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ABSTRACT

Reduced-reference (RR) video quality measures aim to predict the
perceptual quality of distorted video signals using only partial infor-
mation about the reference video. Existing RR video quality assess-
ment models are mostly designed and/or trained for specific appli-
cations such as lossy compression, where the detectable distortion
types are often fixed and limited. Here we propose a novel approach
that measures temporal motion smoothness of a video sequence by
examining the temporal variations of local phase structures in the
complex wavelet transform domain. We show that the proposed
measure can detect a wide range of well-known practical distortions,
including noise contamination, blurring, line or frame jittering, and
frame dropping. In addition, the proposed algorithm does not require
a costly motion estimation process and has a low RR data rate, mak-
ing it much easier to be adopted in real-world visual communication
applications.

Index Terms— perceptual image quality, temporal motion
smoothness, reduced-reference video quality assessment, complex
wavelet transform, local phase correlation, video jittering, video
frame dropping

1. INTRODUCTION

Objective video quality assessment models typically require the ac-
cess to the reference video that is assumed to have perfect quality.
In practical visual communication applications, such full-reference
(FR) methods may not be applicable because the reference video are
unavailable [1]. On the other hand, no-reference (NR) video quality
assessment is extremely difficult, especially when the types of dis-
tortions between senders and receivers are unknown [1]. Reduced-
reference (RR) video quality measures provide a solution that lies
between FR and NR models. They are designed to evaluate the vi-
sual quality of the distorted video with only partial information about
the reference video.

The most challenging task in the design of RR video quality
measures is to find appropriate RR features that 1) provide an effi-
cient summary of the reference video; 2) are sensitive to the targeted
types of video distortions; 3) are relevant to the perceptual character-
istics of the human visual system; and 4) have relatively low data rate
(so that they do not add too much burden to the visual communica-
tion systems that need to transmit the RR features) [2]. Most existing
RR video quality models are developed and trained for specific ap-
plications such as lossy compression [1]. This makes the design task
easier because the distortion types are known and fixed. Meanwhile,
it also significantly limits their application scope.

In this paper, we are interested in discovering novel RR features
that can capture video quality degradations caused by a wide variety
of practical distortions, especially those related to motion (because

the capability of representing motion is probably the most critical
feature that distinguishes video from still images). In particular, we
develop a novel method to quantify the temporal motion smoothness
[3] of video sequences, which is affected by many types of distor-
tions commonly encountered in real-world video acquisition, com-
munication and processing systems, including noise contamination,
blurring, frame jittering and frame dropping.

2. TEMPORAL MOTION SMOOTHNESS

Let f(x) be a given real static signal, where x is the index of spatial
position. When f(x) represents an image, x is a 2-D vector. For
simplicity, in the derivations below, we assume x to be one dimen-
sional. However, the results can be easily generalized to two and
higher dimensions. A time varying image sequence can be created
from the static image f(x) with rigid motion and constant variations
of average intensity:

h(x, t) = f(x+ u(t)) + b(t) . (1)

Here b(t) is real and accounts for the time-varying background lu-
minance changes, and u(t) indicates how the image positions move
spatially as a function of time. We call the motionN -th order smooth
if the (N + 1)-th and higher order derivatives of u(t) with respect to
t are all zeros [3].

Now consider a family of symmetric complex wavelets whose
“mother wavelets” can be written as a modulation of a low-pass
filter w(x)= g(x) ejωcx, where ωc is the center frequency of the
modulated band-pass filter, and g(x) is a slowly varying and sym-
metric function. The family of wavelets are dilated/contracted and
translated versions of the mother wavelet: ws,p(x) = 1√

s
w
(
x−p
s

)
,

where s ∈ R+ is the scale factor, and p ∈ R is the translation factor.
Using the convolution theorem and the scaling and modulation prop-
erties of the Fourier transform, we can compute the complex wavelet
transform of f(x) as

F (s, p) =

∫ ∞
−∞

f(x)w∗s,p(x) dx

=
1

2π

∫ ∞
−∞

F (ω)
√
sG(s ω − ωc) ejωp dω , (2)

where F (ω) and G(ω) are the Fourier transforms of f(x) and g(x),
respectively. Applying such a complex wavelet transform to both
sides of Eq. (1) at time instance t, we have

H(s, p, t) =
1

2π

∫ ∞
−∞

F (ω)
√
sG(s ω − ωc) ejω(p+u(t)) dω

≈ F (s, p) ej(ωc/s)u(t) . (3)
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Here b(t) is eliminated because of the bandpass nature of the wavelet
filters. The approximation is valid when the envelope g(t) is slowly
varying and the motion u(t) is small. A more convenient way to
understand Eq. (3) is to take a logarithm on both sides, which gives

logH(s, p, t) ≈ logF (s, p) + j(ωc/s)u(t) . (4)

The key point here is that at a given scale s and a given spatial po-
sition p, the imaginary part of the logarithm of the complex wavelet
coefficient changes linearly with u(t). In other words, the local
phase structures over time can be fully characterized by the move-
ment function u(t).

