
ABSTRACT

With the fast technology advancement and the accelerated
growth of high-quality image and video production and ser-
vices, banding or false contour has become a frequently ob-
served artifact in images, creating annoying negative impact
on the visual quality-of-experience (QoE) of end users. Nev-
ertheless, thorough investigations on the causes of banding,
and effective and efficient methods to detect and reduce band-
ing are largely lacking. This work targets at capturing and
quantifying banding artifacts in images. We construct the first
of its kind large-scale public database, consisting of 1,250
images with segmented banding regions and 169,501 image
patches with class labels. We also develop a deep neural net-
work based no-reference deep banding index (DBI), which
not only produces an overall banding assessment of a given
image, but also creates a banding map that indicates the vari-
ation of banding across the image space. Our experiments
show that the proposed DBI method achieves accurate band-
ing prediction with low computational cost. The database and
the proposed algorithm are made publicly available1.

Index Terms— image banding, false contour, no-reference
image quality assessment, deep neural network

1. INTRODUCTION

Banding, colour banding, or false contours is a common vi-
sual artifact appearing in images and videos, often in large
regions of low textures and slow gradients such as sky. When
the granularity of bit-depth or display intensity levels mis-
matches with the visual system’s perception of the smooth
transition of color and luminance presented in the image con-
tent, the discontinuity positions in smooth image gradients are
transformed into perceivable, wide, discrete bands. Banding
significantly deteriorates the perceptual quality-of-experience
(QoE) of end users. An example is shown in Fig. 1 where
banding artifacts are clearly visible in the sky. With the recent
growing popularity of high dynamic range (HDR), wide color
gamut (WCG) production and services, banding has become

1Dataset access: https://zenodo.org/record/4512571.YCNhKGhKhPZ,
https://zenodo.org/record/4513740.YCNhRmhKhPY; Code access:
https://github.com/akshay-kap/Meng-699-Image-Banding-detection

Fig. 1. An example of visual banding artifact.

an even bigger issue because HDR/WCG attempts to cover
a wider range of luminance/color levels than that of standard
dynamic range (SDR) content, making it more difficult to cre-
ate smooth visual transitions of slow gradients.

Commonly used image quality assessment (IQA) meth-
ods such as PSNR cannot reliably measure the visibility of
banding. The structural similarity index (SSIM) [1] often cap-
tures banding in its quality maps but does not give sufficient
penalty that accurately reflects the perceptual annoyance of
banding. Only a few methods were proposed specifically for
detecting and quantifying banding. In [2], directional con-
trast features are used to differentiate between false contours
and object edges in a two-stage banding detection algorithm.
In [3], the banding artifacts are quantified based on the size
and number of uniform segments. The idea is extended by
first identifying uniform segments and then using edge length
and contrast to differentiate between banding and other ar-
tifacts such as blockiness [4]. While these initial attempts
are valuable, there are significant gaps in achieving reliable
image banding assessment. First, sufficient and convincing
validation has been missing, largely due to the lack of high
quality databases that provide wide coverage of the variations
in both image content and banding types. Second, existing
methods are often of high computational complexity, imped-
ing the wide usage of such methods in practical systems that
often require real-time scanning of large volumes of videos.

In this work, we aim for developing automated algo-
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rithms for banding assessment without accessing the original
banding-free reference image. To tackle the problem, we
first create the first of its kind large-scale public database
consisting of images and image patches with and without
banding artifacts. As explained in Section 2, we develop a
semi-automatic annotation procedure, which segments 1,250
images into banded and non-banded regions, and assign
169,501 image patches with banded/non-banded class labels.
The large database allows us to train a deep neural network
(DNN) for no-reference (NR) banding classification at patch
level. By aggregating DNN predictions of local patches in an
image, we create a deep banding index (DBI) for image level
banding assessment. Meanwhile, the proposed approach also
produces a banding map for each image, which indicates the
variations of visual banding over the image space.

2. BANDING DATABASE CONSTRUCTION

We construct one of the first of its kind image database for
image banding assessment, which is be made publicly avail-
able. To the best of our knowledge, the only previous banding
database was briefly mentioned in [4]. It is not publicly avail-
able and is limited in size and banding distortion type (VP9
video transcoding of Youtube content only).

