posterior (MAP)
estimators of c are both the centroid of the distribution given by

ĉBLS = ĉMAP = mc = �c

AT �x
�n

=
(

AT A
�n

+ �−1
p

)−1 AT �x
�n

= (AT A + �n�
−1
p )−1AT �x. (12)

It is interesting to note that the Bayes’ estimators are consistent with the least-square
estimator, which can be simply obtained by the pseudo-inverse of (5):

ĉLS = (AT A)−1AT �x. (13)

The Bayesian estimators (12) and the least-squares estimator (13) are exactly the same when
the spectral measurements are noise-free, i.e., �n = 0. In practice, however, NMR spectra
are frequently contaminated by noise (see Fig. 4).

The main advantages of the Bayesian approach can be summarized as follows: (1) The
effect of noise can be automatically accounted for. (2) In the case that the matrix (AT A)
is not of full rank, the added diagonal matrix �n�

−1
p in (12) makes it nonsingular, thus

the solution is more robust than the least-squares solution. (3) Prior knowledge about the
spectral shift and the baseline intensity variation can be included in a natural way.

Two remarks on the Bayesian alignment method are given below.

Remark 1 In the formulation of the prior distribution (9), we have assumed that the spectra
shift and the baseline intensity variation are uncorrelated. This is intuitively sensible because
they are likely to be caused by independent physical reasons. We have also imposed a pref-
erence for small spectral shift and small baseline intensity variation because large spectral
shift of baseline variations are usually unexpected in NMR spectra.



Ann Oper Res (2010) 174: 19–32 25

Fig. 4 A portion of noisy NMR
spectrum

Remark 2 The derived Bayesian estimator is analogous to the estimator obtained from cer-
tain regularization-based methods. For example, the ridge regression method imposes a
penalty that minimizes a residual sum of squares to obtain reliable solutions by reducing
the risk of inverting a potentially singular matrix. The Bayesian formulation presented in
this paper provides an intuitive understanding about the noise effect in the estimation prob-
lem, and the parameters in the Bayesian models can be easily linked with physical explana-
tions (prior signal models and noise variance), although these parameters should be properly
estimated.

3.2 Multiscale Bayesian alignment method

The linearization in the derivation of the Bayesian approach described in Sect. 3.1 relies
on the assumption that the spectral misalignment is small, such that the higher-order terms
in the Taylor series expansion in (3) can be ignored. In reality, this assumption may not
hold. To overcome this problem and make the proposed algorithm generally applicable,
here we use a multiscale approach that applies the Bayesian estimation method iteratively
from coarse to fine. The general idea is to align the spectra at the coarser scales first (where
larger misalignment can be handled, but with reduced accuracy) and refine the alignment
parameters when moving towards the finer scales.

The diagram of the Bayesian multiscale alignment method is illustrated in Fig. 5. Before
the iteration begins, we first apply a series of lowpass filtering and downsampling proce-
dures repeatedly to create the spectra at different scales. This is illustrated by the left and
right columns in Fig. 5, where the left is the spectrum to be aligned and the right is the refer-
ence spectrum. The purpose of lowpass filtering (where a Gaussian filter is employed in our
implementation) is to reduce the aliasing effect in the subsequent downsampling process. As
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Fig. 5 Diagram of the Bayesian multiscale alignment method. LPF: low-pass filtering; ↓ 2: downsampling
by a factor of 2; ↑ 2: upsampling (with interpolation) by a factor of 2
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in most practical multi-resolution signal analysis, for the convenience of software/hardware
implementation and easy indexing, we choose a factor of 2 in all the downsampling opera-
tions.

The iteration process starts from the coarsest scale (Scale K) at the bottom of the central
column in Fig. 5. The Bayesian estimation approach described in Sect. 3.1 is applied to
the coarsest scale spectra, resulting in the BLS estimates of the alignment parameters. These
parameters are not used to align the spectra at the coarsest scale. Instead, they are upsampled
(with interpolation) by a factor of 2 to have the same length as in the second coarsest scale
(Scale K − 1). We can then use these interpolated alignment parameters to warp one of the
spectrum towards the other (reference) spectrum, resulting in an aligned spectrum at Scale
K − 1.

In the n-th iteration (where n ∈ [2,K − 1]), the aligned spectrum from the previous
iteration, together with the reference spectrum at the current scale (Scale K − n + 1), is
treated as a “regular” pair of spectra, and the same Bayesian estimation approach described
in Sect. 3.1 is employed to generate the alignment parameters at the current scale. These
alignment parameters are then combined with (being added to) the alignment parameters
relayed from the previous iteration. This way, the amount of true alignment is accumulated
and refined over iterations. Next, these alignment parameters are upsampled by a factor
of 2. Finally, the spectrum to be aligned at Scale K − n is warped based on the upsampled
parameters. Such an iteration process continues until the last iteration (Iteration K) at the
finest scale (Scale 1).

