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Embedded-oveation Image Coding

Zhou Wang Student Member, IEEEBNd Alan Conrad BovikFellow, IEEE

Abstract—The human visual system (HVS) is highly coding, processing, and understanding visual information. By
space-variant in sampling, coding, processing, and under- contrast, traditional digital computer vision systems represent
standing. The spatial resolution of the HVS is highest around the images on rectangular uniformly sampled lattices, which have

point of fixation (foveation point) and decreases rapidly with in- the advant fsimol isiti t indexi d
creasing eccentricity. By taking advantage of this fact, it is possible € advantages of simple acquisition, storage, indexing and com-

to remove considerable high-frequency information redundancy Putation. Nowadays, most digital images and video are stored,
from the peripheral regions and still reconstruct a perceptually processed, transmitted, and displayed in rectangular matrix

good quality image. Great success has been obtained recently byformat, where each entry represents one sampling point.
a class of embedded wavelet image coding algorithms, such as The motivation behintbveationimage processiigthat there

the embedded zerotree wavelet (EZW) and the set partitioning in it iderable hiah-f inf i dund .
hierarchical trees (SPIHT) algorithms. Embedded wavelet coding exists considerable high-irequency Information redundancy in

not only provides very good compression performance, but also the peripheral regions, thus a much more efficient representa-
has the property that the bitstream can be truncated at any point tion ofimages can be obtained by removing or reducing such in-

and still be decoded to recreate a reasonably good quality image. formation redundancy, provided the foveation point(s) and the
In this paper, we propose an embedded foveation image coding yie\ying distances can be discovered. There has been growing

(EFIC) algorithm, which orders the encoded bitstream to optimize tint ti h K f ted i .
foveated visual quality at arbitrary bit-rates. A foveation-based recent interest in research work on foveated image processing

image quality metric, namely, foveated wavelet image quality [3]-[19]. Oneresearchdirectionfisveationfilteringwhichaims
index (FWQI), plays an important role in the EFIC system. We to foveate a uniform resolution image, such that when the human
also developed a modified SPIHT algorithm to improve the coding  eyes gaze atthe pointof fixation, they cannot distinguish between
efficiency. Experiments show that EFIC integrates foveation ha griginal and the foveated versions of thatimage. An example
filtering with foveated image coding and demonstrates very good . . - . : S

coding performance and scalability in terms of foveated image 'S,g'ven'.n Fig. 1, where F'Q-l(a) 'Sthe original Len_a 'mage and
quality measurement. Fig.1(b)isafoveatedversionofthatimage. Ifattentionisfocussed

Index Terms—Embedded coding, foveated image coding, _at the central foveation point, then the foveqted and thg or_lglna_l
foveation, foveation filtering, human visual system (HVS), image images have the same appearal_"lce (dep_endmg onthe viewing dis-
coding, image quality measurement, progressive transmission, tance). Another research focusageated image and video com-
scalable coding, wavelet. pression which takes advantage of the foveation feature to im-
prove image and video coding efficiency. Perfect foveation with
continuously varying resolution turns out to be a difficult the-
oretical as well as implementation problem. In practice, there

HE photoreceptors (cones and rods) and ganglion cells aiie several ways to approximate perfect foveation. A very com-

nonuniformly distributed in the retina in the human eyenonly used approach is the logmap [3] superpixel method. In
[1], [2]. The density of cone receptors and ganglion cells plgg]-[6], local pixel groups are averaged and mapped into super-
important roles in determining the ability of our eyes to resolvsixels, whose sizes are determined by the retinal sampling den-
whatwe see. Spatially, the resolution, or sampling density, has 8. In [7], a multistage superpixel approach isintroduced, where
highestvalue atthe pointofthe foveaand drops rapidly away framprogressive transmission scheme is implemented by using vari-
that point as a function of eccentricity. As a result, when a humable sizes of superpixelsineach stage. The generalidea of logmap
observer gazes ata pointin areal-world image, a variable resalen also be employed by a nonuniform sampling scheme. In [8]
tionimage is transmitted through the front visual channel into thad [9], uniform gridimages are resampled with avariable resolu-
high level processing units in the human brain. The region aroutieh that matches the human retina. B-Spline interpolationis then
the pointoffixation (orfoveation point) is projectedinto the foveaysed to reconstruct the foveated images. In [10], a pyramid struc-
sampled with the highest density and perceived with the higheste is suggested to foveate images and videos. This structure de-
contrast sensitivity. The sampling density and contrast sensitiviiyers the possibility of real-time foveated video coding and trans-
decrease dramatically with increasing eccentricity. Inconclusianission. In[11]-[14], foveated images are obtained by applying a
the human visual system (HVS) is space-variant in samplinigyveationfilter, which consists ofabank of low-passfilters having

variable cutofffrequencies. MPEG/H.263video codingis applied
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(b)