We create a database by extracting frames from more than
600 pristine high-definition (HD) videos, resulting in approx-
imately 1,250 images of 1920×1080 resolution. Banding dis-
tortion can be introduced by bit-depth reduction (or dynamic
range tone mapping) in luma and chroma channels of im-
age/video (where bit-depth reduction can also leads to other
perceptually visible artifacts). Therefore, we apply bit-depth
reduction followed by bit-depth promotion, where the level of
banding varies with the levels of quantization. Six levels of
quantization are used to enhance the diversity of the dataset.
Close observations suggest that our simulated banding arti-
facts are perceptually very similar to the strong banding arti-
facts in images and videos frequently seen on popular video
and social media service platforms such as Netflix, Amazon
Prime and LinkedIN.

Table 1. Composition of labelled image patch dataset
Banded Non-Banded

Training 58917 76507
Validation 7474 9563

Testing 7476 9563
Total 73867( 44%) 95634( 56%)

We use a semi-automatic approach to create class labels.
Firstly, the 1,250 HD images are manually segmented and la-
belled into banded and non-banded regions. A large number
of image patches of size 235×235 are then extracted from
these segmented and labelled images to form a large dataset

Fig. 2. Sample banded image (a) and patches (b) extracted
from its upper-left region.

of image patches where each patch is labelled as banded or
non-banded in an automatic manner. Specifically, a patch
is labelled as banded if it has more than 30% overlap with
banded regions in the image, and as non-banded otherwise.
A sample banded image together with extracted patches are
shown in Fig. 2.

Eventually, a dataset of 1,250 segmented images of
1920×1080 resolution and 169,501 labeled image patches
of size 235×235 are generated. The scale of the data allows
for training machine learning based classification methods
including DNN based approaches. Table 1 provides more
details of the database, together with suggested divisions to
the training (∼80%), validation (∼10%), and testing (∼10%)
sets. The non-banded dataset is slightly larger due to the in-
clusion of patches extracted from the original pristine images.

3. OBJECTIVE BANDING ASSESSMENT

The diagram of the proposed banding assessment algorithm
is shown in Fig. 3. A DNN model is first applied to classify
individual 235×235 image patches into ‘banded’ and ‘non-
banded’ categories. The local patch classification labels are



Fig. 3. Diagram of the proposed banding assessment model.

then aggregated aross the image space to yield an overall
banding score of the test image. Meanwhile, the local classi-
fication labels are smoothed spatially to create a banding map
that reflects the variation of perceptual banding across space.

3.1. Patch Level Banding Classification

We train a seven-layer convolutional neural network (CNN)
of 6.7K parameters to classify an image patch of size 235×235
to be “banded” or “non-banded”. The CNN architecture is
shown in Fig. 4. The network uses a sequence of convolu-
tional layers, pooling layers, followed by batch normalization
layers and global average pooling, before the final dense lay-
ers that produce the final classification result. The use of
Batch normalization [7] allows the model to converge faster
and produces some regularizing effect. The use of a global
average pooling [8] helps flattening the receptive fields into
1D array while utilizing the average spatial information. The
best fit for the model is obtained using Adam optimizer with
a learning rate of 0.001 and an exponential decay value of
0.9. Rectified linear units are used as activation functions for
all the hidden layers in the network architecture and sigmoid
activation function is used for the output dense layer. The
loss function used is binary cross entropy, and output score
for each class is optimized using cross entropy loss.

Since the patch dataset features imbalance of classes (Ta-
ble 1), precision-recall analysis is carried out on the validation
set to select the best threshold to convert the predicted proba-
bilities into binary classifications. The threshold is set as 0.2
which yields the highest F1-score (0.9) and accuracy (0.93)
on the validation set.

3.2. Image Level Banding Assessment

To produce an image level banding score, the image is divided
into non-overlapping 235×235 patches and CNN based patch
level classification is applied, resulting in a raw banding clas-
sification label for each patch. The raw label Si of Patch i
is then updated depending on the labels of its neighboring
patches based on

S̃i = Wp · Si +Wn ·
1

N

N∑
j=1

Sj , (1)

Fig. 4. CNN architecture for patch classification. ‘Conv layer
| a x a | c x d’ denotes a convolutional layer featuring filter size
a x a, with c and d filters in the previous and current layers,
respectively; ‘Maxpool | e x e’ denotes the window size of
max-pooling layer with valid padding; and Dense(f) denotes
a dense layer featuring f neural units.

where N is the number of its neighbors (currently N = 8
as its direct neighbors), j is the neighbor index, Wp and Wn

are the weights given to the current patch and its neighbors,
respectively, and S̃i is the updated score. The overall deep
banding index (DBI) of the whole image is then calculated as
the average of all updated patch scores.

