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ABSTRACT
The paper presents a spatial pooling technique for image qual-
ity assessment (IQA) that is based on the idea that the adap-
tive mechanisms of luminance and contrast in the early vision
operate independently. The work is motivated by recent vi-
sion science studies on this topic that have not been investi-
gated yet in the field of IQA. The Structural SIMilarity index
(SSIM) has been selected as the base IQA measure due to its
explicit utilization of the local luminance mean and contrast
of both original and degraded images. Experimental results
show that a spatial pooling algorithm that only depends on
the degraded image results in significantly improved image
quality prediction.

Index Terms— Image quality assessment, spatial pool-
ing, visual contrast, fixation points, SSIM

1. INTRODUCTION

In the last years a lot of work has been done for defining qual-
ity measures that correlate with Human Visual System (see
[14, 12] for a brief review). This is not a trivial problem
due to the partial knowledge and lack of theoretical models of
brain activities in the presence of visual stimuli. Even though
the subjective aspect in human vision is difficult to predict,
it has been widely recognized that not all image pixels have
the same importance in the visual perception process. With
regard to image quality assessment (IQA), this concept has
been translated into the definition of proper spatial pooling
techniques, which define the global image quality score as a
weighted mean of local image quality and tune the weights
according to the visual importance of each image region. Al-
though the effectiveness of spatial pooling strategies has been
demostrated in several recent papers, some of them are not
built up on human visual characteristics while some others
require a high computational load.

This paper presents a novel study oriented to the definition
of a pooling method which measures the naturalness of local
image patches. This study is inspired by the strong results re-
ported in [5, 7] and related works about the independence of
the adaptive mechanisms of luminance and contrast of natural

images and the low spatial correlation of these measures near
fixation points. As a result, by looking at image defects as ar-
tificial (and thus unnatural) image components, the main idea
of this work is to assign a higher weight to image regions that
are highly unnatural and are surprisals to the human visual
system. To this aim, the well known and widely used IQA
metric, namely the Strucutral SIMIilarity index (SSIM [16]),
has been selected as the base IQA measure. The main mo-
tivations are: i) SSIM is directly dependent on the two main
measures adopted by human eye in the observation process,
i.e. local luminance mean and contrast [7, 5]; ii) SSIM cre-
ates local quality maps that allow for straightforward spatial
pooling. In addition, SSIM has got other interesting proper-
ties that further support its choice in this preliminary study: i)
it is computationally efficient; ii) its mathematical properties
make it easily embeddable in several image and video pro-
cessing applications; iii) it gives considerable importance to
the modification of image structures to which HVS is sensi-
tive (i.e. object contours). Experimental results are promis-
ing in terms of increased correlation between SSIM and mean
opinion score (MOS) and reduced computational effort for the
computation of the weights.

2. LUMINANCE-CONTRAST INDEPENDENCE AS
PERCEPTUAL POOLING STRATEGY

There has been a rich literature recently regarding perception-
based pooling strategies for SSIM. For example, the work in
[10] uses gaze to assign more importance to points that are
fixated with high probability; the same work, as well as the
one in [1], also relies on the theory that human eye is highly
influenced by the worst regions of the image; on the contrary
in [18], based on the fact that object contours attract human at-
tention, the distribution of edges in the original and degraded
image is used for pooling; edge map and phase coherence are
the main properties of the Feature-SIM presented in [19], that
has the same mathematical form of SSIM but it involves dif-
ferent variables that are more consistent with HVS; finally,
in [11] pooling is performed in the wavelet domain accord-
ing to the contrast amplitude of the original image and using
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a corrective term that depends on the edge map. In order to
characterize informative image points, we mainly focus on
the relationship between image local luminance and contrast
in the early vision and their typical behavior in correspon-
dence to fixation points. The motivations for this choice are
elaborated in the next section.

2.1. Motivations

As pointed out in [5, 7], during the observation of a scene the
eye essentially measures local luminance mean and contrast.
Specifically, light adaptation (luminance gain) and contrast
gain are the two rapid mechanisms that control the gain of
neural responses in the early vision. Light adaptation largely
occurs in the retina and normalizes the local luminance with
respect to the prevalent one; on the contrary, contrast gain
starts in the retina and reduces neural responses where con-
trast is high while increases them where contrast is low. From
a more formal point of view, luminance and contrast are re-
lated to local and global image statistics that can be restricted,
in most cases, to those of the first and second order, i.e. mean
µ and variance σ2 of the image luminance. In particular, the
visual contrast is well represented by the ratio of these statis-
tics, i.e. C = σ

