
ABSTRACT

In recent years, the native 4K/Ultra High Definition (UHD)
resolution has been trending towards the new normal of video
content creation and distribution, but the practical pipelines
of video acquisition, production and delivery often involve
downscaling stages where the spatial resolution drops below
the 4K level. Even though the video may be upscaled back
to 4K/UHD resolution later, the content has lost its authentic
resolution. This work aims at authentic resolution assessment
(ARA). We first construct a database of over 10,000 real and
fake 4K/UHD images. We then develop a two-stage ARA
(TSARA) approach that classifies a video frame to have real
or fake 4K resolution, where the first stage classifies local
patches using a convolutional neural network (CNN), and the
second stage aggregates local assessment into a global image
level decision using logistical regression. Experimental re-
sults show that the proposed approach achieves high accuracy
at low computational cost, and outperforms state-of-the-art
no-reference (NR) image quality assessment (IQA) and im-
age sharpness assessment (ISA) models. The built database
and the proposed method are made publicly available1.

Index Terms— 4K, Ultra High Definition (UHD), Au-
thentic Resolution Assessment (ARA), Convolutional Neural
Network (CNN), Image Quality Assessment (IQA)

1. INTRODUCTION

The technology advancement has enabled the humankind of
the 21st century to enjoy image and video content of differ-
ent resolutions on a variety of devices ranging from mobile
phones to Ultra High Definition (UHD) televisions. Although
strict 4K (4096×2160) and UHD (3840×2160) represent
two different resolutions, in the practice of consumer elec-
tronics, 4K and UHD are often used interchangeably for the
UHD resolution. In recent times, streaming 4K/UHD or even
higher resolution image/video content has been increasing
steadily because of the potential to deliver crisp and detail-
rich quality-of-experience (QoE) to end-users. In practice,
however, the pipeline of video acquisition, production, post-
production and delivery often involves stages where video

1Code and dataset access: https://github.com/rr8shah/TSARA.git

frames are scaled down to lower resolutions, and then up-
scaled back to 4K/UHD resolution at later stages. As a result,
the authentic 4K resolution has been lost in the process while
end users are often poorly informed of such quality degrada-
tions. For example, it has been shown that a large proportion
of the recent UHD Blu-Ray films and TV series do not have
true 4K resolution [1]. Here we aim for authentic resolution
assessment (ARA), and specifically, the current work focuses
on classifying a 4K video frame to have real or fake 4K
resolution.

As this research deals with the no-reference image resolu-
tion assessment problem, existing conventional full reference
(FR) image quality assessment (IQA) techniques such as
PSNR and SSIM [2] cannot be applied. On the other hand,
no-reference (NR) IQA methods evaluate the quality of a
distorted image in the absence of the reference image, and
are thus applicable. NR-IQA methods may be categorized
into opinion-aware (OR) and opinion-unaware (OU) methods
based on whether they are trained on images with human
subjective ratings. OA methods may be further classified
based on whether handcrafted or learned features are used,
where handcrafted features may be derived from natural
scene statistics (NSS) models [3], [4], and learned features
are obtained from sample images [5], [6]. Recent deep neural
network (DNN) based approach also enables joint training
of features and quality predictor in an end-to-end fashion
[7]. OU methods may employ NSS [8], distortion artifact
detection [9] or local binary pattern [10] features, and may
also make use of FR-IQA methods to annotate sample images
for training [11], [12]. A specific type of NR-IQA meth-
ods of high relevance are NR image sharpness assessment
(NR-ISA) methods that are designed specifically for evalu-
ating image blur or sharpness. Most of these methods are
based on domain knowledge, including human visual system
(HVS) [13], [14], Fourier phase [15], complex wavelet do-
main phase coherence [16], local variation [17], and sparse
image representation [18] models.

None of the above mentioned NR-IQA and NR-ISA
techniques is dedicated for the image resolution assessment
problem. Moreover, large-scale high-quality databases of
large spatial images that are essential for learning-based
approaches are missing. In this work, we first build a high-
quality database of over 10,000 4K/UHD images with ground
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Fig. 1: Sample “True4K” and “Fake4K” images from the built dataset. Images are cropped and enlarged for visualization.

