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Image Information Restoration Based on
Long-Range Correlation

David Zhang Senior Member, IEEEgnd Zhou Wang

Abstract—A new class of image information-restoration
algorithms virtually different from traditional techniques are
proposed. In comparison with other approaches, our methods
not only use the information in local areas, but also that in the
remote regions in the image. The methods originate from the idea
that there exists abundant long-range correlation within natural
images and the human vision systems composed of our eyes a
brains can sufficiently utilize such types of information redundancy
to implement the functions of image interpretation, representation,
restoration, enhancement, and error concealmefur general ap-
proach can be summarized as five basic steps: fetching, searching,
matching, competing, and recovering. The experimental results
on several practical applications show that our methods perform
substantially better than many other state-of-the-art methods. tal L]

~ Index Terms—Block-based image coding, error concealment, rig 1. The same lost block under different scales of backgrounds. (a) Local
Image |r_1format|0n restoration, impulse noise removal, long-range region background. (b) Large region background observed from a remote
correlation. position.

|. INTRODUCTION Now let us come to the traditional image-restoration and
) o ) _image-enhancement techniques. Basically, they can be clas-
WEWOUId like to begin this paper by performing a simplgjfieq in three categories: 1) pixel point processing method:

V'V test. Let us look at two pictures that are shown &8 pixel group processing method; and 3) frequency-domain
Fig. 1(a) and (b). It can be observed that the middle blogKethod. In the first method, the gray level of each pixel in the
regions of these two pictures are missing. This raises the qUggst image is modified to a new value, often by a mathematical
tions: “What should be in the lost blocks? Can you glvea_goqg logical relationship, and placed in the output image at
guess?” When we asked dozens of people these questionsygllsame spatial location. All pixels are handled individually
of them gave almost the same answers. They found it dlffICLE!IE]_ Typical examples are histogram sliding and stretching
to guess the missing block in the first picture, but were able {gyorithms and binary contrast enhancement approaches. The
imagine the missing block in the second picture. _People Wefgcond method, namely pixel group processing, operates on a
sgrprlsed when we told them that the lost blocks in these t"&?oup of input pixels surrounding a center pixel, resulting in
pictures are exactly the same block removed from the sag@ output center pixel value. Examples are low- and high-pass
standard image. The only difference is that in Fig. 1(a), ti@ear spatial filters, gradient operator-based edge detection/en-
block is very closely observed, while in Fig. 1(b), the block iancement algorithms, and the median-based filters. In the third
observed from a remote position so that a larger backgroupgthod, a frequency transformation decomposes an image from
region can also be seen. Why people can give much befferspatial-domain form of brightness, into a frequency-domain
estimation of the lost block from the second picture than fropg,m of fundamental frequency components [1]. The real
the first picture? In our opinion, at least two conclusions C8fhage-restoration and image-enhancement processing is con-
be drawn from this test. First, there exists abundant long-rangigcted by modifying the frequency components. To reconstruct
correlation within natural images which can be viewed aStfe image, an inverse frequency transformation converts an
special kind of information redundancy. Second, the hum@age from its frequency domain form back to a spatial form.
vision systems composed of our eyes and brains can and doi§g most common transform is the Fourier transform. There
such correlations to interpret and restore image information. gre also other transforms, such as the Hadamard, Harr, slant,

Karhunen-Loeve, sine, and cosine transforms [1].
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of a large area, the information of remote regions are used
only statistically but not directly. Consequently, traditional
methods are impossible to simulate the human vision systems
in utilizing long-range correlation in the images. In contrast,
our new algorithms to be presented in this paper are just based
on the employment of such long-range information redundancy.
It should be mentioned that in Jacquin’s fractal block coding
(FBC) algorithm [2], [3], some kinds of block-wise self-similar-
ities had been used for the compression of images. The concept
of self-similar in the FBC algorithm is very flexible. In some
cases, it means an image block is very similar to some part of
itself. In some other cases, it can also mean a small image block
is similar to a remote larger block in the same image. It can be
shown that this second kind of block-wise similarity is actually
a special form of the long-range correlation discussed in thi
paper. Another major contribution of Jacquin is that he intro-
duced a practical way to find long-range block-wise similarities.

R 2.
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Demonstration of the general approach.

Our approaches use similar ways to find long-range correlationOur general image-restoration approach is composed of five
inimages. However, our algorithm has many differences in cofasic steps. For the ease of description, a demonstration graph
parison with FBC. First, the goal of our method is for informals provided in Fig. 2. The five steps are given as follows.

tion restoration rather than image compression. The long-rangel)
correlation between image pieces is used for recovering dam-
aged image pixels, instead of removing redundancy to compress
the image. Second, our method cannot be cditettal because

the word “fractal” in “fractal image coding” means self-simi-
larity at different scales, while we are trying to use long-range
similarities at the same scale.