In the last iteration, the same Bayesian estimation approach is applied to the aligned
spectrum from the previous scale and the reference spectrum in the finest scale, and the
estimated parameters are combined with the parameters relayed from the previous iteration.
The difference from all previous iterations is that the alignment parameters do not need to be
upsampled, because they have already reached the same level and have the same length as
the original spectra. In the last step, the warping process is applied to the original spectrum
to be aligned with the final set of alignment parameters, which have been cumulated and
refined step by step from all iterations.

3.3 Implementation issues

Several implementation issues need to be resolved before the proposed approach is applied.
First, to obtain the matrix A, we need to compute the derivative x′ of an input spectral
signal x. This is not trivial because of the existence of noise. A method that is often used
is to apply a linear smooth filter to the signal before the differentiation operation. This is
equivalent to convolving the signal with the derivative of the smooth filter. Specifically, we
use a differentiation of Gaussian filter to compute x′.

Second, several parameters need to be determined, which are the diagonal entries of the
covariance matrices of the noise distribution and the prior distribution. In our experiment,
we estimate them empirically from the acquired NMR spectral data. In particular, we esti-
mate the noise variance �n from the variance of the relatively inactive regions in the spectra
(i.e., the regions that do not contain significant signal peaks). The two parameter values in
the diagonal entries of �p reflect the variances of the spectral shift and the baseline intensity
variation, respectively (and the other entries are zeros). It is difficult to provide appropriate
values without sufficient prior knowledge of the data being processed. In our implementa-
tions, such knowledge was gained by experimenting with these parameter values, and we
finally selected the ones that lead to reasonable alignment results in terms of root mean
squared error measurement. Although this may potentially result in overfitting, we found in
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our experiments that the overall performance of our algorithm is insensitive to small varia-
tions of these parameters.

Third, as mentioned earlier, the spectral shift and the baseline variation of intensity are
approximately constant only in a relatively small SROI and may vary smoothly along the
frequency axis. Therefore, we apply the Bayesian estimation approach locally within a slid-
ing window that moves sample by sample across the frequency axis. This results in two
sequences of estimated parameters as functions of frequency, one for local spectral shift and
the other for local baseline intensity variation. To align the two spectra, we keep one of
them fixed and warp the other locally based on the estimated parameters. The size of the
sliding window is selected such that the window can sufficiently cover twice of the maxi-
mal absolute spectral shift (since the shift can be either to the left or to the right). To avoid
sharp changes of the estimated parameters along the spectral axis (typically around sharp
peaks in the spectrum), it is useful to employ a sliding window that has smooth edges. In
our implementation, we used a Hanning window, which is smooth and gives more weights
to the center part of the sliding window during estimation. We also found that other smooth
windows such as Gaussian and Hamming windows lead to similar results.

Finally, to avoid overfitting between the spectra, we restrict the joint spectral shift and
baseline variation estimation to be applied at the coarser scales only. This can be understood
as imposing additional smoothness constraints on the baseline variation in the finer scales
because allowing fine tuning of the baseline levels at the fine levels could result in local
structural change of the spectrum, which is not desirable. At the fine scales, to restrict the
spectral alignment to spectral shift only, we simplify the Bayesian estimation algorithm
in Sect. 3.1. Specifically, the matrix A becomes a column vector x′, the shifting parameter
vector c becomes a scalar �ω, and the prior covariance matrix �p becomes a scalar variance
parameter about the spectral shift �s . We can then rewrite the BLS or MAP estimator in (12)
as

�ω̂BLS = �ω̂MAP = (x′)T �x
(x′)T x′ + �n/�s

. (14)

The alignment task is then simply implemented by warping one spectrum to the other using
the estimated spectral shift parameter �ω̂.

4 Experimental results

We use experimental data from 158 plasma samples obtained from five healthy subjects
under controlled metabolic conditions in the Emory General Clinical Research Center. The
subjects signed an informed consent approved by the Emory Institutional Review Board. 158
proton NMR spectra (each with 11,000 data points) are obtained from the collected plasma
samples using a Varian INOVA 600 MHz instrument, a high-resolution NMR spectrometer.
The ultimate goal of this experiment is to characterize the metabolic variations in response
to sulfur amino acids intake in human plasma.

