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Abstract—The human visual system (HVS) is highly
space-variant in sampling, coding, processing, and under-
standing. The spatial resolution of the HVS is highest around the
point of fixation (foveation point) and decreases rapidly with in-
creasing eccentricity. By taking advantage of this fact, it is possible
to remove considerable high-frequency information redundancy
from the peripheral regions and still reconstruct a perceptually
good quality image. Great success has been obtained recently by
a class of embedded wavelet image coding algorithms, such as
the embedded zerotree wavelet (EZW) and the set partitioning in
hierarchical trees (SPIHT) algorithms. Embedded wavelet coding
not only provides very good compression performance, but also
has the property that the bitstream can be truncated at any point
and still be decoded to recreate a reasonably good quality image.

In this paper, we propose an embedded foveation image coding
(EFIC) algorithm, which orders the encoded bitstream to optimize
foveated visual quality at arbitrary bit-rates. A foveation-based
image quality metric, namely, foveated wavelet image quality
index (FWQI), plays an important role in the EFIC system. We
also developed a modified SPIHT algorithm to improve the coding
efficiency. Experiments show that EFIC integrates foveation
filtering with foveated image coding and demonstrates very good
coding performance and scalability in terms of foveated image
quality measurement.

Index Terms—Embedded coding, foveated image coding,
foveation, foveation filtering, human visual system (HVS), image
coding, image quality measurement, progressive transmission,
scalable coding, wavelet.

I. INTRODUCTION

T HE photoreceptors (cones and rods) and ganglion cells are
nonuniformly distributed in the retina in the human eye

[1], [2]. The density of cone receptors and ganglion cells play
important roles in determining the ability of our eyes to resolve
whatwesee.Spatially, theresolution,orsamplingdensity,has the
highestvalueat thepointof thefoveaanddropsrapidlyawayfrom
that point as a function of eccentricity. As a result, when a human
observer gazes at a point in a real-world image, a variable resolu-
tion image is transmitted through the front visual channel into the
high level processingunits in the human brain. The regionaround
thepointof fixation(orfoveationpoint) isprojectedintothefovea,
sampled with the highest density and perceived with the highest
contrast sensitivity.Thesampling density and contrast sensitivity
decreasedramaticallywith increasingeccentricity. Inconclusion,
the human visual system (HVS) is space-variant in sampling,
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coding, processing, and understanding visual information. By
contrast, traditional digital computer vision systems represent
images on rectangular uniformly sampled lattices, which have
the advantages of simple acquisition, storage, indexing and com-
putation. Nowadays, most digital images and video are stored,
processed, transmitted, and displayed in rectangular matrix
format,whereeachentry representsonesamplingpoint.

Themotivationbehindfoveation imageprocessingis that there
exists considerable high-frequency information redundancy in
the peripheral regions, thus a much more efficient representa-
tion of images can be obtained by removing or reducing such in-
formation redundancy, provided the foveation point(s) and the
viewing distances can be discovered. There has been growing
recent interest in research work on foveated image processing
[3]–[19].Oneresearchdirection isfoveationfiltering,whichaims
to foveate a uniform resolution image, such that when the human
eyesgazeat thepointof fixation, theycannotdistinguishbetween
the original and the foveated versions of that image. An example
is given inFig.1, where Fig.1(a) is the original “Lena” image and
Fig.1(b)isafoveatedversionofthat image.Ifattentionisfocussed
at the central foveation point, then the foveated and the original
images have the same appearance (depending on the viewing dis-
tance). Another research focus isfoveated image and video com-
pression, which takes advantage of the foveation feature to im-
prove image and video coding efficiency. Perfect foveation with
continuously varying resolution turns out to be a difficult the-
oretical as well as implementation problem. In practice, there
are several ways to approximate perfect foveation. A very com-
monly used approach is the logmap [3] superpixel method. In
[3]–[6], local pixel groups are averaged and mapped into super-
pixels, whose sizes are determined by the retinal sampling den-
sity. In [7], amultistage superpixelapproach is introduced,where
a progressive transmission scheme is implemented by using vari-
ablesizesofsuperpixels ineachstage.Thegeneral ideaof logmap
can also be employed by a nonuniform sampling scheme. In [8]
and[9],uniformgrid imagesareresampledwithavariableresolu-
tion that matches the human retina. B-Spline interpolation is then
used to reconstruct the foveated images. In [10], a pyramid struc-
ture is suggested to foveate images and videos. This structure de-
livers thepossibilityof real-timefoveatedvideocodingandtrans-
mission. In [11]–[14], foveated imagesareobtainedbyapplyinga
foveationfilter,whichconsistsofabankof low-passfiltershaving
variablecutoff frequencies.MPEG/H.263videocodingisapplied
to foveation filtered video sequences. Very good coding perfor-
mancewasobtainedbecausea largeamountofvisuallyredundant
high-frequency information is removed during the foveation fil-
tering processes. In [11]–[14], the quality of the foveated images
are measured uniformly in retinal coordinates. This is equivalent
toanonuniformlyweightedmeasurement,namely, foveatedpeak
signal-to-noise ratio (F-PSNR), in the original coordinate. The
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(a) (b)