This paper is organized as follows. In the next section, a gen-
eral approach of our image restoration algorithm using long-
range correlation is presented. Three real applications are pro2)
vided in Section lll. The experimental results are also shown in
this section. In Section IV, we discuss many possible extensions
and improvements of our method. Finally, some concluding re-
marks are given in Section V.

[I. GENERAL APPROACH

Before the application of our general image-restoration ap-
proach, we should make two assumptions. First, only some of
the pixels in the image are bad (lost or damaged) while the other
pixels are good (uncontaminated, the same as those in the orig-
inal image). Second, we have known which pixels are good and
which pixels are bad. In case we do not have this kind of infor- 3)
mation, an error or noise detection algorithm should be applied
first.

A digital gray scale image with A pixels can be denoted as
avector = (z1,22,...,2n ). FOrconvenience, a 1-D model is
used in this paper. Nevertheless, the algorithms presented below
are also applicable or can be easily adapted to 2-D or higher
dimensional cases. Letandz™") be the damaged image and
the restored image, respectively. Since we know which pixels
in the image are good, it is easy to give each pixel<
1,2,..., M) abinary flagf;, indicating whether it is bad, i.e.,
/i = 0 means; is good andf; = 1 meanse; is bad. The goal
of our image restoration algorithm is to give each bad pixel with
fi=1lanew valuecgne“’) that can comply well with our visual
sense.

Fetching Extract a window! with N pixels from the
image which is called a local window (see Fig. 2). We
havel = (I1,1s,...,1ln). This window may be a square,
rectangle, triangle, or any other shape. The only restric-
tion is that all the pixels are contiguously connected. For
each pixel; (i = 1,2,..., N)in this local windowl, we

can get its corresponding flag valyg The set of pixels
with f! = 1 is shown as the damaged information in the
local window (see Fig. 2).

Searching Search for another window in the image
which is of exactly the same shape and the same size as
the local window. We callr a remote window (see Fig. 2)
and haver = (ry,72,...,7y5). The flag value of each
pixel r; in window r is denoted ag;. Since thd andr

are of the same shape and size, we can find an indexing
method that makes every pixeléigorrespond to a unique
pixel at the same position inand vice versa. Sometimes,
we restrict the searching procedure to be conducted in a
region not very far from the local window. We call such

a region the search range (see Fig. 2). Obviously, if a full
search is conducted in the search range, we can find many
candidate remote windows. In the next two steps, we will
try to find out which is the best for our needs.

Matching Try to match the remote window to the
local windowl. The matching method is determined by a
1-D luminance transformation functianthat transforms
everyr; in r to v(r;). There are many possible matching
methods. The simplest form is direct matching, where
we usev(z) = z (wherez denotes a real number) as
the luminance transformation. Other practical luminance
transformations include theorder polynomial functions

v(z) =ag+amz+---a,2f, (p>1) Q)
whereag, ay, . . ., anda,, are the polynomial coefficients.
The pixel pairs in the two windows can be classified into
three categories. In the first category, the corresponding

pixels inr andl are good f} 0 and f7 = 0). In
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the second category, the pixel inis good, but its cor- be recovered by using their corresponding good pixels
responding pixel id is bad (f/ = 1 and f7 = 0). In the (fT =0) inr. This is why we call the set of the pixels in
last category, the pixel inis bad irrespective of whether the second category of the window§ & 1 andf! = 0)

its corresponding pixel ihis good ornot {7 =1, f{ =0 the recovering part. For a certain pixel in this part, the

or f! = 1). The pixels in the first category compose the new pixel value is
matching part of the window. The number of pixels in this

. " if i = r—
category is lg‘“e“’) _ {;(71), gtﬁze rvvilse and fI=0 ©)
]\T 7
Ny = Z n-f1-0-r. 2 Finally, we copy the renewed local window back into
i=1 its corresponding position in the recovered image and

Actually, only the pixels in this part will be used in the modify the flag values of the recovered pixels from 1 to

matching procedure. The matching result is evaluated by
the mean-squared error of the matching gadiSE ;)

between the transformadwindow and thd window By applying the five steps above, some bad pixgfs € 1
L X and fI' = 0) in the contaminated image are recovered. The
MSE ;= — Z [1— £ [1 _ le] i — o). (3 r_estoratlo_n of the whole |mage_neeqs to apply these steps many
ny times until the flags of all the pixels in the image are all 0.
Of course, we want theISE,, to be as small as possible.. We h_ave proposed the gene_ral framework fqr image restora-
tion using long-range correlation. In real applications, such a

,|[2 ELTCCSI(;?(’;Vtvheeca;r::]ee;[gfsciﬁr:ﬁgl?unrrﬁag:zleﬂtlaraEr]?sAfg , framework should be adapted to the practical requirements.
. para . MG example, in some circumstances, the contaminated pixels
tionw. For example, if we use one of the polynomial func-

. : X . may not be totally damaged. Their values can be viewed as the
tions of (1) as the luminance transformation function, then_~, .~ . Lo . .