Fig. 1. Example of foveated image: (a) original “Lena” image and (b) foveated “Lena” image.

video coding scheme is then designed to optimize F-PSNR. Matodel of noise detection thresholds in the wavelet transform
tiresolution decomposition provides us with a convenient way ttomain. The model is merged into a wavelet visible differ-
simultaneously examine localized spatial as well as frequenegce predictor in [25]. By employing the perceptual criteria
information. In [15], a Laplacian pyramid architecture was inntroduced in [26], Hontsclet al. [28] proposed a perceptual
troduced for image coding. This architecture was utilized inembedded zerotree image coder. However, their HVS model
pyramid vision machine to build a smart sensing system [1@&loes not take into account foveation.
In [17]-[19], a wavelet-based foveation method was proposedThe goal of this paper is to design an embedded foveation
which applies anonuniformweighting modelinthe wavelettransnage coding (EFIC) system, which tries to order the output
form domain. A progressive transmission method is also sugjtstream, so that those bits with greater contribution to the
gested, where the image information to be transmitted is ordefedeated visual distortion are encoded and transmitted first. In
according to the weighting of the wavelet coefficients. other words, it is designed to optimize foveated visual quality
Wavelet-based image coding algorithms have achievatiany bit-rate. A foveated image quality metric calfedeated
great success in recent years. The success relies on the enedpelet image quality index (FWQpJays an important role in
compaction feature of the discrete wavelet transforms (DWTibe system. The bitstream ordering procedure is based on a vi-
and the efficient organization, quantization, and encoding of teaal importance weighting model derived from FWQI. EFIC
wavelet coefficients. A class of embedded coding algorithniisen merges the weighting model into a modified SPIHT en-
has recently received great attention. The most well-knoveoder, resulting in an efficient foveated image coding system.
algorithms are Shapiro’s embedded zerotree wavelet (EZ\EIFIC can be viewed as an integration of foveation filtering and
algorithm [20] and Said and Pearlman’s set partitioning ifoveation image coding. This is different from the algorithms in
hierarchical trees (SPIHT) algorithm [21], which is an im{11]-[14], where foveation filtering and foveation image/video
proved implementation of the EZW idea. Embedded wavelebding are two separable procedures. The advantages are man-
image coding algorithms not only provide very good codiniold. First, there is a considerable decrease in computation.
performance, but also have the property that the bitstream &econd, EFIC allows scalable encoding and progressive trans-
be truncated at any point and still be decoded to yield a reasonission. Third, there is useful tradeoff between bit-rate and the
ably good quality image. This is a very attractive property thaepth of foveation. This can be done simply by truncating the
allows for scalable encoding and progressive transmission. encoded bitstream at any place. Fourth, given enough band-
Basically, the EZW and SPIHT encoders try to order theidth, a high-quality uniform resolution image is still attainable.
output bitstream, such that those bits with greater contributi@&fIC is also different from the progressive transmission method
to the mean-squared error (MSE) between the original and flv®posed in [18]. First, a more sophisticated HVS quality model
compressed images are encoded and transmitted first. In otiseused. The model is a joint consideration of multiple factors
words, the progressive encoding scheme intends to minimzethe HVS, including the spatial variance of the contrast sen-
the MSE at any bit-rate. HVS features are not consideregitivity function, the spatial variance of the local visual cutoff
However, it is widely accepted that human visual perceptidrequency, the variance of the human visual sensitivity in dif-
distortion does not correlate very well with the MSE [22]. Irferent wavelet subbands and the influence of the viewing dis-
recent years, researchers have attempted to measure vigrate on the display resolution and the HVS features. Second,
image quality in the wavelet transform domain [23]-[25] anthe ordering of the transmitted information not only depends on
to incorporate HVS-based image quality models with waveldte HVS model’'s weighting value, but also on the magnitudes
image coding [26]-[28]. In [24], [26], and [27], the errorof the wavelet coefficients. Third, an efficient embedded coding
sensitivity of the wavelet coefficients in different subbandalgorithm is developed especially for the weighted wavelet co-
was measured. In [24], the sensitivity measurement results iefficients to improve the coding efficiency.
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Fig. 3. Typical viewing geometry.
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Eccentricity (deg) sensitivity is defined as the inverse of the contrast threshold.
That is
Fig. 2. Photoreceptor and ganglion cell density as a function of eccentricity.
1
CS(f,e) = —. 2
(fe) CT(f.e) @)

[I. FOVEATED WAVELET IMAGE QUALITY INDEX (FWQI)
For a given eccentricity, (1) can be used to find its critical

frequency or so-called cutoff frequengyin the sense that any

Let us firSt examine the anatomy Of the early ViSion Systerﬁigher frequency Component beyond |t is invisibfg'can be