Fig. 1. Example of foveated image: (a) original “Lena” image and (b) foveated “Lena” image.

video coding scheme is then designed to optimize F-PSNR. Mul-
tiresolution decomposition provides us with a convenient way to
simultaneously examine localized spatial as well as frequency
information. In [15], a Laplacian pyramid architecture was in-
troduced for image coding. This architecture was utilized in a
pyramid vision machine to build a smart sensing system [16].
In [17]–[19], a wavelet-based foveation method was proposed
whichappliesanonuniformweightingmodel inthewavelet trans-
form domain. A progressive transmission method is also sug-
gested, where the image information to be transmitted is ordered
according to the weighting of the wavelet coefficients.

Wavelet-based image coding algorithms have achieved
great success in recent years. The success relies on the energy
compaction feature of the discrete wavelet transforms (DWTs)
and the efficient organization, quantization, and encoding of the
wavelet coefficients. A class of embedded coding algorithms
has recently received great attention. The most well-known
algorithms are Shapiro’s embedded zerotree wavelet (EZW)
algorithm [20] and Said and Pearlman’s set partitioning in
hierarchical trees (SPIHT) algorithm [21], which is an im-
proved implementation of the EZW idea. Embedded wavelet
image coding algorithms not only provide very good coding
performance, but also have the property that the bitstream can
be truncated at any point and still be decoded to yield a reason-
ably good quality image. This is a very attractive property that
allows for scalable encoding and progressive transmission.

Basically, the EZW and SPIHT encoders try to order the
output bitstream, such that those bits with greater contribution
to the mean-squared error (MSE) between the original and the
compressed images are encoded and transmitted first. In other
words, the progressive encoding scheme intends to minimize
the MSE at any bit-rate. HVS features are not considered.
However, it is widely accepted that human visual perception
distortion does not correlate very well with the MSE [22]. In
recent years, researchers have attempted to measure visual
image quality in the wavelet transform domain [23]–[25] and
to incorporate HVS-based image quality models with wavelet
image coding [26]–[28]. In [24], [26], and [27], the error
sensitivity of the wavelet coefficients in different subbands
was measured. In [24], the sensitivity measurement results in a

model of noise detection thresholds in the wavelet transform
domain. The model is merged into a wavelet visible differ-
ence predictor in [25]. By employing the perceptual criteria
introduced in [26], Hontschet al. [28] proposed a perceptual
embedded zerotree image coder. However, their HVS model
does not take into account foveation.

The goal of this paper is to design an embedded foveation
image coding (EFIC) system, which tries to order the output
bitstream, so that those bits with greater contribution to the
foveated visual distortion are encoded and transmitted first. In
other words, it is designed to optimize foveated visual quality
at any bit-rate. A foveated image quality metric calledfoveated
wavelet image quality index (FWQI)plays an important role in
the system. The bitstream ordering procedure is based on a vi-
sual importance weighting model derived from FWQI. EFIC
then merges the weighting model into a modified SPIHT en-
coder, resulting in an efficient foveated image coding system.
EFIC can be viewed as an integration of foveation filtering and
foveation image coding. This is different from the algorithms in
[11]–[14], where foveation filtering and foveation image/video
coding are two separable procedures. The advantages are man-
ifold. First, there is a considerable decrease in computation.
Second, EFIC allows scalable encoding and progressive trans-
mission. Third, there is useful tradeoff between bit-rate and the
depth of foveation. This can be done simply by truncating the
encoded bitstream at any place. Fourth, given enough band-
width, a high-quality uniform resolution image is still attainable.
EFIC is also different from the progressive transmission method
proposed in [18]. First, a more sophisticated HVS quality model
is used. The model is a joint consideration of multiple factors
of the HVS, including the spatial variance of the contrast sen-
sitivity function, the spatial variance of the local visual cutoff
frequency, the variance of the human visual sensitivity in dif-
ferent wavelet subbands and the influence of the viewing dis-
tance on the display resolution and the HVS features. Second,
the ordering of the transmitted information not only depends on
the HVS model’s weighting value, but also on the magnitudes
of the wavelet coefficients. Third, an efficient embedded coding
algorithm is developed especially for the weighted wavelet co-
efficients to improve the coding efficiency.
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Fig. 2. Photoreceptor and ganglion cell density as a function of eccentricity.