µ . The most interesting result of the works
in [5, 7] is the empirical observation of a nearly statistical
independence of local luminance and contrast in natural im-
ages and a highly negative correlation of those measures in
artificial images with matched spectral characteristics. In ad-
dition, luminance and contrast can significantly vary in the
whole image so that their local values are predictable only for
very close observation points. To support these statements,
independence of luminance and contrast gain control mech-
anisms has been thoroughly studied in several experiments
[5, 7]. Interestingly, by fixing the amplitude and changing
randomly the phase of images, the authors observed that lu-
minance and contrast are far from independent; on the con-
trary, by preserving image structures (the phase) of natural
images and changing the amplitude, luminance and contrast
result largely statistical independent. To this aim the authors
computed the empirical joint distributions between local lu-
minance mean and contrast in natural images, that include
both rural and urban areas, and showed their near separabil-
ity. However, to quantify the amount of independence be-
tween the two involved quantities, they measured the Pearson
correlation coefficient ρ between local luminance and con-
trast. Even though Pearson correlation coefficient is com-
monly used for its simplicity and low computational cost, un-
correlated random variables are not necessarily independent.
Mutual information is a more proper measure for the inde-
pendence of two random variables (luminance mean µ and
contrast C in our case) since it quantifies how much infor-
mation the two variables share. Specifically, it is defined as
I(C, µ) = H(C) − H(µ|C) = H(C) + H(µ) − H(C, µ)
and equals zero if and only if the two random variables are
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Fig. 1. TID2008. Top) Average mutual information (topmost
curve) and Pearson correlation coefficient (bottommost curve)
between local luminance mean and contrast for each original
image in the database. Bottom) Image no. 13 (left), that is a
typical natural image, and the mutual information map of its
local luminance mean and contrast (right).

independent. In addition, if C and µ have a joint normal dis-
tribution, that is the one that seems to approximate well the
relationship between local luminance mean and contrast (see
Figures 2 and 5 respectively in [7, 5]), I and ρ obey the fol-
lowing rule: I(C, µ) = − 1

2 log(1 − ρ2(C, µ)). Based on this
last observation, to further confirm the results in [5, 7], we
computed the local mutual information between luminance
and contrast of the images in TID database. As it can be ob-
served in Fig. 1.top, the average normalized mutual infor-
mation (H(C) + H(µ) has been used for normalization) is
0.2309 and for most of the images it is less than 0.3. It is
worth observing that many images in the database have sev-
eral natural components (sky, foliage, backlit, ground), as the
image in Fig. 1.bottom, while one of the highest values of
the average mutual information is assumed by the last image
in the database, which is an artificial image. For the same
image the average value of the Pearson correlation coefficient
assumes a high value, as shown in Fig. 1.top. Fig. 1.top
also shows a quite similar behaviour of mutual information
and Pearson correlation coefficient in the database. Since the
evaluation of the mutual information is costly, in the remain-
ing part of the paper we will focus on the correlation coeffi-
cient between local luminance and contrast.

2.2. Image unnaturalness for pooling

As discussed in the previous section, the correlation between
luminance mean and contrast can be a discriminative feature
for points that attract human attention during the observation
process of a natural image. In fact, on the one hand it allows
us to characterize those regions with which human eye is very
familiar (ρ is close to zero), and therefore more sensitive to
their quality; on the other hand, it allows us to detect unnat-
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Fig. 2. TID database: histograms of ρ for the image no. 13 af-
fected by jpeg transmission distortion. Three levels of distor-
tions have been considered. ρ moves toward negative values
as the amount of distortion increases.

Fig. 3. Image 20 of TID database (left), its ρ image (middle),
its ρcos image (right).

ural image elements that can influence the perception of the
quality of the whole image, since anomaluos image compo-
nents (almost large negative correlation). In agreement with
the studies in [10], in which it has been assessed that humans
are attracted by the most unnatural parts of the image, a per-
ception based spatial pooling method has to assign a higher
weight to those points in the image that have higher negative
correlation between luminance and contrast, since they are
more likely to be unnnatural image components. As a con-
sequence, local SSIM values can be weighted by the quantity
1− ρ as follows

SSIMρ =

∑n
x=1

∑m
y=1 SSIM(x, y)(1− ρ(x, y))∑n
x=1

∑m
y=1(1− ρ(x, y))

