
ABSTRACT

Vibrotactile signals contain rich haptic information about tex-
tured surfaces but their large data volume makes it a chal-
lenging task to transmit such signals to remote locations to
create immersive and realistic user experiences. Inspired by
the recent success of deep neural network (DNN) based au-
toencoder, we make the first attempt to apply autoencoder for
lossy compression of haptic vibrotactile signals, where a con-
volutional neural network (CNN) and a rate-distortion (RD)
function are used as the transform and cost functions, respec-
tively. Performance comparisons with state-of-the-art meth-
ods using both peak signal-to-noise ratio (PSNR) and percep-
tually motivated spectral temporal similarity (ST-SIM) mea-
sures show that the proposed end-to-end vibrotactile autoen-
coder (EVA) is highly competitive at preserving signal quality
while keeping the data rate low.

Index Terms— haptic communication, vibrotactile sig-
nals compression, autoencoder, deep neural network, BD-rate

1. INTRODUCTION

Humans excel at gathering and sensing tactile feedback dur-
ing interactions with the surrounding environment [1]. Ex-
ploring a textured surface using a mediated tool or bare fin-
ger, results in induced high-frequency vibrations (referred to
as vibrotactile signals) that pertain to the roughness (macro-
and micro-roughness) submodality of this surface [2]. These
vibrations are thought to convey useful information about the
identity of the surface [3, 4, 5, 6]. Points of interaction with
a textured surface collectively create an immense amount of
tactile information that needs to be processed, let alone to
be transmitted and multiplexed with audio and video signals.
Therefore, efficient tactile data compression techniques be-
come a pressing choice to deliver tactile textures essential
for creating immersive and realistic user experiences. Ow-
ing to the recent standardization efforts of Tactile Internet
(TI) [7], haptic codecs activities [8], and the wide variety of
vibrotactile rendering tools with different technology flavors
that create the illusion of textured surfaces [9, 10, 11], there
has been a growing demand to store/transmit/recreate tactile

interactions over media with limited capacity. Accordingly,
efforts have been devoted to the critical need of vibrotac-
tile signal compression techniques that ensure not only low
bit rates but also minimum perceived loss of signal quality
[12, 13, 14, 15, 16].

The Haptic Codec subgroup of the IEEE P1918.1 Tactile
Internet Group part of IEEE-SA has devoted great effort to
define data reduction algorithms and schemes for the com-
munication of kinesthetic, tactile, or combination of kines-
thetic/tactile information. Tactile codec requirements and call
for contributions were published and described in [8]. Two
competing vibrotactile codecs were submitted in response to
the call for contributions. The first is based on traditional lin-
ear transform coding using discrete Wavelet transform [16],
in which the Wavelet coefficients are quantized by optimizing
the SNR in each Wavelet band using a bit allocation procedure
guided by a psychohaptic model. The second codec called
PVC-SLP, initially presented in [12] and further evolved to
[13], is based on sparse linear prediction coding and percep-
tual quantization using novel tactile sensitivity model. Sub-
jective experiments conducted by psychology experts over a
set of materials that vary across the tactile microscopic rough-
ness dimension shows the superiority of PVC-SLP in preserv-
ing high perceptual quality while keeping the bit-rate low.

Inspired by the recent success of deep neural network
(DNN) based autoencoder in image compression [17], here
we make the first attempt to apply autoencoder for lossy com-
pression of vibrotactile signals. Our performance comparison
shows that the proposed end-to-end vibrotactile autoencoder
(EVA) is highly competitive, especially at low bit rates.

2. RELATED WORK

In the literature, few efforts had been devoted to vibrotac-
tile signal compression [14, 15, 18]. Early methods focused
on optimizing mathematically tractable measures such as
the mean-square error (MSE) and the signal-to-noise ratio
(SNR), which are known to poorly predict perceptual quality.
In [14], an ITU standard speech coding technique, namely
CS-ACELP, was adopted for vibrotactile signal coding. The
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codec is based on linear predictive modeling of speech seg-
ments followed by algebraic code approximation of the asso-
ciated LP filter excitation. The codec is developed based on
the assumption that maintaining high SNR values across the
entire frequency spectrum will ideally keep the coding distor-
tion imperceptible. In [15] and [16] the masking phenomena
within the Pacinian channel was developed by assimilating
the auditory masking properties of a human ear. However,
unlike what we know in audition and vision, vibrotactile per-
ception is mediated by more than one channel (four-channels
categorized to P-channel and three non-P-channels). For a
complex vibrotactile stimuli with more than one frequency,
it is important to take into consideration the masking effect
across channels in perceptual modeling.

Okamoto et al. presented a compression scheme for vi-
brotactile material-like texture [18]. A surface height profile
is constructed as a waveform of texture height as a function of
lateral distance, which is subsequently converted to discrete
cosine transform (DCT) domain, thresholded, and quantized
based on differential thresholds for the vibratory amplitudes
[19]. The algorithm is reported to reduce data size up to 75%
while preserving subjective quality. It should be noted that the
surface height profiles do not match the complex vibrations
produced when the finger strokes a textured surface. More-
over, the height profile of each surface needs to be available,
which restricts this algorithm to offline applications only.