The light first passes through the optics of the eye and is thgBtained by setting’Z” to 1.0 (the maximum possible contrast)
sampled by the photoreceptors on the retina. There are tygy solving fore

kinds of photoreceptors—cones and rods. The cone receptors

A. Foveation Resolution and Error Sensitivity Models

are responsible for daylight vision. Their distribution is highly e 1n(%) cycles
nonuniform on the retina. The density of the cone cells is = : . 3)
ale+ep) \ degre

the highest at the fovea and drops very fast with increasing
eccentricity. The photoreceptors deliver data to the bipolar, apply these models to digital images, we need to calcu-
cells, which in turn supply information to the ganglion cellsigie the eccentricity for any given poiat= (z1,z2)7 (pixels)
The distribution of ganglion cells is also highly nonuniform;;, he image. Fig. 3 illustrates a typical viewing geometry. For
The density of the ganglion cells drops even faster than tgﬁ'nplicity, we assume the observed imag&/ipixels wide and
density of the cone receptors. The variation of the densitiesifk |ine from the fovea to the point of fixation in the image is
photoreceptors and ganglion cells with eccentricity is Sho"ﬁérpendicular to the image plane. Also assume that the posi-
in Fig. .2.' These densit.y distr'i.butions play important roles ifign of the foveation points/ = (aj{’x%‘)T (pixels) and the
determining the resolution ability of the human eye. viewing distancer (measured in image width) from the eye
Psychological experiments have been conducted to measyféne image plane are known. The distancémeasured in

the contrast sensitivity as a function of retinal eccentricity [1Oﬂmage width) from pointz to z; is thenu = d(z)/N, where

29]-[31]. In [10], a model that fits the experimental data was
[29]-{31]. In [10] P dz) = |e—2'|, = (2 - 2])? + (2 — 2))?) (mea-

given by e A
sured in pixels). The eccentricity is given by
e+ e
CI(f,e)=CTpexp | 1 d
(o) = Cloesp < > ) @) ofv.2) = tant (%) = tan? ( <‘”>) @
v Nv
where . ] o
f spatial frequency (cycles/degree); Ip F|g.f4,' w? shoy\{ thefnormahzred contrast sensitivity as a func-
c retinal eccentricity (degrees); tion o pixe position for¥V = 512 andv = 1,_3, 6, ar_1d10, _
T minimal contrast threshold: respectively. The cutoff frequency as a function of pixel posi-
0 ) ' tion is also given. The contrast sensitivity is normalized so that
@ spatial frquency deca_y_constant; the highest value is always 1.0 at zero eccentricity. It can be ob-
ea half-resolution eccentricity constant; served that the cutoff frequency drops quickly with increasing
CT(f,e) visible contrast threshold as a function 6f eccentricity and the contrast sensitivity decreases even faster.

ande. In real-world digital images, the maximum perceived resolu-

The best fitting parameter values given in [10] are= 0.106, tion is also limited by the display resolutiergiven by
ez = 2.3, andCTy = 1/64. It was also reported in [10] that the

same values oft and e, provide a good fit to the data in [31] r :$
with CTy = 1/75 and an adequate fit to the data in [30] with 180 cos*(755)
CTy = 1/76, respectively. We adopt this model in our system _nNv N?2p? _ nwNv [ pixels 5
and usex = 0.106, ez = 2.3, andCTy = 1/64. The contrast T180 d?(xz) + N212 ~ 180 <degree) - 0
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Fig. 4. Normalized contrast sensitivity (brightness indicates the strength of contrast sensitivity). The top-left, top-right, bottom-letipemddht figures are
for N = 512 and viewing distance = 1, 3. 6. and10, of the image width, respectively. The white curves show the cutoff frequency.

This approximation is equivalent to that given in [24]. Ac- ———
cording to the sampling theorem, the highest frequency that can ssf N b ve3
be represented without aliasing by the display, or the display o R v=1o| |
Nyquist frequency, is half of the display resolution 5 S \*
£t . A
3 g N
r wNv [cycles & 7
== . 6 or N
Ja 2 360 <degree> © § e
Combining (3) and (6), we obtain the cutoff frequency for a §m'—
given locationz by

fnl(""-) = Hlill(fc, fd) -250 -260 ~1;o -ulao

-50 0 50
Pixel Position (pixels)

Fig. 5. Nyquist frequency limited cutoff frequency plotted as a function of

L
ez In(z77) mNv (7) Pixel position in the image.

