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ABSTRACT

Sharpness is one of the most determining factors in the per-
ceptual assessment of image quality. Objective image sharp-
ness measures may play important roles in the design and op-
timization of visual perception-based auto-focus systems and
image enhancement, restoration and compression algorithms.
Here we propose a new sharpness measure where sharpness
is identified as strong local phase coherence evaluated in the
complex wavelet transform domain. Our test using the LIVE
blur database shows that the proposed algorithm correlates
well with subjective quality evaluations. An additional ad-
vantage of our approach is that other image distortions such
as compression, median filtering and noise contamination that
may affect perceptual sharpness can also be detected.

Index Terms— perceptual image quality, image sharp-
ness, image blur, no-reference image quality assessment, lo-
cal phase coherence, complex wavelet transform

1. INTRODUCTION

Humans are the ultimate consumers of almost all image and
video products, but subjective image quality assessment is of-
ten costly, slow and difficult to be integrated into real-time
image processing systems. Recently there has arisen an in-
creasing need to develop objective visual quality measures
that can automatically predict perceived image quality [1].
Many image quality measures require access to a distortion-
free reference image, but in many real-world scenarios, the
reference image does not exist or is unavailable. It is there-
fore important to develop no-reference measures that do not
use any information about the reference image.

This work focuses on no-reference assessment of image
sharpness, which is one of the most determining aspects of
perceived image quality and can be affected by many types
of image distortions. The most common ones are out-of-
focus and motion blur, but other image distortions such as
lossy compression, de-noising filtering, median filtering, and
even noise contamination, could also affect perceived sharp-
ness. The application scope of perceptual sharpness measures
is beyond evaluating image quality, as they can be employed

as design and optimization criteria in the development of vi-
sual perception-based auto-focus systems and image enhance-
ment, restoration and compression algorithms.

In the literature, sharpness assessment is often equated
with blurriness evaluation, as blur is the most common cause
of the degradation of image sharpness. Both spatial and fre-
quency transform domain methods have been proposed [2].
Spatial domain algorithms often rely on detecting the varia-
tions of global or local statistical features such as variance,
autocorrelation, kurtosis, derivative energy and edge spread.
Transform domain methods are mostly based on the fact that
blur leads to energy attenuation at high spatial frequencies.
The global or local frequency energy falloff can then be mea-
sured in different ways to identify image blur. An excellent
review of many existing no-reference sharpness/blurriness
metrics can be found in [2], where a spatial domain sharpness
metric based on a novel concept of just-noticeable-blur (JNB)
was proposed.

Following the idea in [3], here we examine image sharp-
ness from a different perspective − local phase coherence
(LPC), which states that the phases of complex wavelet co-
efficients exhibit a consistent relationship across scales in
the vicinity of sharp image features, such as edges and lines.
Specifically, we propose a new measure in this paper to quan-
tify the degree of LPC at each spatial location. The LPC
relationship is disrupted by a variety of image distortions that
affect perceived sharpness, thus our measure can be used for
sharpness assessment. Since our approach does not assume
energy attenuation of high frequency components, it, to some
extent, decouples sharpness and blurriness assessment. This
distinguishes it from all existing transform domain methods.

2. LOCAL PHASE COHERENCE

The concept of local phase coherence can be better explained
in one dimension. Given a signal f(x) localized near the po-
sition x0 where f(x) = f0(x−x0), its wavelet transform can
be written as:

F (s, p) =

∫
f(x)w∗s,p(x)dx =

[
f(x) ∗ 1√

s
g
(x
s

)
eωcx/s

]
x=p

(1)
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Fig. 1. (a) Local phase coherence of localized sharp feature
at x0; (b) 2D sampling grid of wavelet coefficients.

where s ∈ R+ is the scale factor, p ∈ R is the translation
factor and the family of wavelets ws,p(x) is derived from the
mother wavelet w(x) = g(x) ejωcx (with center frequency ωc

and a slowly varying and symmetric envelop function g(x)):

ws,p(x) =
1√
s
w
(x− p

s

)
=

1√
s
g
(x− p

s

)
eωc(x−p)/s . (2)

Using the convolution theorem, and the shifting and scaling
properties of Fourier transform, Eq. (1) can be written as