II. FOVEATED WAVELET IMAGE QUALITY INDEX (FWQI)

A. Foveation Resolution and Error Sensitivity Models

Let us first examine the anatomy of the early vision system.
The light first passes through the optics of the eye and is then
sampled by the photoreceptors on the retina. There are two
kinds of photoreceptors—cones and rods. The cone receptors
are responsible for daylight vision. Their distribution is highly
nonuniform on the retina. The density of the cone cells is
the highest at the fovea and drops very fast with increasing
eccentricity. The photoreceptors deliver data to the bipolar
cells, which in turn supply information to the ganglion cells.
The distribution of ganglion cells is also highly nonuniform.
The density of the ganglion cells drops even faster than the
density of the cone receptors. The variation of the densities of
photoreceptors and ganglion cells with eccentricity is shown
in Fig. 2. These density distributions play important roles in
determining the resolution ability of the human eye.

Psychological experiments have been conducted to measure
the contrast sensitivity as a function of retinal eccentricity [10],
[29]–[31]. In [10], a model that fits the experimental data was
given by

(1)

where
spatial frequency (cycles/degree);
retinal eccentricity (degrees);
minimal contrast threshold;
spatial frequency decay constant;
half-resolution eccentricity constant;
visible contrast threshold as a function of
and .

The best fitting parameter values given in [10] are ,
, and . It was also reported in [10] that the

same values of and provide a good fit to the data in [31]
with and an adequate fit to the data in [30] with

, respectively. We adopt this model in our system
and use , , and . The contrast

Fig. 3. Typical viewing geometry.

sensitivity is defined as the inverse of the contrast threshold.
That is

(2)

For a given eccentricity, (1) can be used to find its critical
frequency or so-called cutoff frequencyin the sense that any
higher frequency component beyond it is invisible.can be
obtained by setting to 1.0 (the maximum possible contrast)
and solving for

cycles
degree

(3)

To apply these models to digital images, we need to calcu-
late the eccentricity for any given point (pixels)
in the image. Fig. 3 illustrates a typical viewing geometry. For
simplicity, we assume the observed image ispixels wide and
the line from the fovea to the point of fixation in the image is
perpendicular to the image plane. Also assume that the posi-
tion of the foveation point (pixels) and the
viewing distance (measured in image width) from the eye
to the image plane are known. The distance(measured in
image width) from point to is then , where

(mea-
sured in pixels). The eccentricity is given by

(4)

In Fig. 4, we show the normalized contrast sensitivity as a func-
tion of pixel position for and and
respectively. The cutoff frequency as a function of pixel posi-
tion is also given. The contrast sensitivity is normalized so that
the highest value is always 1.0 at zero eccentricity. It can be ob-
served that the cutoff frequency drops quickly with increasing
eccentricity and the contrast sensitivity decreases even faster.

In real-world digital images, the maximum perceived resolu-
tion is also limited by the display resolutiongiven by

pixels
degree

(5)
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Fig. 4. Normalized contrast sensitivity (brightness indicates the strength of contrast sensitivity). The top-left, top-right, bottom-left, and bottom-right figures are
for N = 512 and viewing distance� = 1; 3; 6; and10; of the image width, respectively. The white curves show the cutoff frequency.