To visualize the performance of the multiscale Bayesian method, we randomly pick two
spectra and align them. Figure 6 displays a small portion of the two NMR spectra (for better
visualization) before alignment. It can be clearly observed that the two spectra are mis-
aligned in both phase (spectral) and amplitude (baseline intensity). The multiscale Bayesian
method is applied to align these two spectra. Figure 7 shows the result of alignment after
correcting spectral shifts and baseline intensity variations. It can be seen that the two spectra
are well aligned, demonstrating the effectiveness of the proposed method.
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Fig. 6 A portion of NMR
spectra from two samples before
alignment

Fig. 7 A portion of NMR
spectra from two samples after
alignment using the multiscale
Bayesian method

For the purpose of performance comparison, four algorithms, including DTW, COW, and
the proposed methods (Bayesian and multiscale Bayesian), are applied to align each of the
158 spectra with a reference spectrum computed by their median. In general, the median
or mean of the spectra is used as the reference spectrum unless an experimentally verified
reference spectrum is available. The reference spectrum is shown in Fig. 8. It should be
noted that the large length of the spectra being tested makes the DTW and COW algorithms
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Fig. 8 The reference NMR
spectrum with three segments

computationally extremely expensive. Therefore, we had to segment the first 7,000 points in
a whole spectral region into three overlapped subregions, each with 3,000 data points. The
spectral region after 7,000th point is not considered because this region contains only few
significant metabolite features. The segmentation is shown in Fig. 8.

The first subregion (1–3,000) contains mostly large peaks, the third subregion (4,001–
7,000) contains mostly small peaks, while the second subregion (2,001–5,000) contains both
large and small peaks. Tables 1–3 show the resulting average root mean squares (RMS),
average correlation coefficients, and computational time for four alignment methods in three
subregions, respectively. The RMS value is computed as:

RMS =
√
√
√
√

1

M

M
∑

i=1

(si − ri)2,

where M is the number of points (3,000) in each subregion, and si and ri are the ith point in
the two spectra (one of which is the reference spectrum) being compared. Each alignment
method is executed by MATLAB version 7 (www.mathworks.com) on a 1.86 GHz Pentium
M Processor. The total computational time to align all 158 spectra is recorded for each
algorithm and is given in Tables 1–3.

The average RMS and the average correlation coefficient of the 158 spectra in all three
subregions show that the proposed algorithms perform better than DTW and COW. The pro-
posed algorithms also demonstrate a significant reduction of execution time, in comparison
with the DTW and COW algorithms. The multiscale Bayesian method yields smaller RMS
and larger correlation coefficients than the Bayesian method, although not to a significant
degree. This indicates that incorporating the multiscaling process into the Bayesian method
improves the overall alignment performance with moderate additional computational cost.
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Table 1 A comparison of alignment methods (region 1–3,000)

Methods RMS (before) RMS (after) Corr. (before) Corr. (after) Time (s)

DTW 0.002638 0.002239 0.9789 0.9821 4,520

COW 0.002638 0.002946 0.9789 0.9746 7,681

Bayesian 0.002638 0.000583 0.9789 0.9969 347

Multiscale Bayesian 0.002638 0.000196 0.9789 0.9997 771

Table 2 A comparison of alignment methods (region 2,001–5,000)

Methods RMS (before) RMS (after) Corr. (before) Corr. (after) Time (s)

DTW 0.002951 0.002636 0.9747 0.9764 4,492

COW 0.002951 0.002993 0.9747 0.9752 7,676

Bayesian 0.002951 0.000764 0.9747 0.9919 346

Multiscale Bayesian 0.002951 0.000366 0.9747 0.9983 733

Table 3 A comparison of alignment methods (region 4,001–7,000)

Methods RMS (before) RMS (after) Corr. (before) Corr. (after) Time (s)

DTW 0.001850 0.001713 0.9346 0.9478 5,220

COW 0.001850 0.001812 0.9346 0.9522 7,739

Bayesian 0.001850 0.000790 0.9346 0.9547 293

Multiscale Bayesian 0.001850 0.000448 0.9346 0.9865 751

5 Conclusions

We have proposed a new method for spectral alignment within the Bayesian statistical mod-
eling framework. The basic idea of our proposed method is to represent a reference spectrum
as a shifted function of the spectrum to be aligned. This function is approximated based on a
Taylor series expansion. The parameters of spectral shift and the baseline intensity variation
are simultaneously estimated by a Bayesian approach. The estimated parameters are then
used to align spectra. In addition, we have used a multiscale Bayesian alignment method to
overcome the limitation posed by the first-order Taylor expansion approximation. This mul-
tiscale approach enables us to correct relatively large spectral shift by applying the Bayesian
estimation procedure iteratively from coarse to fine.

The major advantage of the proposed method is three-fold: (1) The prior knowledge about
the shift parameters and the noise effect are naturally incorporated into the same estimation
framework; (2) The spectral shift and the baseline intensity variation are estimated simulta-
neously; and (3) A simple and robust closed-form estimator is obtained for the problem.

Our test with real high-resolution NMR spectra demonstrates the effectiveness of the pro-
posed method and shows clear advantages over DTW and COW, which are two widely used
methods for spectral alignment. It is also noteworthy that the performance of our algorithms
is achieved with significantly reduced computational effort.
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