F (s, p)=
1

2π
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−∞
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jω(p−x0)/sdω , (3)

where F (ω), F0(ω) and G(ω) are the Fourier transforms of
f(x), f0(x) and g(x), respectively. The phase of F (s, p) de-
pends on the nature of F0(ω). If F0(ω) is scale invariant,
meaning that F0(ω/s) = K(s)F0(ω), where K(s) is a real
function of only s, but independent of ω, then we have

F (s, p) =
K(s)√
s
F (1, x0 +

p− x0

s
) . (4)

Analytically, the only type of scale-invariant continuous-
spectrum signal follows a power law: F0(ω) = K0 ω

P . In
the spatial domain, the functions f0(x) that satisfy this condi-
tion includes the step function and its derivatives, which are
precisely localized in space. Because K(s) and s are both
real, we obtain

Φ(F (s, p)) = Φ(F (1, x0 +
p− x0

s
)) . (5)

Eq. (5) suggests a strong phase coherence relationship across
scale and space, where equal-phase contours in the (s, p)
plane form straight lines (defined by x0 + (p − x0)/s = C,
where C can be any constant) that converge exactly at the
location of the feature x0, as illustrated in Fig. 1(a).

The above results can be extended for two-dimensional
signals or images [3], where the fine-scale coefficients can

be well predicted from their coarser-scale neighboring coef-
ficients, provided that the local phase satisfies the phase co-
herence relationship defined in Eq. (5). In the case that the
positions of the neighboring complex wavelet coefficients are
aligned as in Fig. 1(b), the phases of the finest scale coef-
ficients Φ̂({cij}) (for i, j = 1, ..., 4) can be predicted from
coarser scale coefficients {a, b11, b12, b21, b22} [3].

3. IMAGE SHARPNESS INDEX

Given an input image whose sharpness is to be evaluated, the
proposed algorithm starts by constructing a spatially varying
local phase coherence (LPC) map. The input image is decom-
posed into multi-orientation 3-scale subbands using the com-
plex version of the steerable pyramid decomposition [4, 5].
We define a measure of LPC as

Pi =

∑L
l=1 |ci,l| cos

(
Φ ({ci,l})− Φ̂ ({ci,l})

)
∑L

l=1 |ci,l|+K
, (6)

whereL is the number of orientations in the steerable pyramid
decomposition, Φ ({ci,l}) is the phase of the i-th coefficient
in the finest subband of the l-th orientation, Φ̂ ({ci,l}) is the
corresponding predicted phase, and K is a positive constant
to avoid instability at small energy regions. This measure
achieves the maximal value (capped by 1) when the phase
prediction (and thus local phase coherence) is perfect. This is
expected to occur in the vicinity of sharp image features such
as ideal step edges. The measure is weighted by the magni-
tudes of the coefficients over orientations, so that the orienta-
tions that contain more energy are given higher importance.
Figure 2(a) shows a natural image and its LPC map. It can be
seen that the LPC measure responds strongly to sharp image
structures around the central foreground region but weakly
to the background out-of-focus regions. When the image is
blurred as in Fig. 2(b), the strength of local phase coherence
is reduced. Interestingly, slight reduction of LPC is also ob-
served in the sharp regions when the image is contaminated
by noise, as illustrated in Fig. 2(c).

In order to provide an overall evaluation about the sharp-
ness of the image, we need to pool the LPC map into a single
number of sharpness index. An interesting effect of subjective
sharpness assessment is that humans tend to make their judg-
ment based on the sharpest region in the image. For example,
Fig. 2(a) is typically rated as a sharp image due to the sharp
foreground region, regardless of the out-of-focus background
area that appears to be very blurred. Such an effect suggests
that pooling the LPC map by simple averaging would not re-
sult in a good overall metric, and a mechanism is necessary to
put more emphasis on the sharpest regions in the image. Here
we propose a weighted averaging method based on ranked
LPC values: Let {Pi|i = 1, 2, · · · , N} be a collection of LPC
values in the LPC map, and let {P(i)|i = 1, 2, · · · , N} denote
the sorted LPC values such that P(1) ≤ P(2) ≤ · · · ≤ P(N).



Fig. 2. Sample images and their LPC maps. (a) original im-
age; (b) Blurred image; (c) noise contaminated image.

Then the overall image sharpness index (SI) is defined as

SI =
∑N

i=1Wi P(i)∑N
i=1Wi

, (7)

whereWi is the weight assigned to the i-th ranked LPC value.
Wi is given by

Wi = exp
[
−
(

1− i

N

)/
β

]
, (8)

which gives the highest LPC value a weight of 1. The weight
decays exponentially as the rank goes down, and the speed of
decaying is controlled by the parameter β.