, (1)

where (x, y) indicates pixel locations, n×m is the image di-
mension and SSIM(x, y) is the SSIM value computed in a
block centered at (x, y). Note that ρ is taken with its sign. As
a result, the more unnatural the image, the higher the weight
for the corresponding SSIM value. It is obvious that, for
a pooling method which is consistent with HVS, the corre-
lation coefficient ρ in eq. (1) must refer to local luminance
and contrast of the degraded image since degradation intro-
duces artificial structures that do not belong to the original
image. Fig. 2 shows the histograms of the correlation coeffi-
cient computed in image no. 13 of TID database corrupted by
JPEG transmission errors. As it can be observed, the higher
the amount of distortion the more the correlation coefficients
between luminance mean and contrast of the degraded image
move toward negative values. This is also consistent with the
fact that the locations of fixation points in the observation pro-
cess change according to both the image content [2] and im-

age distortion type [15]. In fact, as shown in the experiments
presented in [15] and performed on LIVE database, fixations
in the degraded image change especially for compression dis-
tortions as they move to edges and/or blocking artifacts. On
the contrary, for distortions like white noise or Gaussian blur-
ring, fixations do not significantly change, even when they
occur in homogeneous regions, where the degradation is eas-
ily detectable.

2.3. Refinements in weight estimation

Pearson correlation coefficient captures linear dependence be-
tween two variables but ignores any other kind of dependence.
In order to establish a better statistical correlation between lu-
minance mean and contrast, a more sophisticated statistical
model should be used and an a priori information on the con-
ditional probability between the two variables should be intro-
duced. Unfortunately, such information is neither available
nor well assessed empirically yet, even though in [3] some
constraints on the density functions of luminance and contrast
have been assessed. Here we opt to a deterministic approach
to evaluate the independence between the two involved vari-
ables. We select a patch and we extract a sample of luminance
mean and contrast. Each sample is seen as a vector in the n-
dimensional space and then we look at the angle between the
two vectors through the cosine correlation coefficient

ρcos(x, y) =

∑
(x,y)∈Ω µ(x, y)C(x, y)√∑

(x,y)∈Ω µ
2(x, y)

√∑
(x,y)∈Ω C

2(x, y)

where Ω is the considered patch. If luminance and contrast
are independent, their corresponding vectors must be orthog-
onal and the cosine of the angle tends to zero; otherwise the
cosine of the angle departs from zero. In this way we are im-
plicitly considering the a priori information that human eye is
inclined to take two different kinds of information (luminance
and contrast) by means of two separate channels. This is con-
sistent with the mechanisms of luminance and contrast gain
control in early vision [5, 7]: the first one mainly involves the
retina while the second one only begins in the retina but then
it involves other stages in the visual pathway.

It is worth noting that the relationship between ρ and ρcos
is not strictly linear but it depends on local image information.
It is easy to derive that

ρcos =
‖µ‖1 ‖C‖1
‖µ‖2 ‖C‖2

+ ρ

√(
1− ‖µ‖

2
1

‖µ‖22

)(
1− ‖C‖

2
1

‖C‖22

)
,

where the dependence on the point location (x, y) has been
omitted. Points having ρ close to zero (i.e. the ones more
similar to natural image components) not necessarily have
ρcos = 0; in this case ρcos = ‖µ‖1 ‖C‖1

‖µ‖2‖C‖2 and it depends on
the length of luminance and contrast vectors. For the same
reasons, low values of ρcos with high probability are those



correlation DB SSIM SSIMρ SSIMcos VIF FSIM VSNR SSIMρ SSIMcos

(from original) (from original)
PCC TID 0.773 0.795 0.835 0.808 0.874 0.682 0.746 0.772

LIVE 0.945 0.948 0.954 0.960 0.961 0.923 0.946 0.949
CSIQ 0.861 0.890 0.870 0.928 0.912 0.800 0.888 0.865

SCC TID 0.775 0.795 0.838 0.749 0.881 0.705 0.780 0.805
LIVE 0.948 0.952 0.958 0.964 0.965 0.927 0.949 0.953
CSIQ 0.876 0.904 0.879 0.919 0.924 0.811 0.901 0.875

KCC TID 0.577 0.595 0.644 0.586 0.695 0.534 0.582 0.609
LIVE 0.796 0.805 0.817 0.827 0.836 0.762 0.799 0.807
CSIQ 0.691 0.724 0.696 0.754 0.757 0.625 0.720 0.697

Table 1. Pearson (PCC), Spearman (SCC) and Kendall (KCC) correlation coefficients for SSIM, SSIMρ and SSIMcos, in
TID, LIVE and CSIQ databases (best results are in italic). Pooling weights have been computed on the degraded images (4th
and 5th cols) and on the original images (last two columns). Cols 7,8 and 9 provide the results for three representative IQA
metrics: VIF [13], VSNR [20] and FSIM [19] (best results are in bold).

