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ABSTRACT

There has been a growing recent interest of applying Kol-
mogorov complexity and its related normalized information
distance (NID) measures in real-world problems, but their
application in the field of medical image processing remains
limited. In this work we attempt to incorporate NID in the de-
sign of windowing operators for optimal visualization of high
dynamic range (HDR) medical images, where predefined in-
tensity interval of interest needs to be mapped to match the
low dynamic range (LDR) of standard displays. By approx-
imating NID using a Shannon entropy based method, we are
able to optimize parametric windowing operators to maximize
the information similarity between the HDR image and the
LDR image after mapping. Experimental results demonstrate
promising performance of the proposed approach.

Index Terms— Kolmogorov complexity, normalized
information distance (NID), entropy, high dynamic range
(HDR) imaging, windowing, tone-mapping

1. INTRODUCTION

Recently the theory of Kolmogorov complexity and its asso-
ciated normalized information distance (NID) metrics have
attracted an increasing amount of attention and found a va-
riety of successful applications in bioinformatics, pattern
recognition, and natural language processing [1–3]. A pop-
ular approach is to approximate NID using a normalized
compression distance (NCD) measure, which overcomes
the non-computability problem of Kolmogorov complex-
ity and NID, and thus provides practical solutions to many
real-world problems [2]. The application of these method-
ologies in the field of image processing is still at a premature
stage [4–10]. In [9], a normalized conditional compression
distance (NCCD) method was introduced, which supplies a
practical framework to approximate conditional Kolmogorov
complexity using an image compressor and a list of image
transformations. In [10], a normalized perceptual informa-
tion similarity (NPIS) method was proposed that incorporates
image statistics and perceptual models and employs Shannon
entropy to approximate Kolmogorov complexity. Neverthe-
less, to the best of our knowledge, little progress has been

made in the application of Kolmogorov complexity and re-
lated methods in the field of medical image processing.

Medical images are typically captured with higher preci-
sions or higher dynamic ranges of intensity values than what
can be directly shown on standard displays with 8-bit depth.
Standard medial image formats such as DICOM allow to store
such high dynamic range (HDR) images with more bit depths,
but to visualize them on regular displays becomes a chal-
lenge. In practice, a so-called “windowing” approach is of-
ten employed, which linearly maps an intensity interval of
interest to the dynamic range of the display. These inter-
vals are defined using two parameters: (i) window width, or
the range of the interval, W (which is typically larger than
255); and (ii) window center, or the center of this interval,
C. Thus a windowing operator maps the range of intensity
values [C − 1

2W,C + 1
2W ] to a low dynamic range (LDR)

[0, 255]. The default values for W and C may be embedded in
the headers of DICOM image files, or determined manually
by the end users (radiologists) so that the structural details for
specific body region become more visible.

In this work, we aim to develop new windowing operators
for optimal visualization of HDR medical images, where the
optimality is defined as maximization of the information sim-
ilarity between the HDR image and the mapped LDR image.
A key step in our approach is to approximate NID based in-
formation similarity using a Shannon entropy approach. Our
experiments show that when the new similarity measure is
employed in optimizing two types parametric windowing op-
erators, perceptually appealing images with higher contrast
and more visible structural details are obtained.

2. BACKGROUND: KOLMOGOROV COMPLEXITY
AND NORMALIZED INFORMATION DISTANCE

The Kolmogorov complexity of an object is defined to be the
length of the shortest program that can produce that object on
a universal Turing machine and halt:

K(x) = min
p:U(p)=x

l(p). (1)

The conditional Kolmogorov complexity of x relative to y is
denoted byK(x|y), and the information distance between the
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two objects is defined as the maximum of the length of the
shortest program that computes x from y and y from x, i.e.
max{K(x|y),K(y|x)}. A better way to compare objects of
different lengths is to normalize the information distance [2]:

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
. (2)

It is shown that NID is a distance metric that satisfies the iden-
tity and symmetry axioms and the triangular inequality [2].

Due to the non-computability of Kolmogorov complexity,
direct computation of NID is impossible, and in all cases, NID
has to be approximated by employing either data compression
techniques or other computable quantities such as the Shan-
non entropy. In particular, it has been shown that Kolmogorov
complexity and Shannon entropy are equivalent for a wide
class of information sources. For any computable probabil-
ity mass function f(x) = P (X = x) on sample space χ =
{0, 1}∗ with entropy H(X) = −

∑
x f(x) log2 f(x) the fol-

lowing inequality holds true [11]:

0 ≤

(∑
x

f(x)K(x)−H(X)

)
≤ K(f) +O(1) (3)

which states that the expected Kolmogorov complexity of the
source is close to its entropy.

