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ABSTRACT

Perceptual image quality assessment (IQA) and sparse signal rep-
resentation have recently emerged as high-impact research topics in
the field of image processing. Here we make one of the first attempts
to incorporate the structural similarity (SSIM) index, a promising
IQA measure, into the framework of optimal sparse signal represen-
tation and approximation. In particular, we introduce a novel image
denoising scheme where a modified orthogonal matching pursuit al-
gorithm is proposed for finding the best sparse coefficient vector in
maximum-SSIM sense for a given set of linearly independent atoms.
Furthermore, a gradient descent algorithm is developed to achieve
SSIM-optimal compromise in combining the input and sparse dic-
tionary reconstructed images. Our experimental results show that
the proposed method achieves better SSIM performance and provide
better visual quality than least square optimal denoising methods.

Index Terms— SSIM-based approximation, image denoising,
sparse representation, structural similarity index, orthogonal match-
ing pursuit

1. INTRODUCTION

Apart from the popularity and ease of use in optimization problems,
mean squared error (MSE) is not the best choice when it comes to
image quality assessment (IQA) and signal approximation tasks [1].
Among the recently proposed IQA approaches, the structural sim-
ilarity (SSIM) index [2] has emerged as a promising measure that
shows superior performance as compared to MSE [1]. The SSIM
index and its extensions have found a wide variety of applications,
ranging from image coding, restoration and fusion, to watermarking
and biometrics [1]. In most existing works, however, SSIM has been
used for quality evaluation and algorithm comparison purposes only.
Much less has been done on using SSIM as an optimization criterion
in the design and optimization of image processing algorithms and
systems [3], [4].

Image denoising is a classical problem of particular interest to
image processing researchers, not only for its practical value, but
also because it provides an excellent test bed for image modeling,
representation and estimation theories. Recently, a highly effec-
tive approach, known as K-SVD, is proposed to tackle this prob-
lem, which obtained state-of-the-art performance [5]. This method
attempts to achieve the best compromise between the distorted noisy
image and the image constructed using sparsity as a prior. The com-
promise is found by minimizing the MSE and maximizing the spar-
sity of the coefficients. Since MSE is employed as an optimization
criterion, the resulting denoised image might not have the best per-
ceptual quality. This motivated us to replace the role of MSE with
SSIM in the framework. To solve this novel optimization problem

is not trivial because SSIM is non-convex in nature. There are two
key problems that have to be resolved before effective SSIM-based
optimization can be done. First, how to optimally decompose an im-
age as a linear combination of basis functions in maximal SSIM, as
opposed to minimal MSE sense. Second, how to estimate the best
compromise between the noisy and sparse dictionary reconstructed
image for maximal SSIM.

We formulate the problem in Section 2 and provide our solu-
tions to issues discussed above in Section 3. Section 4 describes our
approach to denoise the images. Simulation results that prove the va-
lidity of the proposed approach can be found in Section 5 and finally
we conclude in Section 6.

2. PROBLEM FORMULATION

Image denoising in [5] was performed by solving the following op-
timization problem

{&:5,X} = argmin A[|X — Y3
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where Y is the noisy observed image of size VN x v/N, X is the
unknown output denoised image, R;; is an n x N matrix that ex-
tracts the (i5) block from the image of size v/ x /n, ¥ € R"**
is the dictionary with k& > n and a;; is the sparse vector of coeffi-
cients corresponding to the (¢7) block of the image. In Eqn. (1) it is
important to note that the first term demands the proximity between
the noisy image, Y, and the output image X. However, the sec-
ond and the third terms make sure that every patch of the output de-
noised image follow the sparsity prior with bounded error. With the
assumption of known dictionary W, the two unknowns in Eqn. (1)
can be calculated separately by solving the following optimization
problems [5].

duj = argmin pijl|allo + |[Ta — x5, 2
where x;; is (¢7) block of the unknown denoised image X and

X =argmin A|X = Y[3+ ) [[¥ai; - RyX|5. (3)
X
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To incorporate the SSIM index into the optimization process,
Eqns. (2) and (3) are redefined as follows:

&ij = argmin pij)|effo + (1 — S(Pa, xi5)), )
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X = argmax S(W,X)+ AS(X,Y), Q)
x

where S(., .) defines the SSIM measure, W is the image obtained by
averaging the blocks obtained using the sparse coefficients vectors
& calculated by solving optimization problem in Eqn. (4). The use
of 1 — S(.,.) in Eqn. (4) is also motivated by the fact that it is a
variance-normalized Lo distance [6]. Solution to the optimization
problems in Eqns. (4) and (5) is proposed in Section 3.