In [12], a vibrotactile compression method based on
sparse linear prediction coding was introduced. The work
was further evolved into the PVC-SLP vibrotactile codec
[13]. PVC-SLP perceptually quantizes the prediction resid-
uals in the DCT domain using a cutaneous sensitivity model
inspired from the four-channel mediation of tactile sensation
in the glabrous skin of the human somatosensory periphery.

3. VIBROTACTILE SIGNAL COMPRESSION

The goal of signal compression is to achieve the best quality
under limited data rate budget, which can be expressed math-
ematically as a rate-distortion optimization (RDO) problem.
The rate-distortion (RD) cost function is given by R + λD,
where R represents the data rate, usually measured in the unit
of bits per second or bits per sample, D represents the distor-
tion, usually measured in mean square error or perceptually
inspired quality metrics, and the Lagrange multiplier λ bal-
ances the trade-off between rate and distortion. The proposed
general nonlinear transform coding framework directly opti-
mizes for the RD cost function in and end-to-end manner.

Fig.1[17] illustrates the proposed coding framework,
where x and x̂ represent the original pristine and recon-
structed signals in data space, respectively, y and ŷ represent
the corresponding coded signals in the continuous code space,
and z and ẑ represent the transformed signals in the perceptual
space. In this framework, a vector of signal values x ∈ RN

is mapped to the latent code space by a parametric analy-

Fig. 1. Autoencoder in a transform coding framework.

sis transform, y = ga(x, φ), where φ represents the vector
of parameters that need to be optimized. After the analysis
transform, the coding space representation y is quantized,
producing a discrete-valued vector q ∈ Zm, which is com-
pressed afterwards using context-adaptive binary arithmetic
coding (CABAC)[20]. The rate R of the discrete code is
lower-bounded by the entropy of the quantized vector H[Pq].
To reconstruct the signal, the quantized signal is mapped
back to the continuous code space. Then the parametric
synthesis transform is applied on the dequantized signal ŷ,
x̂ = gs(ŷ, θ), where θ represents another vector of param-
eters that need to be optimized. The distortion is computed
by transforming to a perceptual space using the transform
ẑ = gp(x̂), followed by evaluating a distortion metric d(z, ẑ).
The perceptual transform in the proposed method is the iden-
tity transform, other perceptually meaningful transform can
be applied as well. We optimize the parameter vectors φ and
θ for a weighted sum of the rate and distortion measures,
R + λD, over a set of vibrotactile signals. As in [17], CNNs
are used to implement the analysis and synthesis transforms
(but with 2D convolution filters replaced by 1D filters), al-
lowing for end-to-end learning and testing. There are three
layers in the analysis transform, each consisting of a convo-
lutional layer (with 128 kernels of sizes 9, 5, 5), followed
by a down-sample layer (of downsampling factors 4, 2, 2)
and a generalized divisive normalization (GDN) layer. The
synthesis transform is the inverse of the analysis transform.

The optimization process aims to minimize the RD cost
over the parameters of forward, inverse and perceptual trans-
forms. The Lagrange multiplier λ is set to govern the trade-
off between rate and distortion. A key difference between our
method and previous vibrotactile encoding methods is to di-
rectly optimize the RD cost in an end-to-end manner. Further-
more, we rely on the nonlinear transform to warp the space
appropriately instead of searching for the optimal quantiza-
tion scheme over the high dimensional signal space which is
nearly intractable. The warping process allows us to use a
fixed uniform scalar quantizer in code space, and largely sim-
plifies the coding process. The objective function is defined
in terms of entropy as

L[ga, gs, Pq] = −E[log2 Pq] + λE[d(z, ẑ)] (1)



where Pq is the probability mass function of the quantized
output vector of the analysis transform.

A technical difficulty is that that the derivatives of the
quantization function are zero almost everywhere, making it
impossible to execute any gradient descent based optimiza-
tion methods. As in [17], we replace the quantizer with an
additive i.i.d uniform noise source 4y, which has the same
width as the quantization bins (one). Consequently, the con-
tinuous relaxation density function of ỹ = y + 4y can be
used in the gradient descent process

pỹ(n) = Pq(n), for all n ∈ ZM (2)

With the continuous approximation of the quantized coeffi-
cient distribution, the loss function for parameters θ and φ
across all training samples i is

L(θ, φ) = Ex,4y[−
∑
i

log2 pỹi(ga(x;φ) +4y;ψ(i))

+λd(gp(gs(ga(x;φ)) +4y; θ), gp(x))]

(3)

We choose mean squared error (MSE) as the distortion mea-
sure d, though any other differentiable quality metric can be
adopted in the general framework.