. : .combination of their original values and later mixed noises. In
the parameters can be obtained by solving the followi

set of equations: "Qich cases, the matching, competing, and recovering algorithms
q ' should be modified accordingly.
8MSEM/8a0 =0

IMSE N /0a; =0 @ [Il. A PPLICATIONS
: A. Error Concealment for Block-Based Image-Coding Systems
OMSEy /9a, = 0. Recently, many image-coding algorithms have been devel-
For the one-order case, the solution is given as in (5)ped to reduce the bit rate for digital image and video rep-
shown at the bottom of the page. resentation and transmission. Among them, block-based tech-
Competing All the candidate remote windows competaiques have proved to be the most practical and are adopted by
for the best match for the local window. Each candidat@ost existing image and video compression standards [4]—[6].
remote window in the search range will result in its corSince real-world communication channels are not error free, the
respondingMSE ;. An obvious effective standard for coded data transmitted on them may be corrupted. Block-based
the selection of remote windows is to choose the onmage-coding systems are vulnerable to transmission impair-
with the leasMSE ;. This remote window then becomesment. Loss of a single bit often results in loss of a whole block
the winner. In Section IV of this paper, we will discussaand may cause consecutive block losses. Many error-conceal-
the possibility of using more complex standards by conment methods have been proposed [7]-[12], which are aimed at
bining other parameters such as the distance between ttigsking the effect of these missing blocks to create subjectively
local and remote windows. acceptable images.
Recovering Recover the damaged pixels in the local We call our error concealment method the best neighborhood
window using the good pixels in the transformed remotmatching (BNM) algorithm. In our experiments, onlyx8
window. Suppose we have the winning remote windowized block losses are considered. The reason to choose such
r and its related matching transformation function a size is that it is the size frequently used by a lot of proposed
Because the remote window and the local window aimage and video coding techniques. The lost 8 blocks are
very well matched, some bad pixelg! = 1) in I can recovered one by one. The sizes of the local wind@amd the

L Q= =) b= (S A= (=) ] [ S 0= (- 1) -4
i S (=g (0= f) 2 =[S A= ) (1= 1) ] 5)
a0 = — D A== f)lima- 3 0= 1) ]

n
M )
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Fig. 3. Top left: Damaged image “Barb” with isolated block losses and withig. 4. Top left: Damaged image “Baboon” with isolated block losses and with
block loss rate of 109%PSNR = 16.43 dB. Top right: Reconstructed image block loss rate of 10%>SNR = 15.48 dB. Top right: Reconstructed image
“Barb” by dc concealmenf?’SNR = 29.95 dB. Botom left: Reconstructed “Baboon” by dc concealmenE,SNR = 28.89 dB. Bottom left: Reconstructed
image “Barb” using one-order BNM algorithi?SNR = 37.08 dB. Bottom image “Baboon” using one-order BNM algoritht®3NR = 29.03 dB. Bottom
right: Original image “Barb.” right: Original image “Baboon.”

remote window are fixed to be 16« 10. The candidate remoteStriction is applied, so that some adjacent missing blocks may
windows are selected from an 8080 square region (what we be connected into big lost regions. For the first case, we can
referred to as the search range) with the local window locatd§e 0ur approach directly to recover the lost blocks one by one.
at its center. Another restriction on a candidate remote winddyp" the second case, a complete boundary for some missing
is that it must be a good block itself. In other words, all thBlOcks may not be available. Two modifications are used to
pixels in it are good. We put the:88 lost block at the center of SOIVe this problem. First, we exclude the missing pixels in the
the local window, thus the matching part of the local window {&N€ Pixel wide boundary of a missing block from the matching
a one pixel wide boundary around the lost block. The remdp&'t of the window. Thus, the matching test is applied on the
window whose boundary pixels match the neighborhood BMaining good boundary pixels only. Second, we recover the
a lost block the best, becomes the winning remote windofl@maged image through a progressive procedure which is com-
This is why we call our method the BNM algorithm. ForPosed of several steps. The missing blocks recovered in the cur-
luminance transformations, the direct matching and one-, tw&€Nt Step are considered as good blocks in the subsequent steps.
and three-order polynomial matching functions are tried, whel®y USing such a progressive procedure, the more a lost block is

the best coefficientao, ar . . . , a,, of the n-order polynomial surrounded by good boundary pixels, the earlier it is recovered.
functions are obtained under the condition of leHSE,, as  Thesimulations on both the cases show that our algorithm can

given above. Through experiments, we find that the one-ord®§t Very good restoration results in terms of both subjective and
polynomial function is the best for luminance transformatioffPi€ctive evaluations. Figs. 3 and 4 give the restoration result
Nevertheless, the direct matching function can get similQf tWo standard images with 10% isolated block losses. Fig. 5
restoration results within much less time. In general, high&P0Ws some enlarged sample regions for sharp edge areas, stripe
polynomial orders, such as the two- or three-order, lead #€aS, texture areas, and very complex areas, respectively. The
smallerMSE ;. However, this does not mean their restoratiofiSu@l quality of the recovered blocks are very good even when
results are always better than those obtained by lower ord3f aréas contain alot of detailed information that is very diffi-
functions. The reason is that it may falsely result in absuftlt ©0 be handled by other approaches. For object evaluation, a