This approximation is equivalent to that given in [24]. Ac-
cording to the sampling theorem, the highest frequency that can
be represented without aliasing by the display, or the display
Nyquist frequency, is half of the display resolution

cycles
degree

(6)

Combining (3) and (6), we obtain the cutoff frequency for a
given location by

(7)

Fig. 5 shows for and respectively. It
turns out that at a small viewing distance such as , the
display Nyquist frequency is so small that the cutoff frequency
stays almost unchanged for a large range of eccentricities. How-
ever, strong “foveation” is still obtained because the contrast
sensitivity is very sensitive to eccentricity, as shown in Fig. 4.
Finally, we define the foveation-based error sensitivity for given
viewing distance , frequency , and location as (8), shown at

Fig. 5. Nyquist frequency limited cutoff frequency plotted as a function of
pixel position in the image.

the bottom of the next page. is normalized so that the highest
value is always 1.0 at 0 eccentricity.

B. Error Sensitivity in the DWT Domain

The DWT has proved to be a powerful tool for image
processing and coding [20], [21], [32]–[36]. In the one-dimen-
sional (1-D) DWT, the input discrete signalis convolved with
high-pass and low-pass analysis filters and downsampled by
two, resulting in transformed signals and . The signal
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(a) (b)

Fig. 6. (a) DWT decomposition structure and (b) spatial orientation tree in SPIHT algorithm.

can be further decomposed and the process may be repeated
several times. The number of repetitions defines the wavelet
decomposition level . For image processing, the horizontal
and vertical wavelet decompositions are applied alternatively,
yielding, and subbands. The LL subband may
be further decomposed and the process repeated several times.
The typical DWT structure is given by Fig. 6(a). Recently,
the 9/7 biorthogonal filters [37] have been widely adopted
for DWT-based image compression algorithms. We also use
the 9/7 filters in this paper. Readers can refer to [32]–[37] for
more details regarding the basis of wavelet transforms and
wavelet-based image processing and coding.

The wavelet coefficients at different subbands and locations
supply information of variable perceptual importance to the
HVS. In order to develop a good wavelet-based image coding
algorithm that considers HVS features, we need to measure
the visual importance of the wavelet coefficients. In [24], psy-
chovisual experiments were conducted to measure the visual
sensitivity in wavelet decompositions. Noise was added to the
wavelet coefficients of a blank image with uniform mid-gray
level. After the inverse wavelet transform, the noise threshold
in the spatial domain was tested. A model that provided a
reasonable fit to the experimental data is [24]

(9)

where
visually detectable noise threshold;
orientation index, representing and
subbands, respectively;
spatial frequency measured in cycles/degree.

It is determined by the display resolutionand the wavelet de-
composition level [24]

(10)

The parameters in (9) are tuned to fit the experimental data. For
gray scale models, is 0.495, is 0.466, is 0.401, and
is 1.501, 1, and 0.534 for the LL, , and subbands,
respectively. The error detection thresholds for the wavelet co-
efficients can be calculated by

(11)

where is the basis function amplitude given in [24]. It is
typical to define the error sensitivity as the inverse of the error
detection threshold. Therefore, we define the error sensitivity in
subband ( ) as

(12)

For a typical viewing distance , the value of for dif-
ferent decomposition levels and orientations are given in Table I.

C. Foveation-Based Error Sensitivity and Quality Metric in
DWT Domain

In order to apply the foveation-based error sensitivity model
as (8) to the DWT domain, we first need to calculate the corre-
sponding foveation point in each wavelet subband. For the de-

for
for

(8)
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TABLE I
S (�; �) FOR THESIX-LEVEL DWT FOR� = 3 AND N = 512

composition structure given in Fig. 6(a), we have

(13)

Next, for a given wavelet coefficient at position ,
where denotes the set of wavelet coefficient positions
residing in subband ( ), its equivalent distance from the
foveation point in the spatial domain is given by

for (14)

With this equivalent distance and also considering (10), we have

for (15)

Finally, a foveation-based error sensitivity model in the DWT
domain is determined by a combined consideration of (12) and
(15)

for (16)

where and are parameters used to control the magni-
tudes of and , respectively. In this paper, we use

and . The construction of can be viewed
as two stages in cascade. In the first stage, each wavelet sub-
band is assigned a uniform base importance value according
to . In the second stage, nonuniform weights devel-
oped from are applied to the subbands, re-
sulting in a space-variant error sensitivity mask in the DWT do-
main. In Fig. 7, we show the error sensitivity masks for viewing
distance and respectively.