In order to relate temporal motion smoothness with the time-
varying complex wavelet transform relationship, we must examine
the complex wavelet coefficients at multiple time instances. A con-
venient choice is to start from a time instance t0 and sample the
sequence at consecutive time steps t0 + n∆t for n = 0, 1, ..., N .
We define the N -th order temporal correlation function as [3]

LN (s, p) =
N∑
n=0

(−1)n+N

(
N

n

)
logH(s, p, t0 + n∆t) . (5)

When the motion is (N -1)-th order smooth, i.e., u(N)(t0) = 0, then
it can be derived that LN (s, p) ≈ 0 [3]. It needs to be kept in mind
that this approximation is achieved based on the ideal formulation of
Eq. (1) and the ideal assumption of (N -1)-th order temporal motion
smoothness. Real natural image sequences are expected to deviate
from these assumptions. However, by looking at the statistics of
the imaginary part of LN (s, p), one may be able to quantify such
deviation and use it as an indicator of temporal motion smoothness.

As a counterpart of the temporal correlation function LN (s, p),
we can also define a temporal energy function

MN (s, p) =

N∑
n=0

(
N

n

)
logH(s, p, t0 + n∆t) , (6)

which is useful for us to observe the strength of temporal motion
smoothness as a function of local energy. An example of the imag-
inary part of LN (s, p) conditioned on the real part of MN (s, p) is
shown in Fig. 1(a), where each column in the 2-D histogram is nor-
malized to one. The conditional histogram shows strong temporal
motion smoothness (when the values of imag{L2(s, p)} are close
to zero), and such a statistical regularity becomes stronger with the
increase of local signal strength (as the width of the column in the 2D
histogram becomes narrower). This is not surprising because small
magnitude coefficients typically come from the smooth background
regions in an image and are easily disturbed by background noise.

3. RR VIDEO QUALITY ASSESSMENT

A full RR video quality assessment system consists of three mod-
ules: 1) RR feature extraction at the sender side; 2) Transmission of
RR features from the sender to the receiver (may through an auxil-
iary channel [1] or through the same channel as video transmission
[2, 4]); 3) Feature extraction and quality evaluation of the distorted
video at the receiver side. This section focuses on the first and the
third modules.

At the sender side, the given reference video sequence is first
divided into groups of pictures (GOPs), each containing three con-
secutive frames. For each GOP, all three frames were decomposed
using the complex version [5] of the steerable pyramid [6], an over-
complete wavelet transform that avoids aliasing in subbands. The

Fig. 1. (a) Conditional histogram of imag{L2(s, p)} versus
real{M2(s, p)} of a natural video sequence; (b) Variation of cir-
cular variance and the best fourth order polynomial fitting.

second order temporal correlation and temporal energy functions
L2(s, p) and M2(s, p) are then computed for each subband. Instead
of using the marginal histogram of imag{L2(s, p)} to quantify
temporal motion smoothness (as in [3]), here we extract RR fea-
tures based on the conditional histogram of imag{L2(s, p)} versus
real{M2(s, p)}. The reason behind this choice is that temporal mo-
tion smoothness is much stronger at high energy coefficients (as can
be seen in Fig. 1(a)), but marginal histogram of imag{L2(s, p)}
cannot distinguish such differences and takes all coefficients into
equal account. Furthermore, the trend of how temporal motion
smoothness varies with the increase of local signal energy provides
additional information that can help characterize the reference video.
Specifically, we use the circular variance (CV) [7] of each column
in the conditional histogram to quantify the spread of the angle
variables. For each column, the circular variance is computed as

CV = 1−

∣∣∣∑M
i=1 hie

jθi

∣∣∣∑M
i=1 hi

, (7)

whereM is the total number of histogram bins, and hi and θi are the
height and center angle of the i-th histogram bin, respectively. The
column CV values computed based on the conditional histogram of
Fig. 1(a) are shown in Fig. 1(b) as a dashed curve, which provides
an adequate description about the variation trend of temporal motion
smoothness. Depending on the application environment, transmit-
ting the CV curve as the RR features to the receiver may not be a
realistic solution because it requires a fairly large RR data rate. To
overcome this problem, we use a parametric model to describe the
CV curve and only send the model parameters to the receiver. In
particular, we find that a fourth order polynomial can very well ap-
proximate a typical CV curve, as demonstrated by the solid fitting
curve in Fig. 1(b). Consequently, only 5 parameters (that uniquely
define the fourth order polynomial) are employed as RR features and
are transmitted to the receiver.