The CNN model for local patch labeling may be applied
as a sliding window across the image to create a dense spatial
banding map. Specifically, we let the 235×235 window slide
through the image with a stride of 5. We then compute the
pixel value in the banding map as the average of the classifi-
cation labels of all windows containing the pixel. This can be
expressed as

Pi =
1

K
·

K∑
j=1

Sj , (2)

where K is the total number of neighboring windows that
contain the central pixel, j is the window index, and Sj is
the classification label of the j-th window.

Fig. 5 shows a set of sample images with their correspond-
ing image level banding scores (DBIs) and banding maps,
where brighter pixels in the maps indicate stronger banding.
It can be observed that the spatial variation of the banding ef-
fects are well predicted by the banding maps, and the overall
banding scores provide a good predictions on the spread of
banding. Advanced weighting methods may be developed in
the future to further improve the overall banding prediction.



Fig. 5. Sample images with corresponding banding maps
(brighter pixel in the map indicates stronger banding) and im-
age level DBI scores.

3.3. Performance Comparison

To the best of our knowledge, no other banding assessment
method is available in the public domain. Therefore, we com-
pare the proposed DBI model with existing NR-IQA tech-
niques on the task of patch banding classification. The algo-
rithms under comparison include BRISQUE [9], LPSI [10],
SSBLIM [11], MEON [12], dipIQ [13], and NIQE [14]. All
these NR-IQA methods produce scalar quality values only,
and thus a thresholding step is necessary to convert the scalar
values into binary classification decisions. For each method,
we conduct a line search to find the optimal threshold value
that produces the best classification results, and the corre-
sponding maximum testing accuracy (MTA) is reported. In
addition, AUC-ROC (area under the curve - receiver operat-

ing characteristics) and AUC-PR (area under the curve - pre-
cision recall) are also included as the evaluation criteria. The
performance comparison results of existing NR-IQA methods
against the proposed DBI method are given in Table 2, where
DBI clearly outperforms all NR-IQA methods.

Moreover, the computational complexity in terms of ex-
ecution time per image patch is also compared, as shown in
Table 2. The execution time is reported as the average time
for processing an image patch on an Intel(R) Core (TM) ma-
chine with i7-8750H CPU at 2.21 GHz. It can be seen that
the proposed DBI method is among the fastest, making it a
favorable choice in time-critical applications.

Table 2. Performance comparison based on AUC-ROC (area
under the curve - receiver operating characteristics), AUC-
PR (area under the curve - precision recall), MTA (maximum
testing accuracy), and computation speed (execution time in
second per image patch).

Model AUC-ROC AUC-PR MTA Speed
BRISQUE[8] 0.26 0.31 56% 0.6438

LPSI[9] 0.74 0.71 73% 0.0148
SSBLIM[10] 0.46 0.46 57% 0.2632
MEON[11] 0.35 0.35 56% 0.6473
dipIQ[12] 0.62 0.58 66% 3.4736
NIQE[13] 0.15 0.20 46% 1.26

DBI 0.95 0.96 91% 0.0487

Despite the superior performance of the proposed DBI
method against existing NR-IQA approaches, there are im-
ages and patches that DBI produces incorrect predictions.
Closer observation on these cases reveal that DBI tends to
perform well on large wave like banded patterns, but struggles
with image content with macroblocking artifacts or wave-like
patterns in the original content or created by artificial design.

4. CONCLUSION

In this work, we target at automatic NR banding assessment
of images. We construct so far the largest database dedicated
to banding artifacts, containing images with banding region
segmented and patches with classification labels. We develop
a CNN-based DBI banding classification model for image
patch labeling, upon which we compute an overall DBI score
for a given test image and create a banding map to predict
the spatial variations of visual banding effect. Image samples
and performance comparisons show that the proposed method
achieves accurate banding prediction with low computational
cost. The database and the proposed DBI algorithm build
the groundwork to facilitate future reproducible research on
banding characterization, detection and reduction methodolo-
gies.
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