For the evaluation of image quality, instead of using
the traditional error summation methods, we designed a
new quality index [38] by modeling any signal distor-

Fig. 7. Foveation-based error sensitivity mask in the DWT domain. The
top-left, top-right, bottom-left, and bottom-right figures are for viewing
distance� = 1; 3; 6; and10 times of the image width, respectively.
(Brightness logarithmically enhanced for display purpose).

tion as a combination of three factors: loss of correlation,
mean distortion and variance distortion. For any two-di-
mensional (2-D) signal, the measurement results are a 2-D
quality map as well as an overall quality index. Readers can
refer to [38] and http://anchovy.ece.utexas.edu/~zwang/re-
search/quality_index/demo.htmlfor more details and demon-
strative images of the new quality index. In this paper, we adapt
the index into the DWT domain and define the FWQI as

(17)

where
number of the wavelet coefficients;
wavelet coefficient of the original image at location

;
quality value at location in the quality index
map.

Since varies with , FWQI of a test image is a function
of , instead of a single value.

D. Multiple Foveation Points and Regions

Although there is only one foveation point at one time for
one human observer, it is necessary to allow multiple foveation
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points in practice, to provide more flexibility and robustness.
This is because

1) the usual pattern of human fixation is that the fixation
point moves slightly around a small area of the center
point of interest;

2) there may be multiple human observers watching the
image at the same time;

3) there may exist multiple points and/or regions in the
image that have high probability to attract a human
observer’s attention.

Our system can easily adapt to multiple foveation points by
changing the error sensitivity mask . Suppose that there
are foveation points in the image (in digitally
sampled images, the foveation regions can also be regarded as
collections of foveation points). For each of the points, we can
calculate the error sensitivity mask as in the above sections and
have for . The overall error sensitivity
should be given by the maximum of them

(18)

In practice, it is not necessary to compute each of the .
Since the error sensitivity is monotonically decreasing with in-
creasing distance from the foveation point, given a point, the
foveation point that is closest to it must generate the maximum

, so what we need to do is let

where (19)

By doing this, a large amount of computation is saved.

III. EMBEDDED FOVEATION IMAGE CODING (EFIC)

A. Review of Embedded Wavelet Image Coding Methods

The main objective in embedded wavelet image coding
is to choose the most important wavelet coefficients to be
encoded and transmitted first. The importance of a coefficient
in EZW and SPIHT depends on its contribution to the MSE
distortion. The coefficients with larger magnitudes are more
important. The strategy is ordering the coefficients by magni-
tude and transmitting the most significant bits first. Assume
that the wavelet coefficients have been ordered according to
the minimum number of bits required for its magnitude binary
representation. The schematic binary representation is shown
in Fig. 8(a) [21]. The most effective order for progressive
transmission is to sequentially send the bits in each row, as
indicated by the arrows. In order for the decoder to understand
the meaning of the bits, we also need to encode and transmit
the coordinates of the wavelet coefficients along with the mag-
nitude bits. It has been observed that the wavelet coefficients
which are less significant have structural similarity across the
wavelet subbands in the same spatial orientation. The zerotree
structure in EZW and the spatial orientation tree structure
in SPIHT capture this structural similarity very effectively.
Fig. 6(b) shows the spatial orientation tree used by SPIHT.

In EZW or SPIHT encoder, the wavelet coefficients are
scanned multiple times. Each time consists of a sorting pass
and a refinement pass. The sorting pass selects the significant
coefficients and encodes the spatial orientation tree structure.
A coefficient is significant if its magnitude is larger than a
threshold value, which decreases by a factor of 2 for each
successive sorting pass. The refinement pass outputs one bit
for each selected coefficient, as indicated by the arrows in
Fig. 8(a). An entropy coder can be used to further compress the
output bitstream. SPIHT performs better than EZW in terms of
reconstructed image quality. The embedded coding of EFIC is
developed based on a modified version of SPIHT.

