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Abstract

Successful identification of the important metabolite features in high-resolution nuclear magnetic resonance (NMR) spectra is a crucial task for
the discovery of biomarkers that have the potential for early diagnosis of disease and subsequent monitoring of its progression. Although a number
of traditional features extraction/selection methods are available, most of them have been conducted in the original frequency domain and
disregarded the fact that an NMR spectrum comprises a number of local bumps and peaks with different scales. In the present study a complex
wavelet transform that can handle multiscale information efficiently and has an energy shift-insensitive property is proposed as a method to
improve feature extraction and classification in NMR spectra. Furthermore, a multiple testing procedure based on a false discovery rate (FDR) was
used to identify important metabolite features in the complex wavelet domain. Experimental results with real NMR spectra showed that
classification models constructed with the complex wavelet coefficients selected by the FDR-based procedure yield lower rates of
misclassification than models constructed with original features and conventional wavelet coefficients.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Metabolomics approaches that use high-resolution nuclear
magnetic resonance (NMR) spectroscopy have been used to
characterize metabolic variations in response to disease states,
genetic medication, and nutritional intake. These include electro-
phoresis, chromatography, mass spectroscopy, and nuclear
magnetic resonance spectroscopy. Of these, proton nuclear
magnetic resonance (1H-NMR) spectroscopy is efficient and cost
effective because the analysis is either noninvasive or minimally
invasive and requires little sample preparation [1,2]. A 1H-NMR
spectrum is a plot of the radio frequency applied against absorption.
Fig. 1 shows a set of 1H-NMRspectra generated by a 600MHz 1H-
NMR spectroscopy. The x-axis indicates the chemical shift within
units in parts per million (ppm), and the y-axis indicates the

intensity values corresponding to each chemical shift. Tradition-
ally, chemical shifts in the x-axis are listed from largest to smallest.
The peaks with different scales in the spectra correspond to the
specific resonance of chemical species in the samples.

Analysis of high-resolution NMR spectra usually involves
combinations of multiple samples, each with a large number of
metabolite features with different scales. This leads to a huge
number of data points and a situation that challenges analytical
and computational capabilities. To simplify such a complexity in
NMR spectra, data size reduction is critical. Data reduction can be
done by selecting a small number of important features that
preserve the most information contained in the original data. The
widely used methods for identifying important metabolite
features in spectral data include principal component analysis
(PCA) and Partial Least Squares (PLS) [3,4]. Both PCA and PLS
attempt to extract new features based on the transformation of the
original features. In general, the first few transformed features
obtained through PCA are sufficient to account for most of
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variability in the original data. Similarly, the first few transformed
features obtained by PLS are sufficient to maximize class
separability in the original data. These reduced dimensions can
diminish the computational complexity for the analysis of NMR
spectra. However, the reduced dimensions from PCA or PLS do
not provide a clear interpretation with respect to the original
features because they are linear combinations of a large number of
original features. Interpretation problems posed by the transfor-
mation process in PCA and PLS can be overcome by selecting the
best subset of given features in a spectrum. Recently, a two-stage
genetic programming (GP) method was successfully used for
selecting a subset of original metabolite features in NMR spectra
for the classification of genetically modified barley [5]. However,
GP may not always provide reliable results in high-dimensional
and noisy data.

The present methods (e.g., PCA, PLS, and GP) each have their
own advantages and disadvantages, and the choice among them
depends upon the purpose of the application.However, the present
methods have been conducted in the original frequency domain
and have overlooked the fact that an NMR spectrum comprises a
number of local bumps and peaks with different scales. This
motivates the focus of this paper on the development of efficient
analytical tools to handle the multiscale nature of NMR spectra.

Wavelets have the advantage of the locality of the analysis
and their ability to handle multiscale information efficiently.
Despite the numerous studies of wavelets that have been
conducted in the general field of signal and image processing
[6], wavelets have not been thoroughly studied for application
to NMR spectra. Wavelet transform has been used to improve
the detection of small chemical species in NMR spectra by
suppressing the water signal [7,8]. Qu and his coauthors [9]
used decimated discrete wavelet transform to analyze mass
spectrometry data (similar to NMR spectra) with class
information. They first conducted thresholding to reduce the
size of data and constructed a classification model with a small
subset of wavelet coefficients that best differentiated between
the two classes. The major disadvantage of using decimated
discrete wavelet transforms is that this method is insufficiently

robust in terms of signal translation, which means that the
representation of a signal by wavelet coefficients is highly
dependent on the signal’s relative position. This property is
critical to the analysis of multiple NMR spectra because small
variations in spectra caused by concentration, pH, temperature,
and instrumental instabilities may influence the spectral
alignment and thus can interfere with direct comparisons
between spectra.