Fig. 2: Flow diagram of the proposed TSARA method for real vs fake 4K classification.

truth labels. We then develop a two-stage ARA (TSARA)
method to classify a video frame to have real or fake 4K
resolution, where the first stage classifies local patches us-
ing a convolutional neural network (CNN), and the second
stage aggregates local assessment into a global prediction by
leveraging a logistic regression model.

2. REAL VERSUS FAKE 4K CLASSIFICATION

We construct a database consisting of two classes of images
labelled as “Fake4K” and “True4K” images respectively.
The True 4K images are obtained by extracting frames from
videos recorded at 4K/UHD resolutions. The Fake 4K im-
ages are produced by upscaling the images extracted from
1080p video and a wide variety of native resolution images
of 102 classes of flowers [19]. Three filters, bicubic, faster-
bilinear and lanczos from open-source FFMPEG tools, are
employed to perform the upscaling operations. A pair of
sample “True4K” and “Fake4K” images are shown in Fig.
1. In summary, the full database contains a total of 10,824
images of 4K/UHD resolution, including 5417 “Fake4K” and
5407 “True4K” images. In this work, 60%,20% and 20% of
the built database are used for training, validation and testing,
respectively. More details of the database are provided in our

earlier short progress report in [20].

Fig. 3: CNN architecture for patch level label prediction

The diagram of the proposed TSARA algorithm for real
vs fake 4K classification is illustrated in Fig. 2. In the first
stage, local patches are extracted from the 4K/UHD image
or video frame. A CNN model is then used to predict the
class labels of the local patches. The use of local patches has
several advantages. First, local patches limit content vari-
ation and subsequently improve model prediction accuracy.
Second, local patches lead to smaller network size and lower
computational complexity in both the training and testing
phases. Third, the use of local patches makes it easier to
increase the amount of data for training. Fourth, local patch
assessment offers spatial variations across the image or video
frame being tested. In the second stage, patch level label pre-
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Fig. 4: (a) Cropped and enlarged “True4K” ground truth label image (b) Cropped and enlarged “Fake4K” ground truth label
image (c) Confidence map generated using CNN model for (a) (d) Confidence map generated using CNN model for (b)

dictions are aggregated and a logistic regression on detection
frequency is used to make an overall assessment of the whole
image or video frame.

The CNN architecture of the patch level classifier is
shown in Fig. 3. The network takes a color image patch
of size 235×235×3 as input. The depth of the feature map
gradually increases from 3 to 32 and the spatial size of the
feature map is reduced with a total of 4 CNN and pooling
layer pairs. ReLu is the activation function used in all the
convolutional layers and the first dense layer. The last two
layers are dense layers for the classification of the features
extracted by the CNN layers. The sigmoid activation function
is utilized at the end to predict the probability. A probabilistic
threshold is used to determine the label of the patch. The
CNN is trained with patches extracted at a stride size of 256
using 60% and 20% of the images in the built database for
training and validation, respectively.

The Adam [21] is used as the optimizer keeping learning
rate 0.0005. The weight initialization technique for convolu-
tional layer used in this algorithm is adopted from [22]. After
training the model on 0.779 million patches of 6494 training
images, only non-flat patches are used for prediction in the
CNN model. This step largely improves the model accuracy
as flat regions do not have sufficient information that allows
for accurate classification. The constraint on the statistical
variance is applied to detect the flat patch is 5e-5.

When the CNN model is applied to local patches across a
test image, a spatial map of label predictions is created. To ag-

Table 1: Proposed model accuracy

Patch Level Accuracy
Train Validation Test

99.14% 99.20% 98.96%
Image Level Accuracy

Train Validation Test
99.85% 99.88% 99.91%

gregate local patch labels into a global prediction, we apply a
logistic regression model on the label frequency distribution.
The logistic regression model is implemented with Ridge re-
gression (L2 regularization) [23] and Limited-memory BFGS
optimization algorithm [24]. It is fitted on the label frequency
distribution generated from the non-flat patches of the train-
ing dataset. The removal of flat patches in the statistics largely
reduces the uncertainty in model prediction and appears to be
highly effective at improving the global prediction accuracy.