B. EFIC System

The proposed EFIC system is depicted in Fig. 9. We first
apply the wavelet transform to the original image. We assume
we already know the foveation points and regions, which
are used to compute an error sensitivity-based importance
weighting mask. The wavelet coefficients are then weighted
using the weighting mask. Next, we encode the weighted
wavelet coefficients using a modified SPIHT encoder. The
output bitstream of the modified SPIHT encoder, together with
the foveation parameters, is transmitted to the communication
network. At the receiver side, the weighted wavelet coefficients
are obtained by applying the modified SPIHT decoding. The
importance weighting mask is then calculated in exactly the
same way as at the sender side. Finally, the inverse weighting
and inverse wavelet transform are applied to obtain the re-
constructed image. Between the sender, the communication
network and the receiver, it is possible to exchange informa-
tion about network conditions and user requirements. Such
feedback information can be used to control the encoding
bit-rate and foveation points. The decoder can also truncate
the received bitstream to obtain any bit-rate image below the
encoder bit-rate.

There are two key techniques in the EFIC system. One is the
calculation of the importance weighting mask. The other is the
modified SPIHT algorithm. We will discuss them in the next
subsections.

C. Importance Weight Calculation

The purpose of the importance weighting mask is to help
the encoder to order the output bitstream, so that bits with
greater contribution to the foveated visual quality are en-
coded and transmitted earlier. Basically, the weight
assigned to a wavelet coefficient must be consistent with
the foveation-based error sensitivity model given in (16).
Therefore, the desired solution is

(20)

where can be any constant value except for zero. In this so-
lution, the viewing distance must be known to us. However,
in many practical applications,is not available to the encoder.
One solution to this problem is to assume a fixed viewing dis-
tance. In this paper, we solve it by assuming a probability dis-
tribution of viewing distance instead of a fixed one. The proba-
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Fig. 8. (a) Binary representation of magnitude-ordered wavelet coefficients. (b) Binary representation of magnitude-ordered weighted wavelet coefficients in
SPIHT algorithm. (c) Binary representation of magnitude-ordered weighted wavelet coefficients in modified SPIHT algorithm.

bility model is given by

for (21)

The distribution curve is shown in Fig. 10, whereand are
tuned to and , respectively, so that the

maximum possible viewing distance is and the typical
viewing distance is between 1.5 and 6 times of the image width.
With this distribution, the importance weight of is

(22)

Fig. 11 shows the resulting importance weighting mask.
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Fig. 9. EFIC system.

Fig. 10. Probability distribution of viewing distance�.

D. Modified SPIHT

It is possible to implement an embedded foveation coding
system with the original SPIHT algorithm. However, there
arises a problem that makes the SPIHT algorithm inefficient.
Note that in our system, the input coefficients to the SPIHT part
are the weighted wavelet coefficients instead of the original
ones. The weighted coefficients have a much larger dynamic
range compared to that of the original coefficients. A schematic
binary representation of a list of magnitude-ordered weighted
wavelet coefficients is shown in Fig. 8(b). Comparing this with
Fig. 8(a), we see that the change of dynamic range leads to
an increase in the number of times the wavelet coefficients
are scanned. This makes SPIHT encoding less efficient in two
aspects. First, since we need to encode the spatial orientation

Fig. 11. Importance weighting mask. Brightness indicates the importance
of the wavelet coefficients (brightness logarithmically enhanced for display
purpose).

tree structure with every scan, an increase in the number of
times an image is scanned implies an increase in the wastage
of bits and an increase of time for scanning and computation.
Second, we are encoding the significant coefficients with more
bits as we increase the number of scans because we add one
more refinement bit to each of them during each scan. Conse-
quently, a modified SPIHT algorithm is needed to overcome
this problem. We solve this problem in two ways.

First, in the sorting pass, we do not scan all the wavelet coef-
ficients in the first few scans. Suppose the maximum absolute
value of the unweighted wavelet coefficients is ,
then the largest possible absolute value of the weighted
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Fig. 12. Wavelet coefficients scanned at the first four times in the modified
SPIHT algorithm.

wavelet coefficient at location is . In
the first few scans, it might be lower than the significance test
threshold in the SPIHT algorithm. The threshold at theth
scan is given by . Our
strategy is that before each scan, we perform the following
test: . Only those that satisfy
this condition are scanned. The wavelet coefficients that are
scanned in the first four times are given in Fig. 12. It can be
seen that only a small subset of the coefficients need to be
scanned during the first few sorting passes.