recovery, i.e., two blocks that are not similar may become veﬂ‘?ak signal-to-noise ratio (PSNR) is used as the criterion, which

similar through a high-order luminance-matching functiord® defined as

In other words, the lower order functions, although not good 2552

at function approximation, are more robust and have better PSNR = 10logyo =37 2

generalization ability. 37 2im1 (00 ~ )
Two cases of block losses are considered. In the first casghereM is the number of pixels in the image, andand¢; are

the lost blocks are restricted to be isolated, i.e., all of theirtBei-th pixel values in the original and the test images, respec-

surrounding blocks are good blocks. In the other case, no tizely. In Table I, we present the restoration results for image

()
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(d)

Fig. 5. Enlarged sample regions for: (a) sharp edge area; (b) stripe area; (c) texture area; and (d) very complex areas. (Left: Damaged. Méttlle: Restor
Right: Original.)

TABLE |
PSNR EERFORMANCE FORDIFFERENT ERROR CONCEALMENT METHODSWITH BLOCK LOSSRATES RANGING FROM 2.5%T0 15.0%

Error Concealment Block Loss Rate
Algorithm 2.5% 5.0 % 7.5 % 10.0 % 12.5 % 15.0 %
without concealment 22.8 dB 19.4 dB 17.7 dB 16.4 dB 153 dB 14.6 dB
dc concealment 36.6 dB 32.9dB 31.4dB 30.0 dB 29.2 dB 28.0 dB
direct BNM 41.1 dB 39.0 dB 36.3 dB 35.7dB 33.6 dB 32.3dB
1-order BNM 41.8dB 39.6 dB 37.6 dB 37.1dB 35.0dB 33.2dB

“Barb” using direct BNM and one-order BNM algorithms, results of the dc concealment method in Figs. 3 and 4 and Table I.
spectively. For comparison, we also include the restoration rEie dc concealment method simply fills the lost block with a
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During the noise removal procedure, the impulses are elim-
inated one by one. The local window is of size 7 centered
about the impulse pixel. A candidate remote window must
satisfy the following conditions: 1) it is not the same as the
local window; 2) it must be completely covered by the>221
window (the search range) centered about the impulse; and 3)
its center pixel is good. Similar to those in the error concealment
method, we still usdISE; to evaluate the matching result and
the one-order polynomial for the luminance transformation,
whose coefficients are obtained by (5).

Two cases of noise distributions are considered. In the first
case, the values of the corrupted pixels are equal to the max-
Fig. 6. (a) Damaged image “Barb” with contiguous block losses and withl‘[;tnurn Or mlnlmum of the '.a"O\.Ned dynamic range with equal
high block loss rate of 30%?SNR = 11.79 dB. (b) Reconstructed image Probability. This kind of noise is commonly referred to as salt-
“Barb” using BNM algorithm PSNR = 29.13 dB. pepper noise. In the other case, the corrupted pixel values are
uniformly distributed between the minimum and maximum al-

wed dynamic range. For 8-bits/pixel (bpp) gray-level images,

uniform gray value equal to the average gray level of its eighq1 : . . )
surrounding blocks. The dc concealment algorithm can improy e noise luminance of the first case corresponds to a fixed value

PSNR by a magnitude of about 13—14 dB, while those for dire? 0 or 255 with equal probability, V\.Ih”e that_ of _the second case
rresponds to a random value uniformly distributed between 0

and one-order BNM algorithms are about 18-20 and 19-21 .4 255
respectively. The PSNR performance of the one-order BNM & S . .
In Fig. 7, we give some enlarged areas of our test images

gorithm for image “Barb” with a block loss rate of 10% is 37.0 . .
dB, which is a significant improvement over 31.2 dB of Sun’ 0 show how the proposed algorithm performs on different

scheme [8], 32 dB of HCIE scheme [10], and 34.5 dB of I_eeinds of image details corrupted with fixed-valued and

et al’s fuzzy logic scheme [10]. Similar results are also onandom-valued impulsive noises. The visual qualities of the

tained on other test images with different lost block rates. [ﬁsf{r?qr:de'n;ae?:.fsa;(;eltitévﬂy gogg.ggnsggggﬁ.;gz a_ti_;g%allﬂlce
Fig. 6, the restoration result of "Barb” with very highly cor- r:1 a?es our rlnethod with otlr?er well-kngwn m(Ia':r:od"s, in PSNR
rupted 30% contiguous block losses is provided. Even thou RmP

H 13 ” 0 . =
some lost blocks are connected into large black regions, we Sar!dthfai?:ﬂ?\;glgggg?m Lﬁlgzscoégptﬁfezyviﬁﬁ dﬂxr?gis\;aluggr
obtain good restoration in most of the regions. P ' '

algorithm provides significant improvement over all the other
approaches, while for random-valued noise, only Aletal.’s
approach with inside training set [16] is close to our algorithm.