« [62 +tan™! (%)} " 360
the bottom of the next pag8y is normalized so that the highest

Fig. 5 showsf,,,(z) for » = 1, 3, 6, and10, respectively. It Vvalue is always 1.0 at O eccentricity.
turns out that at a small viewing distance suchvas 1, the . .
display Nyquist frequency is so small that the cutoff frequendy ETTor Sensitivity in the DWT Domain
stays almost unchanged for a large range of eccentricities. HowThe DWT has proved to be a powerful tool for image
ever, strong “foveation” is still obtained because the contrgstocessing and coding [20], [21], [32]-[36]. In the one-dimen-
sensitivity is very sensitive to eccentricity, as shown in Fig. 4ional (1-D) DWT, the input discrete signals convolved with
Finally, we define the foveation-based error sensitivity for givelmigh-pass and low-pass analysis filters and downsampled by
viewing distance, frequencyf, and locatione as (8), shown at two, resulting in transformed signadg; andsy,. The signalsy,

=min
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Fig. 6. (a) DWT decomposition structure and (b) spatial orientation tree in SPIHT algorithm.

can be further decomposed and the process may be repe#tesddetermined by the display resolutierand the wavelet de-
several times. The number of repetitions defines the wavetetmposition level [24]
decomposition level. For image processing, the horizontal
and vertical wavelet decompositions are applied alternatively, F=r2 (10)
yielding,LL, HL, LH, andHH subbands. The LL subband may
be further decomposed and the process repeated several times.
The typical DWT structure is given by Fig. 6(a). Recenﬂy]'he parameters in (9) are tuned to fit the experimental data. For
the 9/7 biorthogonal filters [37] have been widely adopte@ray scale models; is 0.495,% is 0.466, fo is 0.401, andy,
for DWT-based image compression algorithms. We also uiel-501, 1, and 0.534 for the LILH/HL, andHH subbands,
the 9/7 filters in this paper. Readers can refer to [32]-[37] feespectively. The error detection thresholds for the wavelet co-
more details regarding the basis of wavelet transforms afitficients can be calculated by
wavelet-based image processing and coding.

The wavelet coefficients at different subbands and locations Yaie  alQk(os(2 fose/r)*)
supply information of variable perceptual importance to the The = AA’G = Arg (11)
HVS. In order to develop a good wavelet-based image coding ' '
algorithm that considers HVS features, we need to measur

the visual importance of the wavelet coefficients. In [24], ps vyﬁereAm is the basis function amplitude given in [24]. It is

. . ical to define the error sensitivity as the inverse of the error
chovisual experiments were conducted to measure the wsﬁél
€

o o . ection threshold. Therefore, we define the error sensitivity in
sensitivity in wavelet decompositions. Noise was added to t
- ) ) : . subband X, #) as
wavelet coefficients of a blank image with uniform mid-gray
level. After the inverse wavelet transform, the noise threshold
in the spatial domain was tested. A model that provided a Sw(A0) = Ty " (12)

. . . A6
reasonable fit to the experimental data is [24]

2

For a typical viewing distance = 3, the value ofS,, for dif-

logY = log a4+ k(log f — log g fo)* (9) ferentdecomposition levels and orientations are givenin Table I.
where C. Foveation-Based Error Sensitivity and Quality Metric in
Y  visually detectable noise threshold; DWT Domain
0 orientation index, representirigL,, LH, HH, and HL. In order to apply the foveation-based error sensitivity model
subbands, respectively; as (8) to the DWT domain, we first need to calculate the corre-
S spatial frequency measured in cycles/degree. sponding foveation point in each wavelet subband. For the de-

C3(ew)) — oy (—0.0461F - e(v,z)) for f < fla)

Sg(v, f.x) = {0 o for f> fu(x) ©
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TABLE |
Sw(A, 8) FOR THESIX-LEVEL DWT FOR¥ = 3 AND N = 512

Wavelet Decomposition Level A
Orientation 1 2 3 4 5 6
LL 0.3842 0.3818 0.2931 0.1804 0.0905 0.0372
HL 0.2700 0.3326 0.3019 0.2129 0.1207 0.0558
HH 0.1316 0.2138 0.2442 0.2098 0.1430 0.0791
LH 0.2700 0.3326 0.3019 0.2129 0.1207 0.0558

composition structure given in Fig. 6(a), we have

T
Fof
R A
LL'$A70_<§72_)\>
T
f f
b _[m AN
LH.J,'A’Q—( 2)\ ,2—)\>

T
HL;x{6:<“’{ “’{JFN)

2N 2A

T
¥ x{ + N x{ + N
HH: 2y, = 5x T o . (13)

Next, for a given wavelet coefficient at positiane B 4,
where By » denotes the set of wavelet coefficient positions
residing in subbandX(8), its equivalent distance from the
foveation point in the spatial domain is given by

— oA i
dre(z) =2 Hx xA,HHQ Fig. 7. Foveation-based error sensitivity mask in the DWT domain. The
top-left, top-right, bottom-left, and bottom-right figures are for viewing
forz € B)‘ﬁ' (14) distancer = 1, 3,6, and10 times of the image width, respectively.
(Brightness logarithmically enhanced for display purpose).