points having negative correlation, since it means that a given
quantity is subtracted from the term ‖µ‖1 ‖C‖1

‖µ‖2‖C‖2 . Hence, even
though the cosine does not distinguish between points hav-
ing positive or negative angles, the value of ρcos is able to
differentiate, in principle, points having positive and negative
correlations. As a result, local SSIM values can be weighted
as follows

SSIMcos =

∑n
x=1

∑m
y=1 SSIM(x, y)(1− ρcos(x, y))∑n
x=1

∑m
y=1(1− ρcos(x, y))

(2)
An example is shown in Fig. 3. The cosine correlation ρcos
between luminance and contrast is a more consistent with the
perception of masked noise: noise is less evident at the bot-
tom of the image than near the contours of the houses or the
lighthouse; the values of ρcos vary accordingly whereas the
values of ρ seem less dependent on this feature.

3. EXPERIMENTAL RESULTS

The proposed method has been tested on several images cor-
rupted by different kinds of distortions taken from the three
well known and publicly available databases CSIQ [6], LIVE
[9] and TID2008 [8]. Gaussian noise, blur, contrast alter-
ation, pink noise, JPEG, JPEG2000 are the distortion types
considered in CSIQ, while Fastfading, Gaussian blur, JPEG,
Gaussian noise and JPEG2000 are those in LIVE. A wider
class of distortions has been considered in TID2008. The cor-
relation with MOS on the three databases has been measured
in terms of prediction accuracy through the Pearson correla-
tion coefficient after non linear regression using the five pa-
rameters logistic function

Qp = α1

(
1

2
− 1

1 + eα2(Q−α3)

)
+ α4Q+ α5,

where {α1, α2, . . . , α5} are the regression parameters while
Q andQr respectively are the original IQA metric and the one
after regression; and also in terms of prediction monotonic-
ity using both Spearman and Kendall correlation coefficients.

0 0.5 1
0

1

2

3

4

5

6

7

8

SSIM

M
O

S

 

 

0 0.5 1
0

1

2

3

4

5

6

7

8

SSIM
ρ

 

 

0 0.5 1
0

1

2

3

4

5

6

7

8

SSIM
cos

 

 

Fig. 4. TID database: Scatter plot of MOS versus SSIM and
its two pooled versions. The black line is the fitted logistic
function.

A block-shaped patch of dimension 32 × 32 has been con-
sidered for the computation of the local correlation between
luminance and contrast, whose vectors have been defined by
sampling the patch 1 out of 4 in both horizontal and verti-
cal direction, i.e. each vector has 64 components. In each
location (x, y) the luminance mean and contrast have been
computed on a 4 × 4 block. It is worth mentioning that the
results for SSIMcos do not significantly change if a different
dimension of the patch is used. In addition a patch of 32× 32
dimension corresponds to a visual angle of 0.54 degree and
it is consistent with the default settings of SSIM computa-
tion. Table 1 shows the results for the two proposed spatial
pooling methods in eqs. (1) and (2) and compares them with
the conventional SSIM. Using 1 − ρ as pooling weight, as in
eq. (1), the correlation with MOS increases for all the three
databases (see third and fourth columns of Table 1). For a bet-
ter evaluation of the results, Table 1 also contains the corre-
lation coefficients provided by three representative IQA met-
rics, namely the Visual Information Fidelity index (VIF) [13],
the Visual Signal-to-Noise Ratio (VSNR) [20] and the Feature



based similarity metric (FSIM) [19], on the three databases
(6-8th columns of Table 1). VIF measures the mutual infor-
mation between the original and degraded image using the a
priori information on the distribution of wavelet coefficients
of natural images. VSNR also employs the wavelet transform
for computing contrast thresholds to measure the amount of
contrast masking in order to assess and balance distortion vis-
ibility. FSIM, as mentioned at the beginning of Section 2,
employs phase coherency and gradient magnitude in place of
luminance adaptation and structural terms of SSIM; phase co-
herency is also used as pooling weight. As it can be observed
in the Table, the proposed ρ−based correction to SSIM allows
us to outperform VSNR, to approach and sometimes to outper-
fom VIF, while it is still not able to reach comparable results
with FSIM in its present form, even though it is less compu-
tationally expensive and free of parameters. One of the most
evident results in Table 1 is the great increment, especially in
TID database, given by the use of ρcos as pooling weight for
SSIM, as in eq. (2). Fig. 4 reports the scatter plot of the IQA
metrics and MOS for TID database as well as the fitted logis-
tic function. As it can be observed, crosses in the rightmost
plot are better concentrated near the fitted curve. The Spear-
man correlation coefficient has been also measured separately
for each degradation type and the results are provided in Ta-
ble 2. As it can be observed, ρcos allows us to considerably
increase the correlation of SSIM with MOS for degradations
like non eccentricity patter noise, masked noise, quantization
noise and jpeg compression. As mentioned in the previous