In the present study we propose the use of complex wavelet
transforms for the analysis of multiple NMR spectra. A complex
wavelet transform has the energy shift-insensitive property that
leads to improvements in the comparability of multiple spectra.
Among the various complex wavelets available, we choose the
Gabor wavelets for three reasons: First, according to the Gabor
uncertainty principle (which is a generalization of the Heisen-
berg uncertainty principle that originated in quantum mechan-
ics), the time-frequency resolution of a signal is fundamentally
limited by a lower bound on the product of its bandwidth and
duration, and the Gabor filters are the only family of filters that
achieve this lower bound [10]. In other words, the Gabor filters
provide the best compromise between simultaneous time and
frequency signal representations. Second, the Gabor wavelets
are easily and continuously tunable for both the center
frequencies and for bandwidths. Third, from the biological
point of view, Gabor filters types have been widely used to
model the profiles of the receptive filed of simple cells in the
primate cortex [11].

One essential step in the use of NMR spectra for real
applications is to identify the features associated with the
problems being studied. NMR spectra shave a large number of
features, and many of them can be considered redundant and
irrelevant for the subsequent modeling processes. Thus, the
process of identifying a small number of important features can be
equivalent to the problem of optimal dimension reduction (i.e.,
data reduction) so that the remaining feature space has the
strongest statistical significance for the purpose of pattern
recognition. Most of the current dimension reduction processes
have been carried out directly in the original frequency domain,
and only a few have been performed in the transform domain. The
present study proposes to use a multiple testing procedure based
on a false discovery rate in the complexwavelet transform domain
to improve feature selection and classification in NMR spectra.

The major purposes of this paper are: (1) To examine the
feasibility of using the complex wavelet transform to efficiently
analyze the multiscale nature of NMR spectra; (2) To identify
the important metabolite features in the complex wavelet
domain that play a significant role in discriminating between
spectra under different experimental conditions; and (3) To
evaluate the appropriateness of the identified metabolite
features based on their classification capabilities.

2. Experimental data

We used plasma samples obtained from four healthy subjects
under controlled metabolic conditions in the Emory General
Clinical Research Center (GCRC). The subjects signed an
informed consent approved by the Emory Institutional Review

Fig. 1. Multiple spectra generated by a 600 MHz 1H-NMR spectroscopy.
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Board. During the 12-day GCRC admission, the subjects
consumed defined diets at standardized intervals. For the first
two days (equilibration), the subjects consumed balanced meals
from a plan in which foods were selected to ensure adequate
energy, protein and sulfur amino acid (SAA) intake (SAA at
19 mg/kg/day). After this phase, subjects were placed on
constant semipurified diets designed to alter SAA intake. The
diets provided adequate energy and amino acid nitrogen to meet
the estimated maintenance needs of individual subjects. The
L-amino acid component of the diet was altered to provide
zero SAA during the initial five days and 117 mg/kg per day
during the latter five days of the GCRC stay. Blood was drawn
serially 34 times from four subjects over ten days, and 1H-NMR
spectra were obtained by a Varian INOVA 600 MHz instrument.
During the first 17 time points, blood was collected from each
subject consuming zero SAA (zero-SAA phase) and 117 mg/kg
per day SAA during the latter 17 time points (supplemented-
SAA phase). Thus, the total number of spectra used in this study
is 136 ( =4 subjects×34 spectra).

Raw NMR spectra require preprocessing, which includes
phase/baseline correction, elimination of uninformative spectral
regions containing no significant metabolite signals, alignment,
and normalization relative to the internal standard. The NUTS
software (Acron NMR Inc., Livermore, CA) was used for phase/
baseline correction. To adjust for the variable suppression of the
large water signal in NMR spectra and enhance the detection of
metabolites, water signal and other uninformative spectral
regions were eliminated. We used MATLAB (Mathwork Inc.,
Natick, MA) with the beam search algorithm [12] for initial
spectral alignment. Finally, normalization of NMR spectra was
achieved by scaling to the integral of the internal standard.