Second, in the refinement pass, it is not necessary to en-
code any of the weighted coefficients using too many bits, as
in Fig. 8(b). This is because during the inverse weighting proce-
dure, the coefficients will be scaled back to values on the order
of their original values. The less significant bits (such as the
tenth or even less significant bits) do not have much contribu-
tion to the overall image quality, therefore can be removed. In
EFIC, we limit the maximum number of bits for each coeffi-
cient. This is shown in Fig. 8(c). The refinement bits are sent
sequentially in the order indicated by the arrows in Fig. 8(c).
Actually, any wavelet coefficient that receives the upper limit of
refinement bits can be removed from the list of significant pixels
of the SPIHT algorithm.

E. Experimental Results

We test the EFIC algorithm using 8 bits per pixel (8 b/p) gray
scale images and compare it with the SPIHT algorithm. Fig. 13
shows the “Zelda” image encoded with both SPIHT
and EFIC algorithms. At a very low bit-rate of 0.015 625 b/p
with compression ratio (CR) equaling 512:1, the mouth, nose
, and eye regions are hardly recognizable in the SPIHT coded
image, whereas those regions in the EFIC coded image exhibit
some detailed visual information. At a low bit-rate of 0.031 25
b/p ( ), SPIHT still decodes a very blurred image,
while EFIC begins to give acceptable quality over the face re-
gion. Increasing the bit-rate to 0.0625 b/p ( ) and
0.125 b/p ( ), the visual quality of the EFIC coded
images is still superior to the SPIHT coded images. When the
bit-rate of 0.25 b/p ( ) is reached, the EFIC coded

image approaches uniform resolution and the decoded SPIHT
and EFIC images are almost indistinguishable. The EFIC de-
coding can also be viewed as a foveation filtering procedure with
decreasing foveation depth. Notice that, in typical natural im-
ages, the energy is concentrated in the low-frequency bands. As
a result, in the peripheral regions, the low-frequency wavelet co-
efficients have greater opportunity to be reached before the high-
frequency coefficients. In the region of fixation, both low-and
high-frequency coefficients have good chances to be reached
early because of their larger importance weights. If the bit-rate is
limited, then decoding corresponds to applying all-pass filtering
to the region of fixation and low-pass filtering to the peripheral
regions. This is consistent with the basic idea of foveation fil-
tering. With an increase of the bit-rate, more bits are received
for the high-frequency coefficients of peripheral regions, thus
the decoded image becomes less foveated. The EFIC coding re-
sults in Fig. 13 demonstrate this very well.

Fig. 14 shows the FWQI comparisons of the EFIC and SPIHT
compressed “Zelda” images at 0.015 265, 0.0625, and 0.25 b/p.
FWQI is given as a function of the viewing distance, instead
of just one fixed value. In comparison with SPIHT, significant
quality gain is achieved by EFIC through the entire range of
viewing distances. This is consistent with the subjective quality
shown in Fig. 13. In Fig. 15(a), we show how the FWQI value
increases with the bit-rate. Fig. 16 shows the EFIC compression
of the “Board” image with multiple foveation regions. At low
bit-rates such as 0.0625 b/p and 0.125 b/p, EFIC maintains ac-
ceptable quality at the foveation regions and blurs the regions
of lower interest. Again, a visually high-quality uniform reso-
lution image is obtained from the same bit stream with a suffi-
cient bit-rate (0.5 b/p). The FWQI results of EFIC compressed
“Board” images are given in Fig. 15(b)

In Fig. 17, we compare the “News” image compres-
sion results with the same bit-rate but different foveation region
selections. It turns out that, with a bit-rate of 0.25 b/p, uniform
resolution SPIHT coding cannot provide an acceptable image,
but if the foveation region(s) are known to us, visually satisfac-
tory image quality is still achievable with the EFIC algorithm.