3. SSIM-BASED APPROXIMATION

This section discusses the solution to the optimization problem in
Eqn. (4). Equation (2) can be solved using Orthogonal Matching
Pursuit (OMP) [7] by including one atom at a time and stopping
when the error || ¥ a;; — Ri; X||3 goes below Trnse = (Co)?. C'is
the noise gain and o is the standard deviation of the noise. We solve
the optimization problem in Eqn. (4) based on the same philosophy.
We gather one atom at a time and stop when SSTM (¥, x;;) goes
above T’ Which is given as follows.
Tmse

P =l g v o ©
where C is the constant originally used in SSIM index expres-
sion [2] and o2 is calculated based on current approximation of
the block given by a := Wa. The set of coefficients @ =
(a1, 2,3, ...,a1) should be calculated such that we get the
best approximation a in terms of SSIM. We search for the stationary
points of the partial derivatives of .S with respect to . The solution
to this problem for orthogonal set of basis is discussed in [6], Here
we aim to solve a more general case of linearly independent atoms.
The L2-based optimal coefficients, {ci}f:l, can be calculated by
solving the following system of equations

k
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SSIM index is
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> represents the inner product.

The expression for
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with pa and py the mean of a and y respectively, oa and oy the
sample variance of a and y respectively, and oy the covariance of
aand y. The constants C'; and C'; are chosen considering the human
visual system perception and to ensure numerical stability of the di-
vision. First, we write the mean, the variance and the covariance of
a in terms of o with n the size of the current block:
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where < - > represents the sample mean. The partial derivatives are
given as follows
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After subtracting the corresponding DC values from all the blocks
in the image, we are interested only in the particular case where the
atoms are made of oscillatory function, i.e. when (1;) = 0, for 1 <
i < k. From logarithmic differentiation of Eqn. (8) combined with
Eqns. (12)-(14), we have
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We equate (15) to zero in order to find the stationary points. The
result is the following linear system of equations

k
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where

5= o2+ 032, + Cs
20 ay + CQ ’

Comparing o with the optimal coefficients in L2 sense denoted by

c and given by Eqn. (7) results in the following solution:
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which implies that the optimal SSIM-based solution is just a scaling
of the optimal £,-based solution. The last step is to find 3. After
substituting the value for «; in the expression for 5 and then isolating
for 8 gives us the following quadratic equation

B*(B — A)+ BCs — oy — C2 =0, (19)
where
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Solving for 5 and picking a positive value for maximal SSIM gives
us

g —C5 ++/C3 +4(B — A)(0Z + C2)
- 2(B - A) '

The solution to the optimization problem in Eqn. (4) is complete
and we have the coefficients a;; to solve the optimization problem in
Eqn. (5). We use gradient-descent approach to solve the optimization
problem in Eqn. (5). The gradient of SSIM expression in Eqn. (8) is
given as follows [8]

(22)
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(23)



Table 1. SSIM and PSNR comparisons of image denoising results

Image Barbara Lena Peppers House
Noise std | 20 25 50 100 20 25 50 100 ‘ 20 25 50 100 20 25 50 100
PSNR comparison (in dB)
Noisy 22.11 20.17 14.15 8.13 |22.11 20.17 14.15 8.13 |22.11 20.17 14.15 8.13 |22.11 20.17 14.15 8.13
K-SVD | 30.85 29.55 2544 21.65|32.38 3132 27.79 24.46 |30.80 29.72 26.10 21.84 | 33.16 32.12 28.08 23.54
Proposed | 30.88 29.53 25.50 21.74 | 32.26 31.28 27.80 24.53 | 30.84 29.84 26.25 21.98 |33.04 32.09 28.13 23.59
SSIM comparison