3. Methods

3.1. Complex wavelet transforms

One of the major aspects of NMR spectral analysis is how to
associate the spectral region-of-interest (SROI) in NMR spectra
with their corresponding chemical shifts. One critical observa-
tion is that the optimal SROI in NMR spectra varies with
different chemical species. This motivates us to use a multiscale
approach because no single scale (no matter if it is coarse or
fine) can optimally capture all the SROIs in an NMR spectrum
at the same time. Wavelet analysis provides a natural solution
for this purpose and serves as a convenient and flexible
framework for localized representation of signals simultaneous-
ly in space and frequency.

We consider complex wavelets as dilated/contracted and
translated versions of a complex-valued “mother wavelet”
w xð Þ ¼ g xð Þejxcx, where ωc is the center frequency of the
modulating band-pass filter, and g(x) is a slowly varying and
symmetric real-valued function. The family of wavelets derived
from the mother wavelet can be expressed as:

ws;p xð Þ ¼ 1ffiffi
s

p w
x� p
s

� �
¼ 1ffiffi

s
p g

x� p
s

� �
e jxc x�pð Þ=s; ð1Þ

where s∈R+ and p∈R are the scale and translation factors,
respectively. Considering the fact that g(−x)=g(x), the wavelet
transform of a given real signal f(x) can be written as:

F s; pð Þ ¼
Z l

�l
f xð Þw⁎

s;p xð Þ dx ¼ f xð Þ⁎g x
s

� �
e jxcx=s

h i
x¼p

: ð2Þ

In other words, we can use this to compute the wavelet
coefficientF(s, p) at any given scale s and location p. In this paper,
we are specifically interested in the Gabor wavelet transform,
which is a special case of the complexwavelet transformdescribed
above. In particular, we define g(x) to have a Gaussian shape:

g xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
e
�x2

r2 : ð3Þ

One interesting property of the Gabor wavelet transform is
that it is energy shift-insensitive [13,14]. This can be easily
shown by the Fourier domain analysis: Using the convolution
theorem and the shifting and scaling properties of the Fourier
transform, it is not difficult to derive that

F s; pð Þ ¼ 1
2p

Z l

�l
F xð Þ ffiffi

s
p

G sx� xcð Þ e jxpdx; ð4Þ

where F(ω) and G(ω) are the Fourier transforms of f (x) and g
(x), respectively. Now suppose that the function f (x) has been
shifted by a small amount Δx, i.e., f '(x)= f (x+Δx). This
corresponds to a linear shift in the Fourier domain:
F Vxð Þ ¼ F xð ÞejxcDx. Substitute this into Eq. (4), we obtain

F V s; pð Þ ¼ 1

2p

Z l
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F xð Þ ffiffi

s
p

G sx� xcð Þ e jx pþDxð Þdx
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F xð Þ ffiffi

s
p

G sx� xcð Þ e jxpe j x�xc=sð ÞDxdx

cF s; pð Þe jxcDx=s:

ð5Þ

Here the approximation is valid whenΔx is small relative to
the Gaussian function g(x). The information we are particularly
interested in here is the magnitude of the Gabor coefficient |F(s,
p)|. From Eq. (5), we have

jF V s; pð ÞjcjF s; pð Þj:

In other words, the magnitude (or energy) of the Gabor
wavelet coefficient does not change significantly with a small
translation. Such an energy shift-insensitive property is very
important in the analysis of NMR spectra because a small
misalignment between multiple NMR spectra is unavoidable
(even after preprocessing), and the misalignment may interfere
with direct comparisons between NMR spectra.

3.2. A multiple testing procedure based on a false discovery rate

In the wavelet transform domain, significant data reduction
of a signal can be achieved by applying a thresholding method.
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The basic idea of thresholding is to zero out the small-magnitude
wavelet coefficients in the wavelet transform domain [15,16].
The fundamental assumption behind the thresholding is that
informative signals result in large-magnitude wavelet coeffi-
cients, and the small-magnitude coefficients most likely come
from noise. Although the thresholding algorithm can be efficient
for reconstructing an original signal with a few important
wavelet coefficients, these coefficients may not always produce
maximum discrimination between sample conditions. For
example, some wavelet coefficients with small magnitude may
be neglected even though they are indeed important for
classification. In the present study we used a feature selection
procedure to identify wavelet coefficients to maximize the
separation of the classes in NMR spectra. More precisely, a
multiple testing procedure that controls the false FDR was used
to identify significant Gabor coefficients that discriminate be-
tween the spectra under different conditions. The FDR is the
error rate in multiple hypothesis tests and is defined as the
expected proportion of false positives among all the hypotheses
rejected [17]. In our problem, the rejected hypotheses can be
interpreted as the significant Gabor coefficients necessary for
classification.