3. METHOD: ADAPTIVE WINDOWING FOR
MAXIMAL INFORMATION SIMILARITY

The windowing process in medical imaging may be under-
stood as a special case of the tone-mapping operation (TMO)
that converts HDR images to LDR images [12]. TMO has
been an active research topic in the past decades that has
resulted in a number of successful techniques [12–15]. Ex-
isting TMO methods may be categorized into four groups,
namely global operators, local operators, frequency opera-
tors, and gradient operators [13]. In the context of medical
imaging, global operators implemented using monotonic in-
tensity transformations are preferred because it is the only cat-
egory that maintains one-to-one mapping of intensity values
and preserves the ranks of pixel intensity values. By contrast,
other TMOs may map the same intensity value in the HDR
image to different values in the LDR image, which may con-
fuse the understanding of the physical meanings behind the
intensity values.

Standard windowing operation in medical imaging lin-
early maps the intensity interval of interest [ll, lu] to the dy-
namic range of the LDR image, typically [0, 255]. This has
often been shown to be far from optimal in terms of perceived
image quality [16]. To develop a better windowing method,
we relax the mapping operation to be a continuous and mono-
tonically increasing function f lives in the function space of

F[ll,lu] = {f : [ll, lu]→ [0, 255]|f monotonically increasing}
(4)

For any given f , we can then define a windowing operator Tf
over an input HDR image x by

y = Tf (x) = round{f(x)} , (5)

where since both images can take only integer intensity val-
ues, a rounding operator is necessary. The key question now
is to obtain an LDR image y that is optimal in certain crite-
rion. Motivated by the ideas behind NID, we would want to
find an image y such that the normalized information similar-
ity between x and y is maximized. Therefore, the problem of
finding the optimal windowing operator can be expressed as

fopt−NID = arg min
f∈F[ll,lu]

NID(x, Tf (x)) . (6)

To provide a practical algorithm to compute NID, we resort
to a Shannon entropy approximation of the Kolmogorov com-
plexity, leading to a normalized Shannon information distance

NID(x, y) ≈ max{H(x|y), H(y|x)}
max{H(x), H(y)}

(7)

Since the conversion from x to y is unique, there is no uncer-
tainty in y given x, thus H(y|x) = 0. To compute H(x|y),
we first need to apply a reconstruction operator that “invert”
the windowing function f :

x̂ = Rf−1(y) = round{f−1(y)} . (8)

Note that such an “inversion” will not fully reconstruct x be-
cause there is information loss in the forward conversion and
all values are integers that create rounding errors. Therefore,
the actual uncertainty of H(x|y) roughly lies in the predic-
tion residual between x and x̂. Also note that x as an HDR
image contains more information (and uncertainty) than the
LDR image y, thus H(x) > H(y). Considering all the above
factors, the actually computation simplifies to

NID(x, y) ≈
H(x−Rf−1(y))

H(x)
. (9)

Combining this with Eq. (6), the actual optimization problem
we would need to solve reduces to

fopt−NID = arg min
f∈F[ll,lu]

H(x−Rf−1(Tf (x)))

H(x)
. (10)

To fully solve Eq. (10) requires finding the best function
in the function spaceF[ll,lu], and is in general a difficult prob-
lem. Here we constrain the solutions to live in two families of
parametric functions. In both cases, we express f as a linear
combination of basis functions by

f(l) =

n−1∑
k=0

ckφk(l) = φ0(l) +

n−1∑
k=1

ckφk(l) , (11)



where c0 = 1 and φ0(l) is a “ramp” function that corresponds
to direct linear mapping given by

φ0(l) =

{
(l − ll)/(lu − ll), l0 ≤ l ≤ lu
0, otherwise . (12)

The other basis functions are different for the two cases.
In the first case, we consider equipartition piecewise lin-

ear approximation, where we divide the full intensity interval
[ll, lu] into n subintervals Ik = [lk−1, lk] for 1 ≤ k ≤ K of
length ∆l = (lu − ll)/K. The partition points are given by
lk = ll + k∆l, 0 ≤ k ≤ n, as such ll = l0 and lu = ln. The
basis functions for piecewise linear approximation are “hat”
function given by

φk(l) = t

(
l − lk

∆l

)
, for k = 1, · · · , n− 1 , (13)

where

t(l) =

{
1− |l|, − 1 ≤ l ≤ 1
0, otherwise . (14)

For the function f(l) to be monotonically increasing, we need
0 ≤ · · · ≤ f(lk−1) ≤ f(lk) ≤ · · · ≤ 1, which yields

0 ≤ · · · ≤ ck−1 +
k − 1

n
≤ ck +

k

n
≤ · · · ≤ 1 . (15)

For example, in the case that n = 3, we can derive the fol-
lowing constraints on the solutions of the coefficients: c1 ≥ − 1