Noisy 0.593 0.503 0.241 0.084 | 0.531 0.443 0.204 0.074 | 0.529 0.442 0.212 0.076 | 0.452 0.368 0.166 0.057
K-SVD | 0.894 0.859 0.708 0.519 | 0.903 0.877 0.733 0.550 | 0.905 0.883 0.782 0.601 | 0.909 0.890 0.779 0.549
Proposed | 0.906 0.875 0.733 0.526 | 0.913 0.888 0.754 0.573 | 0.913 0.894 0.797 0.627 | 0.915 0.901 0.795 0.574

A1 = 2uxpy + Ch, Ag = 20xy + C,

B1:,UJ,2(+M)2,+C17 BQZU,Q(-FJ)Q,-FCL

where jix, 02 and oy represent, respectively, the sample mean of
the components of x, the sample variance of x, and the sample co-
variance of x and y, and n is the number of pixels in the local image
patch. We follow the gradient for few steps until converging to a
stationary point. We initialize X as the best MSE solution.

4. IMAGE DENOISING

The proposed image denoising algorithm is summarized as follows

Algorithm 1: SSIM-inspired image denoising

1. Initialize: X =Y, ¥ = overcomplete DCT dictionary
2. Repeat J times

e Sparse coding stage: use SSIM-optimal OMP to compute
the representation vectors o;; for each patch

e Dictionary update stage: Use K-SVD [9] to calculate the
updated dictionary and coefficients. Calculate
SSIM-optimal coefficients using Eqns. (18) and (22)

3. Global Reconstruction: Use gradient descent algorithm to
optimize Eqn. (5), where the SSIM gradient is given by
Eqn. (23).

The modified OMP pursuit algorithm is explained in Algo-
rithm 2. There are two main differences between the OMP algo-
rithm [7] and the one proposed in this work. First, the stopping
criterion is based on SSIM. The shapes of MSE and SSIM contours
are different and are explained in [2] in detail. Defining the stopping
criterion according to SSIM essentially means that we are modifying
the set of accepted points (image patches) around the noisy image
patch which can be represented as the linear combination of dictio-
nary atoms. This way we are omitting image patches in the direction
of structural distortion and including the ones which are in the same
direction as the original image patch in the set of acceprable image
patches. Therefore, we can expect to see more structures in the
image constructed using sparsity as a prior. Second, we calculate the
SSIM-optimal coefficients from the optimal coefficients in L2-sense
using the derivation in Section 3, which are scalar multiple of the
optimal L1-based coefficients.

Algorithm 2: SSIM-inspired Orthogonal Matching Pursuit

Initialize: D = {} set of selected atoms, Sopt =0, r =Y
Whlle Sopt < Tssim

e Add the next best atom in L2 sense to D
e Find the optimal L>-based coefficient(s) using Eqn. (7)

e Find the optimal SSIM-based coefficient(s) using
Eqn. (18)

e Update the residual r
e Find SSIM-based approximation a
e Calculate S, = S(a,y)

end

5. SIMULATION RESULTS

The proposed image denoising scheme is tested on various images
with different amount of noise. In all the experiments, the dictionary
used were of size 64 x 256, designed to handle patches of 8 x 8 pixels.
The value of noise gain, C', is selected to be 1.15 and A = 30/c [5].
Table 1 shows the results for images Barbara, Lena, Peppers, House.
It also compares the K-SVD method [5] with the proposed denois-
ing method. It can be observed that the proposed denoising method
achieves better performance in terms of SSIM which implies better
perceptual quality of the denoised image. Figure 1 shows that the
denoised images using K-SVD [5] and the proposed methods. It can
be seen that the proposed denoising scheme preserves the structures
better and therefore has better perceptual image quality.

6. CONCLUSIONS

In this paper, we attempt to combine perceptual image fidelity mea-
surement with optimal sparse signal representation in the context of
image denoising. We proposed an algorithm to solve for the optimal
coefficients for sparse and redundant dictionary in maximal SSIM
sense. We also developed a gradient descent approach to achieve the
best compromise between the distorted noisy image and the image
reconstructed using sparse representation. Our simulations demon-
strate promising results and also indicate the potential of SSIM to
replace the ubiquitous PSNR/MSE as the optimization criterion in
image processing applications.



(a) Original image (b) Noisy image (o = 25)

|
(f) Noisy image (o = 25)

(e) Original image

(c) Denoised by K-SVD (d) Denoised by proposed method

(g) Denoised by K-SVD (h) Denoised by proposed method

Fig. 1. Visual comparison of denoising results
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