The FDR-based procedure is explained with our experi-
mental data. Let δjk be the magnitude of the Gabor coefficient
at the kth position (for k=1,2,…,K) of the jth class (for j=1,
…,J). As illustrated in Section 2, our experimental data
comprise 136 NMR spectra in which half of the spectra were
taken from the zero-SAA phase and the other half were taken
from the supplemented-SAA phase. The goal is to identify a
set of δk that maximizes the separability between the two
SAA phases. For each wavelet coefficient, a null hypothesis
states that the average magnitudes of Gabor coefficients are
equal between the two SAA phases, and the alternative
hypothesis is that they differ. The two-sample t statistic for
the δk is

tk ¼
P
d1k � P

d2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂21k
n1
þ r̂22k

n2

q
;

ð6Þ

where d̄1k, r̂
2
1k, and n1 are the sample mean, variance, and the

number of samples from the first condition, respectively.
Similarly, d̄2k, r̂

2
2k, and n2 were obtained from the second

condition. By asymptotic theory, tk in Eq. (6) approximately
follows a t-distribution on the assumption that the null
hypothesis is true. Using this, the p-values for δk for k=1,2,..,
K can be obtained. In multiple testing problems, it is well-
known that applying a single testing procedure leads to an
exponential increase of false positives. To overcome this, the
methods that control family-wise error rates have been
proposed. The most widely used one is the Bonferroni method
that uses a more stringent threshold [18] . However, the
Bonferroni method is too conservative, and it often fails to
detect the “true” significant features. A more recent multiple
testing procedure that controls FDR was proposed by Benjamini
and Hochberg [17]. The advantage of the FDR-based procedure
is that it identifies as many significant hypotheses as possible

while keeping a relatively small number of positives [19,20]. A
summary of the FDR-based procedure is as follows:

• Select a desired FDR level α between 0 and 1.
• Order the p-values: p(1)≤p(2)≤…≤p(K)
• Find the largest s denoted as w, where w ¼ max s :p sð ÞV s

k
a
p

� �
,

where k is the total number of hypotheses, and π denotes the
proportion of true null hypothesis. The present study uses
π=1, the most conservative choice.

• Let the p-value threshold be p(w), and declare the Gabor
coefficient δk as significant if and only if ps≤p(w).

3.3. Classification tree and cross validation

A classification model was used to examine the advantage
of using the complex wavelet transform and FDR-based feature
selection in NMR spectra. We used a classification tree, one of
the widely used classification methods. Classification trees
partition the input (feature) space into disjoint hyper-rectangu-
lar regions according to performance measures such as
misclassification errors, Geni index, and cross-entropy and
then fit a constant model in each disjoint region [21]. The
number of disjoint regions (equivalent to the number of ter-
minal nodes in a tree) should be determined appropriately
because a very large tree overfits the training set, while a small
tree cannot capture important information in the data. In
general, there are two approaches to determining the tree size.
The first approach is the direct stopping methods that attempt
to stop tree growth before the model overfits the training set.
The second approach is tree pruning that removes the leaves
and branches of a full-grown tree to find the right size of the
tree. In the present study the Geni index was used as a per-
formance measure. To determine tree size, we stop the growth
of a tree when the number of data points in the terminal node
reaches five.

In order to estimate the true misclassification rate of
classification tree models, we used a cross-validation technique.
Specifically, we used a four-fold cross validation in which the
experimental data were split into four groups corresponding to
four subjects. Three subjects were used for training the models,
and the one remaining subject was used for testing. This process
was repeated three more times. The final classification results
from the four different testing samples were then averaged to
obtain the misclassification rates (or cross-validated error rates)
of the classification tree models.

4. Results and discussion

4.1. Multiscale modeling by the Gabor and Symlet wavelet
transforms

We used the Gabor and Symlet wavelet transforms to
obtain the wavelet coefficients. The parameters ωc and σ in
the Gabor wavelet decomposition control, respectively, the
frequency band and the locality. In order to have a fair
comparison, these parameters are tuned so that their frequency
responses match those of the Symlet, which can be viewed as

164 S.B. Kim et al. / Chemometrics and Intelligent Laboratory Systems 90 (2008) 161–168
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a real wavelet transform. In our implementation, we set
ωc=0.75π and σ=2.1, and compute the Gabor coefficients at
five discrete levels with corresponding decimation factors of
2, 4, 8, 16, and 32. The maximum number of levels of the
Gabor decomposition (Level 5 with a decimation factor of 32)
is determined by the maximal scale of the features in the NMR
spectrum. For example, a single chemical specie may
correspond to a SROI in the NMR spectrum. The coarsest
scale (corresponding to the maximum level) of Gabor
decomposition should be able to fully cover the SROI with
one Gabor profile. Fig. 2 shows an example of the Gabor
coefficients |F(s,p)| computed at five different levels from our
implementation.