With this equivalent distance and also considering (10), we have

tion as a combination of three factors: loss of correlation,
Sy(v, f,x) ISf(Vﬂ‘Q_A,dA,e(iﬂ)) mean distortion and variance distortion. For any two-di-
forz € By,. (15) mensional (2-D) signal, the measurement results are a 2-D
quality map as well as an overall quality index. Readers can
Finally, a foveation-based error sensitivity model in the DwTefer to [38] and http://anchovy.ece.utexas.edu/~zwang/re-
domain is determined by a combined consideration of (12) afglarch/quality_index/demo.htrfdr more details and demon-
(15) strative images of the new quality index. In this paper, we adapt

the index into the DWT domain and define the FWQI as
B2
S, ) = [Sw(A, 9)]51 . [Sf(l/’ 7>2—>\’d)\79($))]' Vg
forz € Byg (16) FWQI = Zn=1M . 20) - Jel@n)| Q@) 17y
2on=1 S, En) - [c(2n)]

where 3; and 3, are parameters used to control the magni-

tudes ofS,, and Sy, respectively. In this paper, we uge = where o

1 andB, = 2.5. The construction of5(v,z) can be viewed M number of the wavelet coefficients;

as two stages in cascade. In the first stage, each wavelet su{z.) wavelet coefficient of the original image at location
band is assigned a uniform base importance value according Tn;

to S, (), 6). In the second stage, nonuniform weights devel- @(z») quality value at locatiore,, in the quality index
oped fromS (v, 727, dx ¢(x)) are applied to the subbands, re- map.

sulting in a space-variant error sensitivity mask in the DWT d&inces(v, z,,) varies withv, FWQI of a testimage is a function
main. In Fig. 7, we show the error sensitivity masks for viewingf »» instead of a single value.
distancer = 1, 3, 6and10, respectively. ) ) ) .

For the evaluation of image quality, instead of usinff- Multiple Foveation Points and Regions
the traditional error summation methods, we designed aAlthough there is only one foveation point at one time for
new quality index [38] by modeling any signal distor-one human observer, it is necessary to allow multiple foveation
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points in practice, to provide more flexibility and robustness. In EZW or SPIHT encoder, the wavelet coefficients are
This is because scanned multiple times. Each time consists of a sorting pass

1) the usual pattern of human fixation is that the fixatioBnd a refinement pass. The sorting pass selects the significant
point moves slightly around a small area of the centépefficients and encodes the spatial orientation tree structure.

point of interest; A coefficient is significant if its magnitude is larger than a
2) there may be multiple human observers watching tfi@reshold value, which decreases by a factor of 2 for each
image at the same time; successive sorting pass. The refinement pass outputs one bit

3) there may exist multiple points and/or regions in th#r each selected coefficient, as indicated by the arrows in
image that have high probability to attract a humahig. 8(a). An entropy coder can be used to further compress the
observer’s attention. output bitstream. SPIHT performs better than EZW in terms of

Our system can easily adapt to multiple foveation points B constructed image quallt)_/._The embedded coding of EFIC is
changing the error sensitivity mask, z). Suppose that there developed based on a modified version of SPIHT.

areP foveation pointse? . ... , =7, in the image (in digitally

sampled images, the foveation regions can also be regardefa&F!C System

collections of foveation points). For each of the points, we can The proposed EFIC system is depicted in Fig. 9. We first
calculate the error sensitivity mask as in the above sections aply the wavelet transform to the original image. We assume

haveS;(v,xz) for: = 1,2,..., P. The overall error sensitivity we already know the foveation points and regions, which
should be given by the maximum of them are used to compute an error sensitivity-based importance
weighting mask. The wavelet coefficients are then weighted

S(v,z) = max (S;(v,x)). (18) using the weighting mask. Next, we encode the weighted

i=L...I’ wavelet coefficients using a modified SPIHT encoder. The

o output bitstream of the modified SPIHT encoder, together with
In practice, it is not necessary to compute each ofife. x). the foveation parameters, is transmitted to the communication
Since the error sensitivity is monotonically decreasing with inretwork. At the receiver side, the weighted wavelet coefficients
creasing distance from the foveation point, given a painhe  are obtained by applying the modified SPIHT decoding. The
foveation point that is closest to it must generate the maximymportance weighting mask is then calculated in exactly the

Si(v,z), so what we need to do is let same way as at the sender side. Finally, the inverse weighting
and inverse wavelet transform are applied to obtain the re-
S(v,x) = S;(v,x), constructed image. Between the sender, the communication

f

%

} (19) network and the receiver, it is possible to exchange informa-
’ tion about network conditions and user requirements. Such
feedback information can be used to control the encoding

wherej € arg  min {Hw —z
ic(1,2,..., P}

By doing this, a large amount of computation is saved. bit-rate and foveation points. The decoder can also truncate
the received bitstream to obtain any bit-rate image below the
ll. EMBEDDED FOVEATION IMAGE CODING (EFIC) encoder bit-rate.