Images are often contaminated by impulse noise due to errbrsTable 1ll, we show the filtering results for image “Lena”
generated in noisy sensors and communication channels. I€@rupted by random-valued impulse noise with various proba-
important to eliminate noise in the images before some sub$dities ranging from 10% to 30%. The results of Abretal.’s
guent processing, such as edge detection, image segmentaafgproach are also given [16]. In most cases, the performance
and object recognition. A large variety of filtering algorithmf the proposed algorithm is close to the best result of Abreu
have been proposed to perform an effective noise cancellat@iral.s approaches. Notice that our algorithm does not include
while preserving the image structure [13]-[17]. Since impuls#ny training procedure. When the noise probability is high,
noise only contaminates a proportion of the pixels in the inthe restoration results may be further improved simply by
ages and its value is generally independent of the strengthitefatively applying the proposed algorithm. In the last row of
the image signal, our general approach described above is vEaple I, we list the PSNR performance after two iterations.
suitable and can be easily adapted to eliminate such noises [18].

Before the _application (_)f our noisg-cancella_tion algorithn@_ Reduction of Blocking Effect
however, a noise detector is used to give each pixel a binary flag
value, indicating whether it is an impulse pixel. In [17], we in- The “blocking effect” is one of the major disadvantages of
troduced an impulse-detection algorithm before the applicatiblock-based image-coding techniques. There are two general
of a polynomial approximation approach. The impulse detectapproaches to reduce blocking effects: overlapping the blocks
is an improved iterative version of Sun and Neuvo's switchduring encoding [19], [20] and post-processing after decoding
method [15] and is based on two assumptions on the ima¢9], [21]-[25]. Our method belongs to the second approach.
1) a noise-free image should be locally smooth varying and isThe reduction of blocking effect is much different from the
separated by edges [15] and 2) a noise pixel takes a gray vabeve two applications because no pixel in the image is totally
substantially larger than or smaller than those of its neighbodamaged. In other words, the pixel values near block bound-
Experiments show that our detector is very good at detectinges also contain some useful information that should not be
impulsive noises in the images, especially when the images afieninated. The goal of the algorithm is just to modify these
very highly contaminated. We use it here to generate the binanixel values to reduce the discontinuity across the two adjacent
flags. blocks.

gan L5}

B. Impulse Noise Removal
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Fig. 7. Impulse noise restoration performance. (a) Enlarged area from image “Barb” corrupted by 10% fixed-valued impulse noise. (b) Enlaogedsage fr
“Boats” corrupted by 20% random-valued impulse noise. (c) Enlarged area from image “Baboon” corrupted by 30% fixed-valued impulse noiseup&ftt Corr
images. Middle: Restored images. Right: Original image areas.

TABLE I
COMPARATIVE RESTORATION RESULTS IN PSNRFOR 20% IMPULSE NOISE FORIMAGE “L ENA”. FOR FIXED-VALUED IMPULSE NOISE,
IMPULSES TAKE ON ONLY THE VALUES 0 OR 255 WITH EQUAL PROBABILITY. FOR RANDOM-VALUED IMPULSE NOISE,
IMPULSE VALUES ARE UNIFORMLY DISTRIBUTED BETWEEN O AND 255

Filtering Algorithm Fixed-valued Impulses | Random-valued Impulses
Median filter (3x3) 28.57 dB 29.76 dB
Median filter (5x5) 28.78 dB 28.59 dB
Median filter with adaptive length' [13] 30.57 dB 31.18 dB
Rank conditioned rank selection filter' [14] 31.36 dB 30.78 dB
Sun and Neuvo, Switch I median filter' [15] 31.97dB 31.34 dB
Sun and Neuvo, Switch II median filter' [15] 29.96 dB 32.04 dB
Abreu et al. (M=2, no training)1 [16] 33.47 dB 32.47 dB
Abreu et al. (M=1296, outside training set)' [16] 34.65 dB 32.95dB
Abreu et al. (M=1296, inside training set)’ [16] 35.70 dB 33.37dB
Our long-range correlation method [18] 36.95 dB 33.43dB
Combine our method with fuzzy techniques [26] 36.47 dB 33.78 dB

! See [16] for more details with regard to methods and parameter selections.