To demonstrate the advantage of energy-shift insensitivity of
the complex wavelet transform, we compare with the Symlet,
which is one of the commonly used real wavelet transforms.
Consequently, the Symlet wavelet of order 16 (Symlet-16) is
selected, and the maximum level of Symlet decomposition is set
to five. Fig. 3 shows the similarity of the frequency responses of
all five levels of the Gabor and Symlet wavelets.

Furthermore, to demonstrate the improvement of processing
in the transform domain, the resulting wavelet coefficients from
both transforms are downsampled so that the total number of
transform coefficients is approximately the same as the total
number of original features. Fig. 4 illustrates a downsampling
process of five levels in the Gabor and Symlet wavelet
transform domains.

The original NMR spectrum, foriginal(x), is decomposed (by
Gabor or Symlet wavelet transform) into five levels. The
resulting wavelet coefficients fi(x) of the ith level are down-
sampled by 2i, where i=1, …,5.

The Gabor filters are defined by hi xð Þ ¼ g x
s

� �
e jxcx=s; where

s=2i, ωc=0.75π, and g(x) is defined by Eq. (3). The Symlet

filters are defined as follows. Let Hi(ω) be the Fourier transform
of hi(x), then

H1 xð Þ ¼Ĥ0 xð ÞĤ1 x2
� �

;

H2 xð Þ ¼ Ĥ0 xð ÞĤ0 x2
� �

Ĥ1 x4
� �

;

H3 xð Þ ¼ Ĥ0 xð ÞĤ0 x2
� �

Ĥ0 x4
� �

Ĥ1 x8
� �

;

H4 xð Þ ¼Ĥ0 xð ÞĤ0 x2
� �

Ĥ0 x4
� �

Ĥ0 x8
� �

Ĥ1 x16
� �

;

H5 xð Þ ¼Ĥ0 xð ÞĤ0 x2
� �

Ĥ0 x4
� �

Ĥ0 x8
� �

Ĥ0 x16
� �

Ĥ1 x32
� �

;

where Ĥ0 xð Þ and Ĥ1 xð Þ are the lowpass and highpass filters
corresponding to the scaling and wavelet functions of the
Symlet wavelet transform, respectively. The impulse responses
hi(x) can be obtained by taking the inverse Fourier transform of
Hi(ω). As a result of downsampling, we obtained 8181 wavelet
coefficients from five levels of the Gabor and Symlet
transforms. These coefficients will be used for feature selection
described in Section 4.2. Gabor and Symlet wavelet transforms
were performed using MATLAB (Mathwork Inc., Natick, MA).

4.2. Selection of important metabolite features

We applied the FDR-based multiple testing procedure to
identify significant metabolite features in the original domain
and in the wavelet domains (e.g., Gabor and Symlet). The total
number of metabolite features in the original domain is 8444,
and the number of features selected by the FDR-based procedure
is 1278 (Table 1). The number of Symlet and Gabor coefficients
selected by the FDR-based procedure is reported in Table 1,
showing that significant data reduction is achieved.

Fig. 2. The magnitude of the Gabor wavelet coefficients at five levels (cropped from a long MNR spectrum for better visualization).
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Interpretation of the FDR results can be made as follows: In
the original domain, for example, the FDR-based procedure
identified 1278 significant features. This implies that there are
on average, 13 (12.78=1278×0.01) false discoveries out of the
1278 coefficients discovered (identified as significant) through
the FDR-based procedure. In the wavelet domains, the FDR-
based procedure selected 20 significant Symlet coefficients and
21 significant Gabor coefficients. This implies that there is less
than one false discovery in the 21 and 20 features selected at
FDR level=0.01. Some remarks on the FDR-based multiple
testing procedure are given below.

Remark 1. A higher level of FDR increases the number of
significant features. This yields higher statistical power but
produces more false positives.

Remark 2. Metabolite features in NMR spectrum are corre-
lated. Even though wavelet transforms alleviate the serial
correlation between the features, an appropriate procedure is
needed to take into account the correlation between the wavelet
coefficients. The original FDR-based procedure proposed by
[17] assumed that all hypotheses are independent. Later work by
[22] revealed that the conclusion still holds if the tests are
positively correlated. Furthermore, they extended the original
FDR-based procedure, with minor modification, to handle any
correlation structures.