IV. DISCUSSIONS ANDFUTURE WORK

When we introduce our foveation image coding and pro-
cessing work to people, one of the most frequently asked
questions is: “How do you know the foveation points?” Gener-
ally, there are two methods to determine the fixation point(s)
and region(s). The first is a completely automatic method.
There has been a lot of research work in the visual psychology
community toward understanding high-level and low-level pro-
cesses in deciding human fixation points [39]–[41]. High-level
processes involves a cognitive understanding of the image.
For example, once a human face is recognized in an image,
the face area is very likely to become a heavily fixated region.
Low-level processes determine the points of interest using
simple local features of the image [41]. There is little doubt
that our foveation-based techniques will be more effective
if combined with a very intelligent image analysis, pattern
recognition, and image understanding system. Actually, we are
now conducting research on visual fixation modeling. Although
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Fig. 13. “Zelda” image compression results. Top-left: original image with the
foveation region indicated. Top-right: DWT domain importance weighting mask
for EFIC (brightness logarithmically enhanced for display purpose). The images
of the left column that follow: SPIHT coded images. The images of the right
column that follow: EFIC coded images. The bit-rates from top to bottom are
0.015 625 b/p (CR = 512 : 1), 0.031 25 b/p (CR = 256 : 1), 0.0625 b/p
(CR = 128 : 1), 0.125 b/p (CR = 64 : 1), and 0.25 b/p (CR = 32 : 1),
respectively.

Fig. 14. FWQI comparison of EFIC and SPIHT compressed “Zelda” image at
0.156 25 b/p, 0.0625 b/p, and 0.25 b/p.

(a)

(b)

Fig. 15. FWQI results of EFIC compressed (a) “Zelda” and (b) “Board.”
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Fig. 16. Top-left: “Board” image with multiple foveation regions indicated. Top-right: DWT domain importance weighting mask (Brightness logarithmically
enhanced for display purpose);. Mid-left: EFIC compression, 0.0625 b/p (CR = 128 : 1). Mid-right: EFIC compression, 0.125 b/p (CR = 64 : 1). Bottom-left:
EFIC compression, 0.25 b/p (CR = 32 : 1). Bottom-right: EFIC compression, 0.5 b/p (CR = 16 : 1).

it is argued that it is always difficult to decide foveation points,
we believe that it is feasible to establish a statistical model. The
second method to determine foveation point(s) is the interactive
method. In some applications, an eye tracker is available, which
can track the fixation point and send it to the foveated imaging
system in real time. In some other application environments, the
eye tracker is not available or inconvenient. A more practical
way is to ask the users to indicate fixation points using a mouse.
Another practical possibility is to ask the users to indicate the
object of interest and an automatic algorithm is then used to
track the user-selected object as the foveated region in the image
sequence that follows.

In general, the EFIC algorithm and the video coding algo-
rithm developed from it are good for low and variable bit-rate
image and video communication applications.Foveation-adap-

tive scalable coding and foveation-progressive transmission are
the key features. There is a lot of future work left to do.

One direct application of EFIC is Internet browsing [18].
There are two significant examples. In the first, the point(s) of
fixation is predetermined and one copy of the EFIC encoded
bitstream of the high-quality image is stored at the server side.
During transmission, the client receives and decodes a highly
foveated image first and with the arrival of more bits, the quality
of the image is gradually refined. Finally, a high-quality, uni-
form resolution image is achieved. In the second example, the
wavelet coefficients, together with a uniform coarse quality ver-
sion of the image, are stored at the server side without EFIC en-
coding. The client first sees the coarse version of the image and
figures out the point of interest. The selected point is sent back
to the server and activates the EFIC encoding. The encoded bit-
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Fig. 17. The 0.25 b/p (CR = 32 : 1) “News” image compression results.
Top-left: original image with foveation regions indicated. Top-right: EFIC with
the upper foveation region only. Mid-left: EFIC with the lower left foveation
region only. Mid-right: EFIC with the lower right foveation region only.
Bottom-left: EFIC with all the three foveation regions. Bottom-right: SPIHT
uniform resolution compression.

stream is then transmitted to the client with a foveation emphasis
at the selected point of interest.

Currently, we are also working on real-time foveation-scal-
able video coding and communication systems over computer
networks, where the points and depth of foveation are deter-
mined by feedback from the receiver and the network. Feed-
back from the receiver can be the fixation points, the decoder
buffering situation and the data consumption speed. The feed-
back from the network includes the change of bandwidth, the
network congestion situation and the latency. Given the feed-
back information, the foveated system at the server side then
adaptively varies the foveation points as well as the bit-rate by
changing the foveation depth and the frame rate. This is superior
to the current systems. Real-time implementation is important
for a successful foveated video communication system. We are
also doing research and development work with digital signal
processing chips to implement fast foveation filtering and fast
foveation image and video coding.
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