Suppose the image is partitioned intox® blocks and pixels within the same block are of good continuity. Such
encoded separately. Then after decoding, all the blockiggod continuity is used to recover the discontinuity across
effects appear on the pixels near the boundaries of thes& 8 block boundaries. Our algorithm is first applied horizontally
blocks. Our algorithm is based on the assumption that tk@ recover vertical boundaries and then applied vertically
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TABLE Il
COMPARATIVE FILTERING RESULTS INPSNRFOR IMAGE “L ENA” CORRUPTEDWITH VARIOUS PERCENTAGES OFRANDOM-VALUED IMPULSE NOISE
Filtering Percentage of Random-valued Impulse Noise
Algorithm 10% 15% 20% 25% 30%

Abreu et al. (M=2, no training)' [16] 35.18dB | 33.94dB | 32.47dB | 31.18dB | 29.87 dB

Abreu et al. (M=1296, inside training set)' [16] 136.02dB | 34.44dB | 33.37dB | 31.77dB | 30.49 dB

Abreu et al. (M=1296, outside training set)’ 36.64dB | 34.72dB | 32.95dB | 31.52dB | 29.99dB

[16]
Our long-range correlation method, 1 iteration | 36.69 dB | 34.83 dB | 33.43dB | 31.76 dB | 30.01 dB
Our long-range correlation method, 2 iterations | 36.11 dB | 34.71 dB | 33.75dB | 32.54dB | 31.50dB

! See [16] for more details with regard to methods and parameter selections.

"LENA" 512 BY 512, 8bpp Zf’=_4 w; = 1. By solving the equation§WMSE /Jap = 0

35.00 L anddWMSE/da,; = 0, we can obtain the parameters
34.00 | 3 3 3
I i awili T gwirs — D g wilir
33.00 | o= 5 2 5 )
i (Zi=—4 w”%) — i Wit} 9)
§32‘00 _ 5 5
531.00 i ag = Z wil; — ay - Z wiT;
&30_00 L —&— JPEG DECODED IMAGE i=—4 i=—4
L —e— OUR NEW METHOD The remote window with the minimal WMSE is the winner. In
29.00 [ —0—POCS [22] the recovered local vectdf™™) = (&™) jmew) - glnew)y
I ——CLS [22] . . . .
28.00 F —a—CROUSE ET AL. [23] Eachlg‘“ew) is a linear combination df andv(r;)
2700 b 1) = [1 = ¢; - g(WMSE)] - ; + ¢; - g(WMSE) - v(r;) (10)
015 020 025 030 035 040 045 050  \here the VECIOE = (c_4,cC_3,Cn,C1,C0sC1,Co,C3) IS SE-
BIT RATE (bpp) lectedsothad < ¢; <1(i=—4,...,3)andc_y = cx—1 (k=

1,...,4). (WMSE) is defined as

Fig. 8. Post-processing results for JPEG-decoded image “Lena” with different

bit rates. g(WMSE) = {(1)— (

1-To
TE

) “WMSE, if 0 < WMSE < T%
otherwise

to recover horizontal boundaries. It is much different from (11)

those in the above two applications. When recovering vertiGghere7,. and7% are two parameters used to control the shape
boundaries, the local windovis not a block any more, but a of 4(WMSE). The goal of using andg(WMSE) is to provide
vectorl = (I_4,1-3,0_2,1-1,l0,11,12,13) of the pixel values g tradeoff between modification and maintenanck eshould
across the boundary of two blocks in the blocky image, whef chosen so that the closer the pixel is to the block boundary,

l_4,l-3,l-9,1-1 andlo,l1,l5,13 are two groups of pixels in the more it is modifiedg( WMSE) is selected so that the better
the same line of the left and right blocks, respectively. The reakban matcH, the mord is modified.

block boundary is between_, andz,. The remote window In our experiments, the test images are first coded using

also becomes a vecter= (7_‘—4,7‘—3,7’—2,7’—1,7‘0,7‘1,7‘237’3), JPEG standard at different bit rates ranging from about 0.15
but is a line of pixels within one block. We assumes of {5 0.45-ppp. The JPEG decoded images are then subject

gpod c_ont_inuity and use the contir_1uity Of_tO recover the {9 our blocking effect reduction algorithm. The following
discontinuity ofl. The search range is an pixel wide andn  control parameters are chosem: 64,1 32 for

pixel high rectangle region centered about the middle point @§rtical block boundaries angh = 32,n = 64 for hor-

7. The one-order linear functior(z) = ag + a1~ is used as the jzontal block boundaries, respectivel§is 200; T
luminance transformation. The criterion for the evaluation (@‘_75;1” (0.2,0.15,0.1,0.05,0.05,0.1,0.15,0.2); and

the matching result is also a modified version named weighted- (9 25, 0.55,0.65, 1,1,0.63,0.55, 0.25). The decoding and

mean square error (WMSE) post-processing results of “Lena” image are shown in Fig. 8.
By using our blocking effect reduction algorithm, PSNR’s are
improved by a magnitude of 0.2 dB-0.85 dB. Our algorithm
achieves relatively good results among those obtained by other
approaches such as POCS [22], CLS [22], and Cretss.s
method [23], which are also shown in Fig. 8. Fig. 9 gives
subjective illustrations of the decoding and post-processing

3 3

WMSE = Z will; — v(r)]? Z w;[l; — (a0 + arm;)]?
— P—
(8)

where the weight vectorw = (w_4,w_3,w_2,
w_1,wo,w,ws,ws) Satisfies the following conditions:
0<w; <1 (LI —4,...,3),w,k = Wk—1 (/{;: 1,...,4) and

results of the enlarged hat region of “Lena”. The quality of the
post-processed image is enhanced when compared with the
JPEG-decoded image.
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(@) (b)

v
(©

Fig. 9. lllustration of post-processing result for hat region of “Lena.” (a) Original image. (b) JPEG-decoded image. (c) Post-processed image.