A practical issue in the implementation of the proposed al-
gorithm is that the LPC values computed near the four bound-
aries of the image are often significantly affected by these
boundaries. This is largely due to the wide spread of the
steerable pyramid filters. To avoid such boundary effects, we
crop the boundary parts (by B pixels on each size of the four
boundaries) of the LPC map and only use the central part to
compute the SI. In all the experimental results reported in this
paper, the parameters are set as L = 4, K = 20, β = 0.0001,
and B = 64.

Fig. 3. Scatter plot of mean opinion score (MOS) versus
SI model prediction of the blurred image dataset in LIVE
database. Each data point represents one test image.

4. EXPERIMENTS

We first test the proposed sharpness index using the blur
dataset in the publicly available LIVE database [6]. The
dataset contains 174 images, including 145 blurred (using
Gaussian filter of different sizes) and 29 reference images
without blur. All images are rated by 20-25 subjects. For
each image, the mean opinion score (MOS) and the standard
deviation between subjective scores were recorded. Four met-
rics are computed for performance evaluation: 1) Spearman
rank-order correlation coefficient (SROCC); 2) Pearson cor-
relation coefficient (CC) after a nonlinear modified logistic
mapping between the subjective and objective scores [6]; 3)
Mean absolute error (MAE) between the true MOS and the
model prediction of MOS; 4) Outlier ratio (OR), defined as
the percentage of predictions outside the range of ±2 stan-
dard deviations between subjective scores. Figure 3 shows
the scatter plot between the objective and subjective scores
together with the nonlinear fitting function. The quantita-
tive evaluation results are given in Table 1, where the results
are reported for two cases: full dataset (all 174 images) and
blurred images only (145 images). The high SROCC and
CC scores and low MAE and OR values indicate the high
prediction accuracy, monotonicity and consistency of the
proposed sharpness index. Comparisons with state-of-the-art
JNB [2] and gradient-based [7] methods also demonstrates
the superior performance of the proposed approach.

In the second experiment, we examine how the proposed
sharpness index behaves when applied to a much wider range
of image distortion types. In Fig. 4, we show a set of im-
ages, including an original sharp image, a noise contaminated
image, a JPEG compressed image, a JPEG2000 compres-
sion image, a median filtered image and a Gaussian blurred
image. By visual inspection, all distorted images exhibit
certain degradations of perceptual sharpness, but to very



Table 1. Performance evaluation using LIVE blur dataset [6]
Model Images SROCC CC MAE OR

JNB [2] full set 0.8344 0.8497 6.9332 0.1322
Gradient [7] full set 0.7625 0.8073 8.1892 0.2126

proposed full set 0.9526 0.9439 4.3375 0.0460
JNB [2] blurred 0.7821 0.8130 7.1118 0.1310

Gradient [7] blurred 0.7147 0.7849 7.8900 0.1862
proposed blurred 0.9368 0.9239 4.7681 0.0483

different degrees. Specifically, noise contamination indeed
boosts the energy at high spatial frequencies (it also boosts
low-frequency energy, but is negligible given the high power
at low-frequencies in natural images), but still causes slight
degradation of perceived sharpness. The block-DCT based
JPEG compression reduces high-frequency energy within
blocks, but create artificial high-frequencies at the block
boundaries. Compared with JPEG, JPEG2000 compression
avoids blocking effect, but looks more blurry. Both median
and Gaussian filters strongly blur the image, but median filters
are much better at preserving edges, and thus the image looks
less blurry. Interestingly, the proposed sharpness index seems
to correlate very well with our observations in all cases.

5. CONCLUSIONS

We propose a complex wavelet transform domain local phase
coherence-based method for no-reference image sharpness
assessment. Tests using the blur dataset in the LIVE database
show that the proposed measure is well correlated with sub-
jective scores. Perhaps the most distinguishing feature of
the proposed approach from most existing methods is that
it decouples sharpness and blurriness assessment. Instead
of associating sharpness reduction with a blurring process,
the degradation of sharpness is identified as the loss of local
phase coherence. This leads to a novel sharpness measure
that seems to respond reasonably to a much broader range of
image distortion types, including compression, median filter-
ing and noise contamination, which may or may not cause
energy reduction at high spatial frequencies.
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