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Abstract. Image fusion is the task of enhancing the perception of a
scene by combining information captured by different imaging sensors.
A critical issue in the design of image fusion algorithms is to define activ-
ity measures that can evaluate and compare the local information content
of multiple images. In doing so, existing methods share a common as-
sumption that high local energy or contrast is a direct indication for local
sharpness. In practice, this assumption may not hold, especially when the
images are captured using different instrument modalities. Here we pro-
pose a complex wavelet transform domain local phase coherence measure
to assess local sharpness. A novel image fusion method is then proposed
to achieve both maximal contrast and maximal sharpness simultaneously
at each spatial location. The proposed method is computationally effi-
cient and robust to noise, which is demonstrated using both synthetic
and real images.
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1 Introduction

Image fusion is the process of combining two or more images to form one image.
The main goal is to extract all the perceptually important features from all input
images and integrate them to form a fused image in such a way that the new
fused image is more informative and is more suitable for human visual perception
or computer processing. The fusion of two or more images are often required
for images captured using different instrument modalities or different camera
settings of the same scene, e.g., at different focus levels. Image fusion has been
used as an effective tool for many important applications, which include medical
imaging, microscopic imaging, remote sensing, computer vision, and robotics.

The imaging properties of an optical system depend on the acquisition pa-
rameters such as focal length or focus and also depend on the distances to the
objects imaged. Due to the limited depth-of-focus of optical lenses, it is often not
possible to acquire an image that contains all relevant objects in-focus. There-
fore, a multifocus fusion process is desirable to create a single image where all
objects are in-focus.
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Image fusion algorithms may be roughly classified as appearance-based or
feature-based, depending on the representation format at which image informa-
tion is processed. Feature-based algorithms require a feature extraction stage
(which is done, for example, by image segmentation) followed by a combination
of the feature descriptors. These algorithms are usually less sensitive to noise,
but the fusion results highly depend on the accuracy of the feature extraction
step [1].

In recent years, multiresolution analysis has become a widely adopted method
for transform-domain fusion techniques. The basic idea is to perform multireso-
lution decomposition on each input image, integrate the decompositions to form
a composite representation based on certain fusion rules, and then reconstruct
the fused image by performing an inverse multiresolution transform. Various
transformation approaches have been used in the literature, which include the
Laplacian pyramid [4], the gradient pyramid [5], the ratio-of-low-pass pyramid
[6], the discrete wavelet transform (DWT) [7] and the dual-tree complex wavelet
transform (DT-CWT) [8, 2, 3]. There are also a variety of fusion rules proposed
in the literature, where the most typical ones are:

Fig. 1. Synthetic images with different sharpness and contrast in corresponding objects.

– Choose Maximum (CM) Scheme: This scheme works under the assumption
that at each image location, only one of the source images provides the
most useful information. The fused coefficient is obtained by selecting the
coefficient with maximal magnitude of the corresponding coefficients in all
images.

– Weighted Average (WA) Scheme [5]: This scheme uses a normalized cor-
relation between the subband coefficients of the two images over a small
local region. The fused coefficient is calculated as a weighted average of the
corresponding coefficients.



Multifocus Image Fusion Using Local Phase Coherence Measurement 3

– Window-based Verification (WBV) Scheme [7]: This scheme creates a bi-
nary decision map to choose between each pair of coefficients and applies
consistency verification using a majority filter.