20
IV. DISCUSSION ANDEXTENSION Randomly selected

[ i Selected by BNM
The basic concept of the general long-range correlation based D Selected by

approach is very flexible in real applications. Many concrete ] ]
algorithms can be derived from it. g 1
First, the local window can be of any shape. Usually, square § 10
blocks are the most convenient, but in some cases, such as
for blocking effect reduction, using other shapes may become 5 F
better. Different shapes of local windows can also be used in
dealing with one image.
Second, the searching for a remote window can be conducted
by many different ways. The goal is to find the best matching 2 1018 26 ?4 42 ‘50 58
of the local window in the least time. Fig. 10 shows a statistical Remote-Local Window Distance
resultin percentage on a remote-local window distance in BN%. 10. Statistics on randomly selected and BNM selected remote-local
error-concealment algorithm for two cases. In the first case, thiadow distances. The data are obtained from the test where “Barb” is
remote blocks are randomly selected from the search ran@(é[upted with isolated block losses and with a block loss rate of 10%.
while in the other case, the remote blocks are found by the BNM
algorithm. It appears that the remote windows with shorter diseeded. The searching procedure can stop once we find a satis-
tance from the local window are more likely to be chosen by tHactory remote window. Some random searching method, such
BNM algorithm. According to such statistical characteristicgs the evolutionary strategy-based method, may also be used for
many intelligent methods can be used to improve the searchfagt searching.
speed. For example, we can search for the best remote windowhird, there may be many different matching methods. In
by way of a spiral route starting from the center local windowhe algorithms introduced above, only direct matching and
so that the shorter the distance between the candidate renpminomial matching methods are used. In fact, other kinds of
window and the local window, the earlier it is searched. In tHaminance transformations—including nonlinear transforma-
usage of this searching method, no search range restrictiotiégss—can also be employed. Since the neural network models

0 1
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are very good at establishing relationships between two selssion, our approach is an inherently intelligent and adaptive
of complex data, they may also be considered as substitusdgorithm.
of the matching functions. Another possible modification is to

use an adaptive method to automatically select a luminance
transformation function from many different kinds of matching
functions. As a result, the merits of different matching methods

may be combined. [1] G. A. Baxes, Digital Image Processing: Principles and Applica-

: : i tions New York: Wiley, 1994.
Next, more complex matchlng evaluation and competition [2] A.Jacquin, “Image coding based on a fractal theory of iterated contrac-

standards can be considered. Usudi§E ), is used, but the tive image transformation IEEE Trans. Image Processingol. 1, pp.
mean absolute error in the matching qattAE ;) between the 18-30, Jan. 1992.

f [3] Y. Fisher, Ed., Fractal Image Compression—Theory and Applica-
local and the transformed remote widow can also be employed:™ . "\ York: Spring-Verlag, 1994.

In the blocking-effect reduction algorithm, we are using WMSE. [4] G. walleye, “The JPEG still image picture compression standard,”
Since the best remote window is more likely to appear in the _ Commun. ACMvol. 34, no. 4, pp. 30-44, Apr. 1991.

. . . Lo . r_|[5] D. Le Gall, “MPEG: A video compression standard for multimedia ap-
near region in accordance with the statistics in Fig. 10, we ca plications,”Commun. ACMvol. 34, no. 4, pp. 46-58, Apr. 1991.

also combine the remote-local window distance as one of the6] M. Liou, “Overview of the p x 64 kbit/s video coding standard,”

it ; _ Commun. ACMvol. 34, no. 4, pp. 59-63, Apr. 1991.
factors for competition, so that the nearer remote window be [7] Y. Wang and Q. Zhu, “Signal loss recovery in DCT-based image and

comes more |Ik8|y tO be Chosen A pOSSIble further |mpr0vement video COdeCS,’PrOC. SPIE Vis. Commun. |mage Processw. 1605’
is to combine all these factors together with different weights. . pp. S6i37—67féhNﬁV- 1?91- 43 7denski | o diaital
: : : H. Sun, K. allapali, and J. Zdepski, “Error concealment in digital
In [26], we used a fuzzy matching evaluation method that is . \
ol ) . : . . simulcast AD-HDTV decoder,JEEE Trans. Consumer Electrgnol.
combined with a pre-applied fuzzy impulse detection algorithm. 38, pp. 108-118, Aug. 1992. _
This fuzzy method is very effective in dealing with “vague” data. [®] W. M. Lam and A. R. Reibman, "An error concealment algorithm for

