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ABSTRACT

Recently, there are two interesting trends in image and video
coding research. One is to use human visua system (HVS)
models to improve the current state-of-the-art coding algorithms
by better exploiting the properties of the intended receiver. The
other is to design rate scalable video codecs, which alow the
extraction of coded visual information at continuously varying
bit rates from a single compressed bitstream. In this paper, we
follow these two trends and propose a foveation scalable video
coding (FSVC) agorithm, which supplies good qudlity-
compression performance as well as effective rate scalability to
support simple and precise bit rate control. A foveation-based
HV'S model plays a key role in the algorithm. The algorithm is
amenable to the inclusion of various HV'S models and adaptable
to different video communication applications.

1. INTRODUCTION

A successful image and video coding agorithm delivers a good
tradeoff between visual quality and other coding performance
measures, such as compression, complexity, scalability,
robustness, and security. Currently, peak-signa-to-noise-ratio
(PSNR) is still widely employed to test image and video quality.
However, it is well accepted that perceived image and video
quality does not correlate well with PSNR. Human visual system
(HVS) characteristics must be considered [1, 2]. Although the
current understanding of the HV S is till insufficient to provide a
precise, generic and robust agorithm to measure perceived
image and video quality in all circumstances, it is believed that
an appropriate HVS model that takes advantage of some well-
understood HV S features can significantly help to improve the
current state-of-the-art coding techniques.

Rate scalable coding agorithms dlow the extraction of
coded visua information at continuously varying data rates from
a single compressed bitstream. This feature is especially suited
for video transmission over heterogeneous, multi-user, time-
varying and interactive networks such as the Internet. For
example, in order to provide video services over the Internet, the
video server must have the ability to create variable bandwidth
video streams to meet different user requirements. The
traditional solutions, such as layered video, video transcoding,
and simply repeated encoding, require more resources in terms
of computation, storage space and/or data management. More

This research is partially supported by IBM Corporation, Texas
Instrument, Inc., and Texas Advanced Technology Program.

importantly, they lack the flexibility to adapt to the time-varying
network conditions and user requirements, because once the
compressed video stream is generated, it becomes inconvenient
to change it to an arbitrary data rate. In contrast, with a rate
scalable codec, we can tightly couple the available bandwidth
and the data rate of the video being delivered. Recently, a class
of embedded coding agorithms has received great attention. The
well-known agorithms include the embedded zero tree wavelet
(EZW) dgorithm [3], and the set partitioning in hierarchical
trees (SPIHT) agorithm [4]. Embedded wavelet coding not only
provides good coding performance, but also has the property of
rate scalability. Many recent image and video coding algorithms
are devel oped based on the idea originated from EZW.

In this paper, we propose a new wavelet-based video coding
technique called foveation scalable video coding (FSVC), which
is a highly rate scalable video coding method that attempts to
optimize visual quality at arbitrary bit rate within the bandwidth
range. A foveation-based HVS model is a the core of the
algorithm, which is used for multiple purposes including
adaptive importance weighting of the wavelet coefficients and
adaptive frame prediction for motion compensation.

2. GENERAL FRAMEWORK

Similar to many other video coding agorithms, FSVC first
divides the input video sequence into groups of pictures (GOPs).
Each GOP has one intra coding frame (I frame) at the beginning
and the rest are predictive coding frames (P frames). Fig. 1 gives
the general framework for the encoding of | and P frames.

The encoding of the | frame is equivalent to the encoding of
a still image. The method is based on our algorithm introduced
in [5]. We first apply the discrete wavelet transform (DWT) to
the image and obtain the wavelet coefficients. A foveation-baesd
HVS model is employed to determine the visual importance of
the wavelet coefficients and to give each wavelet coefficient an
important weighting value, which is then used to weight the
wavelet coefficient. An embedded encoding agorithm is
employed to generate the rate scalable bitstream.

In the encoding of the P frames, motion estimation (ME) and
motion compensation (MC) techniques are employed to exploit
tempora redundancy. Frame prediction plays an important role
in ME/MC based agorithm. Different from previous agorithms,
FSV C uses two instead of one version of the previous frames to
do the prediction. One is the origina previous frame. The other
is a feedback base-rate decoded version of the previous frame.
The combination is based on the foveation weighting model.