Remark 3. The FDR-based procedure for feature selection can
be generalized into problems with more than three classes. As
an alternative to two-sample statistics for two class problems, an
analysis of variance table is constructed for each wavelet
coefficient and its significance is tested based on an F-test.

4.3. Classification results

To evaluate the adequacy of the metabolite features obtained
from Sections 4.1 and 4.2, the following six data sets with the

Fig. 3. Frequency responses of five levels of Gabor wavelet transforms and Symlet-16 wavelet transforms.

Fig. 4. Downsampling process of five levels of Gabor and Symlet wavelet
transforms.

Table 1
Number of significant metabolite features from the FDR-based multiple testing
procedure (FDR level=0.01) in the original and wavelet domains

Types of features Total number
of features

Number of
selected features

Reduction rate

Original 8444 1278 84.86%
Symlet-16
(Real Wavelet)

8181 20 99.74%

Gabor(Complex
Wavelet)

8181 21 99.76%

166 S.B. Kim et al. / Chemometrics and Intelligent Laboratory Systems 90 (2008) 161–168
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different sets of features were used for the tree classification
method. The values in parentheses indicate the numbers of
features.

• Data set 1: All metabolite features in the original domain
(8444).

• Data set 2: Coefficients downsampled from five levels of the
Symlet wavelet transform (8181).

• Data set 3: Coefficients downsampled from five levels of the
Gabor wavelet transform (8181).

• Data set 4: Metabolite features selected from Data set 1 by
the FDR-based procedure (1278).

• Data set 5: Coefficients selected from Data set 2 by the FDR-
based procedure (21).

• Data set 6: Coefficients selected from Data set 3 by the FDR-
based procedure (20).

Data set 1 is the full data set containing all metabolite features
in the original domain. Data sets 2 and 3 contain the downsampled
Symlet and Gabor wavelets. Data sets 3, 4, and 5 consist of the
features selected from Data sets 1, 2, and 3 using the FDR-based
feature selection method (FDR level=0.01). Classification error
rates obtained from cross validation are shown to evaluate the
efficacy of the data sets with different sets of features (Fig. 5).
Comparing the features in the original domain with the features in
the wavelet domain, it is clear that the wavelet transform
approaches improve classification accuracy. This result demon-
strates the advantage of using wavelet transforms in the analysis
of the multiscale nature of NMR spectra. Between the complex
wavelet and real wavelet transforms, the classification treemodels
with Gabor wavelet coefficients yield a lower misclassification
rate than the models with Symlet coefficients. This implies that
the energy shift-insensitive property of the complex wavelets
results in the reduction of the misclassification rate. Furthermore,
the classification tree models constructed with the features
selected by the FDR-based feature selection method produce
smaller misclassification rates than those without applying the
FDR-based method; this demonstrates that feature selection
by FDR was adequate and that it successfully eliminated non-
informative features and improved overall classification accuracy.

In particular, the classification accuracy was significantly im-
proved by using theGabor coefficients selected by the FDR-based
procedure.

5. Conclusions

We have proposed to use a complex wavelet transform
combined with the FDR-based feature selection method to
improve feature selection and classification of high-resolution
NMR spectra. The ability of wavelet transforms to break down
the original spectrum into different resolution levels allows us to
investigate the metabolite feature with different scales.
Moreover, the energy shift-insensitive property in the complex
wavelet transform can efficiently handle misalignment and
enables direct comparison among multiple NMR spectra. The
FDR-based feature selection procedure treats all the wavelet
coefficients simultaneously and systematically identifies im-
portant features in NMR spectra.

The effectiveness of the complex wavelet transform and the
FDR-based procedure was demonstrated using real NMR spectra
in which the ultimate goal was to determine major metabolite
features that contribute to distinguishing between the zero-SAA
and supplemented-SAA phases. We compared the classification
capabilities of the proposed approach with the original features
and with the noncomplex wavelet transform. The results from
classification tree models have shown that the proposed approach
significantly increases overall classification performance.

Our study extends the application scope of both the complex
wavelet transform and the FDR methodology and demonstrates
that their systematic application to controlled clinical study
provides a useful means to extract meaningful information from
high-resolution NMR spectra. We hope that the procedure
presented here stimulates further investigation into the devel-
opment of better procedures for multiscale modeling and
analysis of high-resolution NMR spectra.
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