Since the goal of image fusion is to create a new image that is most in-
formative at each spatial location, it is critical to provide a local measure of
information content. In the case that optical out-of-focus is the major source
of quality degradations, it is natural to assume that the image region that has
higher local energy/contrast and higher sharpness is more active and thus more
informative. In existing fusion algorithms, a common implicit assumption is that
finding the high energy/contrast regions is equated with finding the high sharp-
ness regions. While this might be true in many application environments, it may
not always hold, especially when the images are captured using different instru-
ment modalities. A synthetic example is given in Fig. 1, which demonstrates
that local energy/contrast and local sharpness measurements can be two inde-
pendent events. For example, the top-right square in the first image has lower
contrast than that in the second image, but apparently it has higher sharp-
ness. This motivates us to develop a novel image fusion algorithm that uses two
different activity measures to assess local energy/contrast and local sharpness,
respectively. We can then create a new fused image that is maximal in both local
contrast and sharpness at each spatial location. At the core of our approach is
a novel complex-wavelet domain image sharpness measure based on the local
phase coherence theory [9], which shows that phases of complex wavelet coeffi-
cients exhibit a consistent relationship between coefficients at adjacent scales in
the vicinity of sharp image features, such as edges and lines. This is one step be-
yond the phase congruency measure [10], which only evaluates cross-scale phase
alignment at the exact locations of image features.

2 Local Phase Coherence in Complex Wavelet Transform
Domain

In order to define the local phase coherence measurement, we will first introduce
the concept in 1D which can be generalized to higher dimensions. Given a sig-
nal f(x) localized near the position x0, where f(x) = f0(x − x0), the wavelet
transform can be written as:

F (s, p) =
∫ ∞

−∞
f(x)w∗s,p(x)dx =

[
f(x) ∗ 1√

s
g

(x

s

)
eωcx/s

]
x=p

, (1)

where s ∈ R+ is the scale factor, p ∈ R is the translation factor and the family
of wavelets are derived from the mother wavelet ws,p(x) which is given by:
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Using the convolution theorem, and the shifting and scaling properties of Fourier
transform, Eq. (1) can be written as:

F (s, p) =
1
2π

∫ ∞

−∞
F (ω)

√
sG(s ω − ωc)ejωpdω

=
1
2π

∫ ∞

−∞
F0(ω)

√
sG(s ω − ωc)ejω(p−x0)dω

=
1

2π
√

s

∫ ∞

−∞
F0

(ω

s

)
G(ω − ωc) ejω(p−x0)/sdω , (3)

where F (ω), F0(ω) and G(ω) are the Fourier transforms of f(x), f0(x) and g(x),
respectively. From Eq. (3), we can see that the phase of F (s, p) depends on the
nature of F0(ω). If F0(ω) is scale invariant, meaning that F0(ω/s) = K(s)F0(ω),
where K(s) is a real function of only s, but independent of ω, then from Eq. (3)
we obtain:

F (s, p) =
K(s)
2π

√
s

∫ ∞

−∞
F0(ω)G(ω − ωc)eω(p−x0)/sdω

=
K(s)√

s
F (1, x0 +

p − x0

s
) . (4)

Because K(s) and s are real values, the phase of Eq. (4) can be expressed as:

Φ(F (s, p)) = Φ(F (1, x0 +
p − x0

s
)) . (5)

Eq. (5) indicates that there is a strong phase coherence relationship across scale
and space, where equal phase contours in the (s, p) plane form straight lines that
converge exactly at the location of the feature x0, as illustrated in Fig. 2(a).
These straight lines are defined by x0 + p−x0

s = A, where A is a constant. More
generally, the phase at any given scale may be computed from the phase at any
other scale by simply rescaling the position axis.

The above results can be extended for two-dimensional signals or images [9],
where the phases of complex wavelet coefficients exhibit a consistent relationship
between coefficients at adjacent scales in the vicinity of sharp image features,
such as edges and lines. Therefore the fine-scale coefficients can be well predicted
from their coarser-scale coefficients, provided that the local phase satisfies the
phase coherence relationship defined in Eq.(5). In the case that the positions
of the neighboring complex wavelet coefficients are aligned as in Fig. 2(b), the
phase prediction expression from coarser scale coefficients {a, b11, b12, b21, b22} to
the finest scale coefficients {cij} is given by:

Φ̂({cij}) = Φ
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Fig. 2. (a) Local phase coherence of localized sharp features at x0; (b) 2D sampling
grid of wavelet coefficients.