There are two key techniques in the EFIC system. One is the
calculation of the importance weighting mask. The other is the
The main objective in embedded wavelet image codingodified SPIHT algorithm. We will discuss them in the next

is to choose the most important wavelet coefficients to hgibsections.
encoded and transmitted first. The importance of a coefficient
in EZW and SPIHT depends on its contribution to the MSE. Importance Weight Calculation

distortion. The coefficients with larger magnitudes are more The purpose of the importance weighting mask is to help
important. The strategy is ordering the coefficients by magr{he encoder to order the output bitstream, so that bits with

:Edte tﬁnd tranlettln%_the tmohst S|gt:uf|cant ;'ts (1;|rst. Asds_u eater contribution to the foveated visual quality are en-
at the wavelel coetlicients have been ordered according iGyeq and transmitted earlier. Basically, the weigtitz,,)

the minimum number of bits required for its magnitude binaré{ssigned to a wavelet coefficiemt, must be consistent with

representation. The schematic binary representation is sho[WQ foveation-based error sensitivity model given in (16).
in Fig. 8(a) [21]. The most effective order for progressiv§herefore the desired solution is
S 1

transmission is to sequentially send the bits in each row, a
indicated by the arrows. In order for the decoder to understand

the meaning of the bits, we also need to encode and transmit W(zn) = K- 5(v,2n) (20)

the coordinates of the wavelet coefficients along with the mag-

nitude bits. It has been observed that the wavelet coefficiemtbere K can be any constant value except for zero. In this so-
which are less significant have structural similarity across ttation, the viewing distance must be known to us. However,
wavelet subbands in the same spatial orientation. The zerotieenany practical applications,is not available to the encoder.
structure in EZW and the spatial orientation tree structuf@ne solution to this problem is to assume a fixed viewing dis-
in SPIHT capture this structural similarity very effectivelytance. In this paper, we solve it by assuming a probability dis-
Fig. 6(b) shows the spatial orientation tree used by SPIHT. tribution of viewing distance instead of a fixed one. The proba-

A. Review of Embedded Wavelet Image Coding Methods
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Fig. 8. (a) Binary representation of magnitude-ordered wavelet coefficients. (b) Binary representation of magnitude-ordered weightedeffaietes o
SPIHT algorithm. (c) Binary representation of magnitude-ordered weighted wavelet coefficients in modified SPIHT algorithm.

bility model is given by maximum possible viewing distanceris= 3 and the typical
) viewing distance is between 1.5 and 6 times of the image width.
p(v) = 1 exp <_ (In — ) ) With this distribution, the importance weight of, is
2nov 202
for v € (0, 00). (21) W(x,) = / p(1)S(v,z,)d(v). (22)
o+

The distribution curve is shown in Fig. 10, whereand, are
tuned toc = 0.4 andp = 1.2586, respectively, so that the Fig. 11 shows the resulting importance weighting mask.
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Fig. 11. Importance weighting mask. Brightness indicates the importance
of the wavelet coefficients (brightness logarithmically enhanced for display

D. Modified SPIHT purpose).

It is possible to implement an embedded foveation coding
system with the original SPIHT algorithm. However, theré&ree structure with every scan, an increase in the number of
arises a problem that makes the SPIHT algorithm inefficieritmes an image is scanned implies an increase in the wastage
Note that in our system, the input coefficients to the SPIHT paof bits and an increase of time for scanning and computation.
are the weighted wavelet coefficients instead of the origin8kecond, we are encoding the significant coefficients with more
ones. The weighted coefficients have a much larger dynanhiits as we increase the number of scans because we add one
range compared to that of the original coefficients. A schematitore refinement bit to each of them during each scan. Conse-
binary representation of a list of magnitude-ordered weightediently, a modified SPIHT algorithm is needed to overcome
wavelet coefficients is shown in Fig. 8(b). Comparing this witkhis problem. We solve this problem in two ways.
Fig. 8(a), we see that the change of dynamic range leads td-irst, in the sorting pass, we do not scan all the wavelet coef-
an increase in the number of times the wavelet coefficierisients in the first few scans. Suppose the maximum absolute
are scanned. This makes SPIHT encoding less efficient in twalue of the unweighted wavelet coefficientsuisx, {c(x)},
aspects. First, since we need to encode the spatial orientatioen the largest possible absolute value of the weighted
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. e o image approaches uniform resolution and the decoded SPIHT
. ¢ e . and EFIC images are almost indistinguishable. The EFIC de-
. : e . coding can also be viewed as a foveation filtering procedure with

decreasing foveation depth. Notice that, in typical natural im-
ages, the energy is concentrated in the low-frequency bands. As