defect SSIM SSIMρ SSIMcos FSIM
awgn 0.811 0.810 0.829 0.857

Diff noise in color 0.803 0.801 0.827 0.851
Spat. corr. noise 0.815 0.827 0.837 0.848

Masked noise 0.779 0.788 0.811 0.802
High freq. noise 0.873 0.875 0.888 0.909
Impulse noise 0.673 0.643 0.628 0.746
Quantization 0.853 0.857 0.881 0.855

Blur 0.954 0.957 0.959 0.947
Image den. 0.953 0.953 0.962 0.960

JPEG 0.925 0.917 0.929 0.928
JP2K 0.962 0.964 0.966 0.977

JPEG trans. 0.868 0.867 0.887 0.871
JP2K trans. 0.858 0.854 0.866 0.854

Non ecc. patt. noise 0.711 0.712 0.763 0.750
Local block. dist. 0.846 0.818 0.823 0.850

Mean shift 0.723 0.728 0.734 0.670
Contrast change 0.525 0.615 0.574 0.65

Table 2. Comparison of SCC provided by SSIM, SSIMρ,
SSIMcos and FSIM [19] for each degradation kind in TID
database (the best results are in bold).

section, pooling weights in eqs. (1) and (2) have been derived
from the degraded image and not from the original image in
order to be more sensitive to the unnatural elements intro-
duced by the distortion. In fact, as shown in the rightmost
part of Table 1, by estimating the pooling weights directly
in the original image, the correlation of the proposed image

quality metrics (SSIMρ and SSIMcos) with MOS still in-
creases with respect to the conventional SSIM, but the incre-
ment is smaller than the one provided by the estimation of the
pooling weights directly in the degraded image. Table 3 com-

DB SSIMcos PF-SSIM (MS) IW-SSIM
PCC TID 0.835 – 0.858

LIVE 0.954 0.955 0.952
SCC TID 0.838 – 0.856

LIVE 0.958 0.947 0.957

Table 3. Comparison of SSIMcos with the multiscale ver-
sion of PF-SSIM [10] and IW-SSIM [17] in terms of PCC
and SCC on TID and LIVE databases.

pares the correlation with MOS of SSIMcos and two repre-
sentative existing and high performance IQA metrics, namely
the percentile-fixations SSIM (PF-SSIM) [10] and the infor-
mation content weighting SSIM (IW-SSIM) [17]. As it can
be observed, the proposed IQA measure has similar perfor-
mance of PF-SSIM, which reflects some mechanisms of vi-
sion but depends on parameters that are heuristically fixed.
With regard to IW-SSIM, the proposed metric has compara-
ble performance on LIVE database, while it is slightly inferior
on TID database. It is worth mentioning that the success of
IW-SSIM is due to the effective but expensive combination
of several proven useful approaches in IQA research, such
as multiscale image decomposition followed by scale-variant
weighting, SSIM-based local quality measurement, and infor-
mation theoretic analysis of visual information content and
fidelity. On the contrary, the computation of the correlation
coefficients in SSIMρ or in SSIMcos requires a convolution
with a linear filter on the squared luminance and contrast im-
ages, that, in turn, can be obtained using a simple convolution.
This additional computational cost is only moderate. The lat-
ter point is not trivial for the actual use of pooled IQA metrics
in real time processing, especially the ones involving a huge
quantity of data.

4. FUTURE WORK

The current work represents an initial study concerning the
use of the relation between luminance mean and contrast in
weighting image information. In the future, more investi-
gations are needed about the relationship between these two
measures and on what is the best way to quantify it. A pos-
sibile way could be to investigate more on the relationship of
the correlation coefficient with the mutual information and/or
on the significance of the cosine correlation and its depen-
dence on the ratio ‖ ∗ ‖1/‖ ∗ ‖2. Finally, the present study
only uses SSIM as the base IQA metric due to its natural de-
pendence on the two main measures that human eye computes
during the observation process of an image. Future research
will also apply the proposed pooling weights on other image
quality assessment metrics.
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