At the receiver side, the distorted video sequence is processed
the same way as at the sender side, i. e., GOP division and com-
plex wavelet signal decomposition, followed by the computation of
the conditional histogram and the CV curve. Meanwhile, the re-
ceived RR features (polynomial parameters) are used to reconstruct
the model CV curve. Finally, we quantify the overall video quality
distortion as

D =

{
1

K

K∑
k=1

[CV (k)− CVmodel(k)]2
}1/2

, (8)



Fig. 2. Left: conditional histograms of Imag{L2(s, p)} versus Real{M2(s, p)} of different distortion types at low, middle and high
distortion levels; Middle: circular variance as a function of Real{M2(s, p)} for the reference video sequence and distorted sequences at
different distortion levels; Right: proposed distortion measure as a function of distortion level. From top to bottom: (a) Gaussian noise
contamination; (b) Gaussian blur; (c) Line jittering; (d) Frame jittering; (e) Frame dropping.



whereK is the total number of columns in the conditional histogram,
and CV (k) and CVmodel(k) are the CV values of the k-th column
of the distorted CV curve and the model CV curve, respectively. Be-
cause the CV values are bounded between 0 and 1, this distortion
measure is also bounded by the same range.

4. EXPERIMENTS

To the best of our knowledge, no existing RR VQA method was de-
signed to evaluate general distortions (most of them are application
specific, for example, for testing video compression only). There
is also a lack of subject-rated video databases that cover general
distortions. Therefore, we test the proposed algorithm using sim-
ulated video with five distortion types at different distortion levels.
These include 1) Gaussian noise contamination, where the distortion
level is defined as the standard deviation of the noise; 2) Gaussian
blur, where the standard deviation of the Gaussian filter size defines
the distrotion level; 3) Line jittering, where each line in a frame is
shifted horizontally by a random number uniformly distributed be-
tween [−S, S], and S defines the jittering level; 4) frame jittering,
where the whole frame is shifted together by a random number uni-
formly distributed between [−S, S]; and 5) frame dropping, which
is simulated by discarding every 1 of N frames and repeating the
previous frame to fill the empty frame, and 12−N defines the distor-
tion level. All distortion types are associated with certain real-world
scenarios. For example, line jittering occurs when two fields of in-
terlaced video signals are not synchronized; frame jittering is often
caused by irregular camera movement such as hand shaking; and
frame dropping usually happens when the bandwidth of a real-time
communication channel drops and some frames have to be discarded
to reduce the bit rate of the video signal being transmitted.

Figure 2 shows the results of the experiment. First, it is in-
teresting to observe that different distortions lead to different
changes to the conditional histogram of imag{L2(s, p)} versus
real{M2(s, p)}. For example, noise contamination and jittering
cause the histogram to spread, but Gaussian blur results in shrinkage
of the histogram (as the energy reduces, especially at high frequen-
cies). The observed changes are well captured by the departure of
the CV curves of the distorted video sequence from the reference CV
curves. Specifically, for each distortion type, the CV curve moves
away from the reference CV curve with the increase of distortion
level. This is further confirmed by computing the overall distortion
measure D, which is monotonically increasing with the distortion
level. From this experiment, we observe that the same objective
distortion measure D works consistently for each individual type of
distortion. This demonstrates the potential of the proposed method
for general-purpose RR video quality assessment, which is different
from most approaches in the literature where ad-hoc features tuned
to specific distortion types (such as blocking and ringing artifacts)
are often used. Another interesting observation is regarding the
frame jittering and frame dropping distortions. Notice that with
these two types of distortions, the quality of each individual frame
remains high quality, and thus frame-by-frame quality assessment
approaches would give high quality scores to the image sequences
undergoing these distortions, but the proposed method can capture
them quite effectively without any specific change to the algorithm.

5. CONCLUSIONS

We propose a complex wavelet transform domain temporal motion
smoothness measure and demonstrate its potential for general-
purpose RR video quality assessment. There are several useful

properties of the proposed algorithm: 1) it is applicable to a wide
range of practical distortion types; 2) it captures relevant motion
characteristics without explicit motion estimation, which often in-
volves a complicated search procedure [8] or requires solving adap-
tive equations at every spatial location [9]; 3) it has a low RR data
rate (only 5 scalar features). All these properties make it an attrac-
tive approach in real-world visual communication applications. For
example, it can be directly adopted in a quality-aware video system
[4].

The current work may be extended in many ways. First, higher-
order temporal correlation functions may be employed to character-
ize the smoothness of higher-order motion (such as acceleration).
Second, appropriate adjustments are needed to accommodate the
cases of scene changes and very large motion (which may be solved
by adopting a multi-scale, coarse-to-fine strategy). Third, temporal
motion smoothness is only one aspect that affects perceived video
quality, other RR features (such as intra-frame statistical features
[2]) may be incorporated under a unified framework to provide a full
solution to the problem of RR video quality assessment.
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