3 ;
c2 − c1 ≥ − 1

3 ;
c2 ≤ 1

3 .
(16)

In the second case, we approximate the mapping function
using the family of sine functions by

φk(l) = sin
(
kπ(l − ll)
lu − ll

)
for ll ≤ l ≤ lu and k = 1, 2, · · · , n

(17)
To ensure that the mapping function f(l) to be monotonically
increasing, we would need f ′(l) ≥ 0. Plug Eq. (17) into
Eq. (11) and take derivatives with respect to l and let it be no
less than 0, we can obtain a set of constraints on the solutions
of the coefficients. For example, in the case of n = 3, the
constraints are given by

c1 + 2c2 ≥ − 1
π

−c1 + 2c2 ≥ − 1
π

c21
16c2

+ 2c2 ≤ 1
π

(18)

Having the aforementioned two types of parametric win-
dowing functions, we can then search in the coefficient space
(c1, c2, · · · , cn) to solve for the optimization problem defined
in Eq. (10 under the constraints on the coefficients (e.g., for
the case of n = 3, the constraints are (16) for piecewise linear
functions or (18) for sine basis functions). The search space is
typically complex and to solve the problem, we would need to
employ numerical optimization methods or resort to software
optimization tools (e.g., Matlab fmincon function). Examples
and detailed experimental results are presented in Section 4.

4. EXPERIMENT AND COMPARISON

We use real-world medical images in DICOM format to test
the proposed method. In addition, we compare it with the
most widely used image similarity/distortion measures in the
literature, i.e., mean squared error (MSE) and structural simi-
larity index (SSIM) [17]. Note that the images before and af-
ter windowing have different dynamic ranges, and thus direct
computation of MSE and SSIM is not feasible. Therefore, we
search for the best windowing methods by optimizing MSE
or SSIM between the original and reconstructed HDR images.
These can be expressed as

fopt−MSE = arg min
f∈F[ll,lu]

MSE(x,Rf−1(Tf (x))) , (19)

fopt−SSIM = arg max
f∈F[ll,lu]

SSIM(x,Rf−1(Tf (x))) . (20)

In DICOM images, the window width and window center pa-
rameters are embedded in the image header, and thus the val-
ues of ll and lu are fixed. All windowing methods under test
do not change these values, but attempt to find the best map-
ping functions with different optimization criteria.

Figure 1 compares the images created using default DI-
COM direct linear windowing, and optimal MSE windowing,
optimal SSIM windowing, and optimal NID windowing, all
using sine basis. Their corresponding windowing functions
are also given. It can be observed that the structural details are
best preserved in NID optimal windowing image, which also
appears to have higher contrast and better perceptual quality.
To better illustrate how NID behaves in the parameter space,
Fig. 2 shows NID as a function of the c1 and c2 parameters
in piecewise linear windowing, where brighter pixels indicate
larger NID values. Sample images corresponding to different
choices of c1 and c2 values are also given. It can be seen that
the quality of the windowing results is quite sensitive to the
selection of the parameters, and NID provides a useful tool
to automatically select the best parameters that produces the
best quality image.

The major computational cost of the proposed method
lies in the search procedure in the parameter space. In our
experiment using a computer with a Core-i5 CPU running
at 2.27Ghz, it takes about 250 seconds for our unoptimized
program to find the optimal NID windowing operator for an
512×512 image using an exhaustive search method on a grid
of 0.02 × 0.02 precision. The time can be largely shortened
by using advanced optimization method. For example, an
MATLAB fmincon function that employs gradient optimiza-
tion and trust-region-reflective algorithm reduces the search
time to about 13 seconds.

5. CONCLUSION

In this work, we make one of the first attempts to apply the
theory of Kolmogorov complexity and NID to the field of
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Fig. 1: Adaptive windowing using (a) Linear, (b) MSE, (c)
SSIM, and (d) NID optimization of sine basis operators. (e)
Corresponding optimal windowing function.

medical image processing. Specifically, we use an NID-
motivated criterion in the optimal design of windowing
operators for the visualization of HDR medical images on
standard displays. A Shannon entropy based approximation
was made that converts the uncomputable NID minimization
problem into a practical algorithm that optimizes parametric
windowing operators. Experiments using medical images
demonstrate that the proposed method provides a power-
ful tool in finding the best parametric windowing functions,
which create images with higher contrast and more visible
structural details. In the future, the proposed method may
be extended to higher order parametric windowing functions.
The promising results obtained in this work also inspires us
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Fig. 2: NID as a function of the parameters in piecewise lin-
ear windowing operator. (IM1)-(IM4): images correspond to
4 different options of c1 and c2 parameters, which result in
different image quality and NID values.

.

to explore more applications of Kolmogorov complexity in
the field of medical image processing.
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