The HV'S modeling methods are different for | frames and P
frames. During the encoding process, a rate control algorithm is



used to alocate bits to each frame. The allocation is determined
by the available bandwidth, the user requirements, the HVS
modeling and the frame prediction error.

3. FOVEATION-BASED HVS M ODEL
3.1 Foveated Visual Sensitivity M odel

Let us first examine the anatomy of the early vision system.
The light first passes through the optics of the eye and is then
sampled by the photoreceptors (cones and rods) on the retina.
The cone receptor distribution is highly non-uniform. The
photoreceptors deliver data to the bipolar cells, which in turn
supply information to the ganglion cells, which aso have a
highly non-uniform distribution. The variation of the densities of
photoreceptors and ganglion cells with eccentricity is shown in
Fig. 2.

The densities of cones and ganglion cells play important
roles in determining the ability of our eyes to resolve what we
see. Psychovisua experiments had be conducted to measure the
contrast sensitivity as a function of retinal eccentricity. In [6],
the model that fits the experimenta datais given by

CT(f,e) =CT, expEm e?% @
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where f is the spatia frequency (cycles/degree), e is the retina
eccentricity (degrees), CT, is a constant minima contrast
threshold, o is the spatia frequency decay constant, e, is the
half-resolution eccentricity, and CT(f, €) is the visible contrast
threshold as a function of f and e. The best fitting parameter
values givenin [6] are a = 0.106, e, = 2.3, and CT, = 1/64. The
contrast sensitivity is defined as:
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For a given e, equation (1) can be used to find its critical
frequency or so caled cutoff frequency f. by setting CT to 1.0
(the maximum possible contrast) and solving for e
¢ = &INWCTy) (cycles/degree). ©)
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Given apixel x in an N pixels wide image, its distance from the
foveation point x; isd(x) = || x —x||» (pixels) and its eccentricity
is given by e(v,x) = tan‘l(d(x)/ Nv), where v is the viewing
distance in image width. The maximum perceived resolution is
also limited by the display resolution r = 7Nv/180 (pixels/
degree). The Nyquist display frequency is given by fy = r/2
(cycles/degree). Combining this with (3), the cutoff frequency
for X is f(x) = min(fy(d(x)), fs). We define the foveation-based

error sensitivity as:
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Many other HV'S features are also related to perceived video
quality. We are especidly interested in the foveation feature not
only because it is a very promising feature to effectively remove
information redundancy from periphera regions, but aso
because it makes it possible to establish a generalized foveation-
based framework to embrace the other HV'S features.

3.2 Foveation Poaint(s) Selection

Psychological experiments show that statistically, the human
eyes fixation points are very non-uniformly distributed [7, 8].
Depending on the applications, foveation point(s) selection can

be done by an automatic or an interactive method. We are
interested in the automatic method in this paper. Although only
one foveation point exists at one time for one human observer, it
is necessary to alow multiple foveation points, because there
may exist multiple points that have a high possibility of
attracting attention and there may be multiple observers at the
sametime. It is also reasonable to allocate foveation points at the
areas where the HV Sis very sensitive to errors. Thisis actualy a
generalization of the foveation concept.

In FSVC, we partition the whole picture into blocks. The
candidate foveation points are the centers of al these blocks. For
I frames, we first determine the regions of interest (ROIls) and
put foveation points inside those regions. Specifically, we regard
the face regions as the ROIs and use a face detection agorithm
similar to that in [9] to find faces. The light adaptation feature of
the HVS is also considered. For P frames, the foveation points
are chosen in the regions where the prediction errors are larger
than a threshold. We care more about the ROIs and use a smaller
prediction error threshold there. Examples are given in Fig. 5.

3.3 HVS-Based Weighting Model in the DWT Domain

In embedded wavelet image coding, a multilevel 2-D DWT is
applied to decompose the origina image into subbands. A
typical DWT decomposition structure is shown in Fig. 3(a). We
use (A, 6 to denote the subband at decomposition level A and
orientation 6, where @can beLL, LH, HH, or HL. Our agorithm
assigns each wavelet coefficient an importance weight. The
embedded coding agorithm is then applied to the weighted
wavelet coefficients, so that the visually important coefficients
and bits are encoded and transmitted earlier.