. . . image subject to channel error$£EE Trans. Image Processingpol. 4,
Finally, the recovering method may also be improved. Actu-  ,,"533 545 May 1995.

ally, the recovering technique in the blocking effect reduction[10] X. Lee, Y. Q. Zhang, and A. Leon-Garcia, “Information loss recovery for

algorithm, where the pixel values from the transformed remote  Plock-based image coding techniques—A fuzzy logic approa@iE
; . . . . . Trans. Image Processingol. 4, pp. 259-273, Mar. 1995.
window and those in the original local window are combined, i11] H. Sun and W. Kwok, “Concealment of damaged block transform coded

a good example of an improved recovery method. This combi-  images using projections onto convex set§EE Trans. Image Pro-
[P ; ; : cessingvol. 4, pp. 470-477, Apr. 1995.

nation improves the image quality without the loss of any usefu}, ,, &*% B o v Meﬁg' “Transform coded image reconstruc-

information. In[26], a fuzzy recovery method is used, sothatthe ~ tion exploiting interblock correlation,JEEE Trans. Image Processing

more a pixel looks like a damaged pixel, the more it is modified. _ vol. 4, pp. 1023-1027, July 1995.

. . . . . . . [13] H. M. Lin and A. N. Willson, “Median filters with adaptive length,”
This technique is powerful in eliminating random-valued im- IEEE Trans. Circuits Systvol. 35, pp. 675-690, June 1988.

pulse noises in the images because in this kind of noisy imag@,4] R. C. Hardie and K. E. Barner, “Rank conditioned rank selection fil-

many damaged pixels are difficult to be definitely determined tlegfg f‘z’{)gigl\;l‘g'r f;’ggoz{a“f’”fEEE Trans. Image Processingol. 3, pp.
as impulses. We list our restoration results for “Lena” image afis] T. sun and Y. Neuvo, “Detail-preserving median based fiters in image

the last row of Table Il. Although the result for the removal of processing, Pattern Recognit. Lettvol. 15, pp. 341-347, 1994,

fixed-valued impulses is not as good as our basic long-range coftS] E- Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, "A new effi-

. . . . cient approach for the removal of impulse noise from highly corrupted
relation method, the result for random-valued impulsive noises  images,”IEEE Trans. Image Processingol. 5, pp. 1012-1025, June
appears to be a major improvement. 1996. _ _ _

[17] D. Zhang and Z. Wang, “Impulse noise removal using polynomial ap-
proximation,”Opt. Eng., vol. 37, no. 4, 1998.
[18] Z.Wang and D. Zhang, “Restoration of impulse noise corrupted images
using long-range correlationlEEE Signal Processing Lettvol. 5, pp.
V. CONCLUSION 5-8, 1998.
[19] H.C. Reeve lll and J. S. Lim, “Reduction of blocking artifacts in image
In this paper, we show that abundant long-range correlatiop,  ¢0ding,"Opt. Eng, vol. 23, no. 1, pp. 34-37, Jan./Feb. 1984.

. . . . 20] H. S. Malvar and D. H. Staelin, “The LOT: Transform coding without
exists within natural images, and that the human visual systems ™ pjocking effects, "EEE Trans. Acoust., Speech, Signal Processing

composed of our eyes and brains can sufficiently utilize such 37, pp. 553-559, 1989.

; : ; : 21] A. Zakhor, “Iterative procedures for reduction of blocking effects in
types of information redundancy to implement the functions 01{ transform image coding)EEE Trans. Circuits Syst. Video Technobl.

image interpretation, representation, restoration, enhancement, 2, pp. 91-95, Mar. 1992.
and error concealment. Furthermore, a practical general imag&2] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Regularized recon-

. . . struction to reduce blocking artifacts of block discrete cosine transform
restoration and error-concealment algorithm using such long- compressed imagesEEE Trans. Circuits Syst. Video Technalol. 3,

range correlation is provided. Experimental results in several pp. 421-432, Dec. 1993.

real applications show that the algorithm is very effective and23] M. Crouse and K. Ramchandran, “Nonlinear constrained least squares
estimation to reduce artifacts in block transform-coded image®yan.

provides a significant improvement over traditional techniques.  |cip ‘95, vol. 1, Oct. 1995, pp. 462—465.
Our approach can be further improved and extended in mar@4] Y. Q. Zhang, R. L. Pickholtz, and M. H. Loew, “A new approach to re-

; ; : [ duce the “blocking effect” of transform codingdEEE Trans. Commu-
ways and is very flexible for practical applications. The use of nications vol. 41, pp. 299-302, Feb. 1993.

long-range information within the same image allows our ap{2s] J. Luo, C. W. Chen, K. J. Parker, and T. S. Huang, “Artifact reduction in
proach to be completely free from any pre-assumption on the low bit rate DCT-based image compressiolEEE Trans. Image Pro-
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