. . aresult, in the peripheral regions, the low-frequency wavelet co-
efficients have greater opportunity to be reached before the high-
2%e ° He ° frequency coefficients. In the region of fixation, both low-and
o0 o high-frequency coefficients have good chances to be reached
o o ¢ ® o 1 early because of their larger importance weights. If the bit-rate is

limited, then decoding corresponds to applying all-pass filtering
to the region of fixation and low-pass filtering to the peripheral
® . o P regions. This is consistent with the basic idea of foveation fil-
tering. With an increase of the bit-rate, more bits are received
for the high-frequency coefficients of peripheral regions, thus
Fig. 12. Wavelet coefficients scanned at the first four times in the modifiddl€ decoded image becomes less foveated. The EFIC coding re-
SPIHT algorithm. sults in Fig. 13 demonstrate this very well.

Fig. 14 shows the FWQI comparisons of the EFIC and SPIHT
(). In compressed “Zelda” images at 0.015 265, 0.0625, and 0.25 b/p.

wavelet coefficient at location is max.{c(x)} - W (x). lis o ¢ . f the viewing di . d
the first few scans, it might be lower than the significance te§ Ql is given as a function of the viewing distance, instea

threshold in the SPIHT algorithm. The threshold at tité 0 ju_st one fi>_<ed va_lue. In comparison with SPIHT,_ significant
scan is given by}, = |log, (max, {c(#)W(x)})] /2. Our q_uall_ty gain is achlev_ed_ by EF_IC thrOl_Jgh the er_1t|re_ range _of
strategy is that before each scan, we perform the followintgeWing dls_tances. Th|_s is consistent with the subjective quality
test: max, {c(x)} - W(z)>"T,. Only thosez that satisfy shown in F|g. 13. In_Flg. 15(@), we show how the FWQI valug
this condition are scanned. The wavelet coefficients that dfSreases withthe bit-rate. Fig. 16 shows the EFIC compression
scanned in the first four times are given in Fig. 12. It can b the "Board” image with multiple foveation regions. At low

seen that only a small subset of the coefficients need to Rl rates SUCh_aS 0.0625 b/p a_md 0'1_25 bip, EFIC maintain§ ac-
scanned during the first few sorting passes. ceptable quality at the foveation regions and blurs the regions

Second, in the refinement pass, it is not necessary to ﬁl_lower interest. Again, a visually high-quality uniform reso-

code any of the weighted coefficients using too many bits, ion image is obtained from the same bit stream with a suffi-
in Fig. 8(b). This is because during the inverse weighting proc;fq::"fant blnt—.rate 0.5 b/p)'. Thg FWQI results of EFIC compressed
dure, the coefficients will be scaled back to values on the ord@roarc_i Images are glven'%Flg. }Ssb)

of their original values. The less significant bits (such as theIn Fig. 17,we comparet _8X3‘)2 Ne.WS 'mage compres-
tenth or even less significant bits) do not have much contriba>" rgsults with the same b|t—rate bL,'t difierent foveation region
tion to the overall image quality, therefore can be removed. ﬁglectlgns. It turns OUt, that, with a blt—_rate of 0.25 bip, un_n‘orm
EFIC, we limit the maximum number of bits for each Coefﬁ_resolutmn SPIHT coding cannot provide an acceptable image,

cient. This is shown in Fig. 8(c). The refinement bits are semJt if the foveation region(s) are known to us, visually satisfac-

sequentially in the order indicated by the arrows in Fig. 8(ciC"Y Image quality is still achievable with the EFIC algorithm.

Actually, any wavelet coefficient that receives the upper limit of
refinement bits can be removed from the list of significant pixels IV. DISCUSSIONS ANDFUTURE WORK
of the SPIHT algorithm.

When we introduce our foveation image coding and pro-
cessing work to people, one of the most frequently asked
guestions is: “How do you know the foveation points?” Gener-

We test the EFIC algorithm using 8 bits per pixel (8 b/p) graslly, there are two methods to determine the fixation point(s)
scale images and compare it with the SPIHT algorithm. Fig. Bhd region(s). The first is a completely automatic method.
shows thes12 x 512 “Zelda” image encoded with both SPIHT There has been a lot of research work in the visual psychology
and EFIC algorithms. At a very low bit-rate of 0.015 625 b/gommunity toward understanding high-level and low-level pro-
with compression ratio (CR) equaling 512:1, the mouth, nosesses in deciding human fixation points [39]-[41]. High-level
, and eye regions are hardly recognizable in the SPIHT codaacesses involves a cognitive understanding of the image.
image, whereas those regions in the EFIC coded image exhfir example, once a human face is recognized in an image,
some detailed visual information. At a low bit-rate of 0.031 28he face area is very likely to become a heavily fixated region.
b/p (CR = 256 : 1), SPIHT still decodes a very blurred imagel.ow-level processes determine the points of interest using
while EFIC begins to give acceptable quality over the face reimple local features of the image [41]. There is little doubt
gion. Increasing the bit-rate to 0.0625 bfpR = 128 : 1) and that our foveation-based techniques will be more effective
0.125 b/p CR = 64 : 1), the visual quality of the EFIC codedif combined with a very intelligent image analysis, pattern
images is still superior to the SPIHT coded images. When thecognition, and image understanding system. Actually, we are
bit-rate of 0.25 b/pCR = 32 : 1) is reached, the EFIC codednow conducting research on visual fixation modeling. Although