The wavelet coefficients at different subbands supply
information regarding variable perceptual importance. In [10],
the visual sensitivity is measured in wavelet decompositions. We
define the error sensitivity at subband (4, 6) as:

S.(A.0)=1T,, 5
where T, 4 is the error detection threshold at subband (A,6) as
given in [10]. Within each wavelet subband, we first find its
corresponding foveation point. For a given coefficient at position
X, residing in subband (4, 6), it is easy to calculate its equivalent
distance d, «x) from the foveation point in the spatial domain.
Given the spatial frequency of the subband f = r2™ [10],

S (v, f,X) =S, (v,r27,d, 4(X))- ©)

A foveation-based HVS error sensitivity model in the DWT
domain is obtained by combining (5) and (6):

sw.x) =[S,AL0% s, (vr27 d,, ) D

where 5 and 3, are parameters used to control the magnitudes
of Sy and S, respectively. If we have P (P>1) fovesation points,
we calculate S(v,x) for i =1, 2, ..., P. The error sensitivity is
then given by S(v,x) = max[S(v,x)].

In practice, v is unknown to us. In order to assign each
coefficient a fixed weight, we assume a probability distribution
p(v) [5] of the viewing distance and the weighting is given by

W(x) = [ p()S(v, X)dv (8)

Fig. 3(b) gives an example of the weighting model, where a
circular foveation region is located around the face region.
Applying this model to the “Zelda’ image, we obtain the results
given in Fig. 4. Examples of the | frame and P frame foveation-
based HV S weighting are shown in Fig. 5.



4. IMPLEMENTATION

The dynamic range of the wavelet coefficients is largely
expanded after weighting. This makes the origina EZW and
SPIHT encoding less efficient. Therefore, we use a modified
SPIHT algorithm [5] to do the embedded encoding.

Frame prediction plays an important role in ME/MC based
video coding. This task is more challenging in rate scalable
video coding than in fixed-rate coding, because the decoding bit
rate is unknown to the encoder. A simple method is to use the
original motion compensated frame as the prediction, but this
leads to poor prediction and the errors will propagate to the
following frames. Another method [11] is to use a low base bit
rate decoded and motion compensated frame as the prediction.
This method avoids the significant error propagation problem.
However, large prediction errors occur when the decoding bit
rate is much higher than the base bit rate. We use a new method
in FSVC, where the original motion compensated frame and the
base bit rate motion compensated frame are combined to make
the prediction. The combination is based on the foveation-based
weighting model. For the regions around the foveation points,
more weight is given to the base bit rate motion compensated
reference frames, while for the regions far from the foveation
points, more weight is given to the high quality motion
compensated reference frames. By using the new algorithm,
error propagation becomes small, while at the same time, better
frame prediction is achieved, which leads to smaller prediction
error and better compression performance. More details about
the new frame prediction method are given in [12].

We tested our algorithm on CIF size, YCbCr 4:2:0 format
video sequences. For general video seguences, comparable
visuad quality to MPEG and H.263 codecs is obtained at
500Kbps or higher rates. For face video sequences such as
‘News', enhanced visual qudlity is achieved.

5. CONCLUSION

We propose a new video coding scheme called FSVC, which
combines a foveation-based HVS model with the embedded
wavelet coding technique, so that the output bits are ordered
according to visua importance. FSVC can easily adapt to
various HV'S models. It has many potential applications, such as
knowledge-based video coding, and video transmission over
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Fig. 1 General framework of the FSV C encoding system.
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Fig. 3 (d) The DWT decomposition structure; (b) Fig. 4 Foveated rate scalable compression results of “Zelda” image

Foveation-based HVS weighting model in the (Upper-left, 512x512, 8bity/pixel) using the weighting model in Fig.

DWT domain. 3(b). The compression ratios are 1024:1 (Upper-right), 256:1 (Lower-
left) and 32:1 (Lower-right), respectively.

MPEG4 N\ 2068 + +-
WORLD o

MPEG4
WORLD

i U 2
Fig. 5 | frame and P frame foveation point selection results and DWT domain weighting models. Upper-left: an | frame; Bottom-

left: a P frame; Upper-center: Selected foveation points for the | frame; Bottom-right: Selected foveation points for the P frame;
Upper-right: DWT domain weighting model for the | frame; Bottom-right: DWT domain weighting model for the P frame.