3. RESULT AND ANALYSIS

As the built dataset is balanced, classification accuracy in
terms of the percentage of correct classifications, Area Un-
der the Curve of Receiver Operating Characteristic curve
(AUC-ROC), and Area Under the Curve of Precision-Recall
curve (AUC-PR), are used to evaluate and compare the per-
formance of the proposed method with NR-IQA and NR-ISA
algorithms. Table 1 shows the training, validation and test



Table 2: Accuracy, ROC-AUC, PR- AUC performance of NR-IQA, NR-ISA and TSARA methods

Type Model AUC - ROC AUC - PR
Maximum

Testing
Accuracy

Execution
Time (Sec-

onds/Image)

NR-ISA

SPARISH [18] 0.967 0.968 90.66% 281.430
HVS-MaxPol-1 [13] 0.934 0.941 85.34% 0.520

MLV [17] 0.900 0.798 81.38% 2.267
GPC [15] 0.882 0.889 80.83% 77.989

HVS-MaxPol-2 [13] 0.833 0.824 75.46% 1.018
LPC [16] 0.829 0.777 74.60% 29.244

FQPath [14] 0.190 0.346 50.58% 0.897

NR-IQA

dipIQ [11] 0.954 0.943 90.71% 245.261
CORNIA [5] 0.914 0.919 83.22% 122.905
EONSS [12] 0.907 0.919 82.55% 2.552

NIQE [8] 0.866 0.890 77.50% 4.431
BRISQUE [6] 0.796 0.829 74.76% 2.275

LPSI [10] 0.789 0.765 74.05% 0.700
MEON [7] 0.788 0.767 72.05% 2.601

SISBLIM [9] 0.756 0.747 68.78% 39.655
Proposed TSARA 0.999 0.999 99.91% 0.754

accuracy of the proposed algorithm at both patch and image
levels. The results suggest that the proposed method is able to
make highly accurate predictions at both patch and image lev-
els. Closer observations on the images that the model makes
incorrect predictions suggest that the model is mostly strug-
gling when a majority of the image regions are flat, which
significantly limits the information for effective predictions.

A special feature of the proposed TSARA approach is that
a spatial probability map may be generated for each test im-
age, where each point in the map represents the raw output
(before being thresholded to a binary classification result) of
the CNN model applied to the surrounding image patch. Ex-
amples of the probability maps of “True4K” and “Fake4K”
images are given in Fig. 4, where local probability numbers
are given. These probability maps provide useful insights re-
garding region-specific behaviours of the algorithm and how
such local information may be used to infer global decisions.

To the best of our knowledge, there is no other method for
the classification of real vs. fake resolutions available in the
public domain. Therefore, we compare the proposed TSARA
algorithm with existing NR-ISA and NR-IQA techniques on
the AUC-ROC, AUC-PR and accuracy evaluation metrics.
Since the NR-IQA and NR-ISA methods report scalar values
on an image, following which thresholds need to be applied
to obtain binary classifications, we perform a line search for
each method for the threshold value that results in the best
classification accuracy, and these best results are reported in
Table 2. Moreover, the computational complexity in terms
of execution speed of all the method is also compared. The
execution time is reported as the average time of ten times
running loop of the two-test input RGB images of resolution

3840×2160 measured on a HP laptop computer with 1.8GHz
Intel Core i5-8265U processor, 8 GB of RAM and Windows
10 Home operating system. Table 2 shows that the proposed
two-stage algorithm outperforms all the existing NR-ISA and
NR-IQA methods by a clear margin. The dipIQ [11] and
SPARISH [18] are the best performing algorithms in the NR-
IQA and NR-ISA groups, respectively. However, the average
time taken by both methods to predict the native resolution
of the image is around 245 seconds and 281 seconds respec-
tively, making them difficult to use in practice. By contrast,
the proposed method evaluates an image within 1 second,
making it an excellent choice in time-critical applications.

4. CONCLUSION

This work targets at assessing the authentic resolution of
images, with the current focus on developing automated al-
gorithms that can accurately classify real versus fake 4K
images. We construct a database of over 10,000 “True4K”
and “Fake4K” images, and develop a two-stage TSARA al-
gorithm for real vs fake 4K classification, where the first
stage classifies at local patch level using a CNN, and the sec-
ond stage applies logistic regression at the full image level.
Our experimental results show that TSARA achieves high
accuracy at the low computational cost, and significantly
outperforms state-of-the-art NR-IQA and NR-ISA methods.
Both the database and the proposed algorithm will be made
publicly available. Future effort includes improving the gen-
eralizibility of the proposed method to handle arbitrary up-
scaling methods, and automatically identifying the authentic
resolution at which the video content is captured or created.
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