E. Experimental Results
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Fig. 13. “Zelda” image compression results. Top-left: original image with the
foveation region indicated. Top-right: DWT domain importance weighting mask
for EFIC (brightness logarithmically enhanced for display purpose). The image:

column that follow: EFIC coded images. The bit-rates from top to bottom are
0.015625 b/pCR = 512 : 1), 0.03125 b/pCR = 256 : 1), 0.0625 b/p
(CR =128 : 1),0.125 b/p CR = 64 : 1), and 0.25 b/pCR = 32 : 1),

respectively.
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Fig. 14. FWQI comparison of EFIC and SPIHT compressed “Zelda” image at
0.156 25 b/p, 0.0625 b/p, and 0.25 b/p.
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Fig. 15. FWQI results of EFIC compressed (a) “Zelda” and (b) “Board.”
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Fig. 16. Top-left: “Board” image with multiple foveation regions indicated. Top-right: DWT domain importance weighting mask (Brightnessniacgiyth
enhanced for display purpose);. Mid-left: EFIC compression, 0.06253p+ 128 : 1). Mid-right: EFIC compression, 0.125 b/@R = 64 : 1). Bottom-left:
EFIC compression, 0.25 b/@€R = 32 : 1). Bottom-right: EFIC compression, 0.5 b/ AR = 16 : 1).

it is argued that it is always difficult to decide foveation pointgjve scalable coding and foveation-progressive transmission are
we believe that it is feasible to establish a statistical model. Ttiee key features. There is a lot of future work left to do.
second method to determine foveation point(s) is the interactiveOne direct application of EFIC is Internet browsing [18].
method. In some applications, an eye tracker is available, whi€here are two significant examples. In the first, the point(s) of
can track the fixation point and send it to the foveated imagirixation is predetermined and one copy of the EFIC encoded
system in real time. In some other application environments, thi#sstream of the high-quality image is stored at the server side.
eye tracker is not available or inconvenient. A more practicBluring transmission, the client receives and decodes a highly
way is to ask the users to indicate fixation points using a moudeveated image first and with the arrival of more bits, the quality
Another practical possibility is to ask the users to indicate thod the image is gradually refined. Finally, a high-quality, uni-
object of interest and an automatic algorithm is then used farm resolution image is achieved. In the second example, the
track the user-selected object as the foveated region in the imagevelet coefficients, together with a uniform coarse quality ver-
sequence that follows. sion of the image, are stored at the server side without EFIC en-
In general, the EFIC algorithm and the video coding alg@oding. The client first sees the coarse version of the image and
rithm developed from it are good for low and variable bit-ratégures out the point of interest. The selected point is sent back
image and video communication applicatioReveation-adap- to the server and activates the EFIC encoding. The encoded bit-
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[14]

[15]

[16]

[17]
Fig. 17. The 0.25 b/p{R = 32 : 1) “News” image compression results.
Top-left: original image with foveation regions indicated. Top-right: EFIC with [18]
the upper foveation region only. Mid-left: EFIC with the lower left foveation
region only. Mid-right: EFIC with the lower right foveation region only.
Bottom-left: EFIC with all the three foveation regions. Bottom-right: SPIHT
uniform resolution compression.

(19]

(20]

stream is then transmitted to the client with a foveation emphasigi]
at the selected point of interest.

Currently, we are also working on real-time foveation-scal-]
able video coding and communication systems over computer
networks, where the points and depth of foveation are dete(ji?:]
mined by feedback from the receiver and the network. Feed-
back from the receiver can be the fixation points, the decoder
buffering situation and the data consumption speed. The feedR
back from the network includes the change of bandwidth, the
network congestion situation and the latency. Given the feedz25]
back information, the foveated system at the server side the[96]
adaptively varies the foveation points as well as the bit-rate by
changing the foveation depth and the frame rate. This is superior
to the current systems. Real-time implementation is importar{tm
for a successful foveated video communication system. We afgg;
also doing research and development work with digital signal
processing chips to implement fast foveation filtering and fast?®
foveation image and video coding.

[30]
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