4. EXPERIMENTAL RESULT

The proposed EVA model is trained on the tactile reference
data traces provided along with the IEEE P1918.1.1. standard
[21]. The training process is repeated for 8 sets of parame-
ters, corresponding to 8 different λ values, which lead to dif-
ferent levels of compression. The reference tactile database
is split into 80/20 training/testing sets. Few vibrotactile sig-
nal compression methods are available in the public domain,
and PVC-SLP is the top performer in recent IEEE-SA haptic
codec subgroup test. Therefore, we compare the RD perfor-
mance of the proposed EVA model against the standardized
PVC-SLP codec. For comparison, the original signal traces
are compressed into 22 different compression levels using
PVC-SLP codec. In addition to PSNR, we also adopt a novel
quality model named ST-SIM [22], which was designed to
reflect the perceptual quality of vibrotactile signals.

Fig. 2 shows two testing data traces compressed and
then reconstructed by the proposed EVA model at 3 com-
pression levels, in comparison with the original signals on
the first 200 signal samples. The signal traces selected are
AluminumGrid-Slow and BalticBrown-Slow from the testing
dataset, respectively. As can be seen, when the compression
level goes up, the fine details of the original signal are gradu-
ally lost, while the reconstructed data traces generally follow
the smoothed version of the original data trace.

The RD performance of the proposed EVA model outper-
forms the PVC-SLP codec on almost all testing data traces
at all compression levels, especially at the low bit rates. Fig.
3 shows the RD performance comparison between PVC-SLP
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Fig. 2. Comparison of original versus EVA compressed test-
ing signal traces.

and EVA models using the scatter plots of compression ratio
versus PSNR/ST-SIM. The fitting curves show that the pro-
posed EVA model outperforms PVC-SLP by a large margin,
especially at low bit rate levels.

In order to quantify the coding gain or rate savings
achieved by the proposed model, we borrow the Bjøntegaard
Delta (BD) method [23][24], which is widely used in the
video compression field to evaluate the relative coding ef-
ficiency of one codec against a reference codec [25] over a
range of quality-bit rate data points. Given two RD curves
produced by two codecs, we compute the BD-rate metric,
which estimates the average bit rate savings for the same
video quality (in terms of PSNR or ST-SIM). The bit rate
saving for a given level of quality is calculated as

∆R(Q) =
RB(Q)−RA(Q)

RA(Q)
(4)
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Fig. 3. ST-SIM and PSNR versus compression ratio (CR) for
56 testing traces encoded at different bit rates.

where RA(Q) and RB(Q) are the bitrates for quality level Q
on the reference and test RD curves, respectively. Since the
logarithmic scale r = logR is used in the BD model on the
bit rate axis, the bitrate saving can be expressed as

∆R(Q) = 10rB(Q)−rA(Q) − 1 (5)

Considering both the actual RD points and the fitted RD
curves r̂(Q), the BD-rate can be approximated by

∆ROverall ≈ 10
1

QH−QL

∫ QH
QL

[r̂B(Q)−r̂A(Q)]dQ − 1 (6)

where QH is the maximum of the minimum quality that the
two curves could reach, and QL is the minimum of the max-
imum quality that the two curves could reach. The region of
integration is exemplified as the blue region in Fig. 4.

The rate saving computed by the BD-rate metric varies
for different signal content. For the Ceramic-Slow testing

0 2 4 6 8 10

Bits/Sample

0.7

0.75

0.8

0.85

0.9

0.95

1

S
T

-S
IM

 S
c
o

re

PVC-SLP

EVA

Integration Area

Q
H

Q
L

Overlapping

ST-SIM Range

Fig. 4. Sample RD curve comparison (Ceramic-Slow) and
BD-rate computation.

data trace shown in Fig. 4, a bitrate saving of 38.7% of
EVA against PVC-SLP is achieved. Similarly, we have cal-
culated the BD-rate saving of every testing data trace using
both PSNR and ST-SIM as the quality metric. The results
show that EVA’s performance advantage holds for most of the
testing data traces. Using the PSNR and ST-SIM as the qual-
ity metrics, the proposed EVA model achieves 14.98% and
13.08% bit rate savings on average when compared against
the PVC-SLP codec, respectively.

For computational complexity assessment, our tests on a
Intel(R) Core i7-8700 (x64) CPU at 3.20GHz at a compres-
sion ratio of 10 show that the encoding time of our current
implementations of the PVC-SLP and EVA algorithms is 7.14
seconds and 24.99 seconds per million signal samples, re-
spectively, and the corresponding decoding time is 3.57 sec-
onds and 21.42 seconds per million signal samples, respec-
tively.

5. CONCLUSION

In recent years, tactile digital content has become a trend-
ing media source of rapidly growing demand. To handle its
large data volume, it is critically important to find efficient
data compression methods that can deliver better quality-of-
experience under limited data transmission capacity. In this
work, we make the first attempt to design a novel haptic vi-
brotactile signal compression method built upon end-to-end
training of a DNN-based autoencoder structure. The proposed
EVA model achieves superior performance against state-of-
the-art algorithms based on both PSNR and ST-SIM quality
measures. In the future, perceptually more meaningful qual-
ity measures may be incorporated into the RD optimization
framework. Other autoencoder structures may be exploited.
It is also desirable to develop precise rate control mechanisms
to fulfill any given bit rate requirement.
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