3 Proposed Image Fusion Method

In the proposed fusion scheme, each input image is first decomposed into multi-
orientation 3-scale sub-bands using the complex version of the steerable pyramid
[11, 12]. The fusion process is carried out in the complex wavelet transform do-
main and is composed of three modules: activity measure, decision rule, and
combination rule. Finally, an inverse transform is applied to the fused sub-band
coefficients to create a fused image. In this section, we will focus on the three
modules of the fusion process:

Fig. 3. (a) Local phase coherence map and (b) Local energy map of Fig. 1(a).
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Activity measure: The purpose here is to provide an indication of informative
content at each spatial location. Different from existing approaches, we compute
two distinctive activity measures, one for local sharpness and the other for local
energy/contrast. From the last section, we observe that local phase coherence
is strong at sharp image features. This motivates us to use it as a measure of
sharpness. In particular, we define:

Pi =

∑
o |ci| cos

(
Φ ({ci}) − Φ̂ ({ci})

)
∑

o |ci| + K
, (7)

where K is a positive constant to avoid instability at small energy regions, and its
value depends on the image dynamic range and the number of orientations used;
Φ ({ci}) is the phase of each coefficient in the finest subband; and Φ̂ ({ci}) is the
predicted phase using Eq. (6). This measure achieves the maximal value when
the phase prediction (and thus local phase coherence) is perfect. This is expected
to occur in the vicinity of sharp image features. The measure is weighted by the
magnitudes of the coefficients over orientations, so that the orientations that
contains more energy are given higher weights. It is worth mentioning here that
the proposed sharpness measure in Eq. (7) is invariant to image deformation such
as translation, rotation and scaling, and is also robust to additive white noise.
This is demonstrated in Fig. 4, which shows that regardless of image deformation
or degradation, the proposed sharpness measure is able to detect sharp objects
and responses weakly to blurred ones. This can be of great benefit if images
are not previously aligned. The second activity measure is used to detect high
contrast image structure. We use a local energy/contrast measure defined as

Ei = W ∗
∑

o

|ci| , (8)

where W is a smoothing filter, which is convolved with the sum of the magni-
tudes of wavelet coefficients (at each spatial location but over all orientations)
to provide a smooth local energy map. Fig. 3 shows an example of local phase
coherence map and local energy map of Fig. 1(a). It is clear that they emphasize
on different types of activities in the image.

Decision and Combination rules: This module is where the actual combina-
tion of multi-resolution coefficients is performed. The key idea of our approach
is to maintain the phases of the coefficients with maximal local sharpness while
boost their magnitudes to achieve the maximal local energy. By doing so, sharp
and high contrast features from both images are combined. The decision and
combination rules are given by

α = arg max
i

Pi , β = arg max
i

Ei , cfused =
Eβ

Eα
· cα , (9)

where Pi and Ei are the local phase coherence map and the local energy map
of the i-th image, respectively. Although we are currently working on fusing
two images, the above rule can also be directly applied for fusing three or more
images.
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Fig. 4. Test images and their phase coherence maps computed for different image
deformations and noise degradation. (a) Original image; (b) translated by (-5,10) pixels;
(c) rotated by 10 degree in clockwise direction; (d) additive white noise with σ = 5;
(e) scaled up to twice the size of the original image.

Fig. 5. Fusion results for the images in Fig. 1 using (a) local energy activity measure
only and (b) the proposed fusion method.
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Fig. 6. (a),(b): Synthetic noisy images; (c): Fused image using the proposed method.

4 Experimental Results

In this section, the proposed fusion algorithm is demonstrated with four exper-
iments. In the first experiment, we show the necessity of using separate activity
measures for local contrast and local sharpness. Two synthetic test images are
shown in Fig. 1, where the same four objects appear in both images at the same
spatial locations. The only difference is on their contrast and sharpness. In par-
ticular, compared with those in Image 2, the top-left, top-right, bottom-left and
bottom-right objects in Image 1 have higher-contrast/higher-sharpness, lower-
contrast/higher-sharpness, higher-contrast/lower-sharpness, and lower-contrast/
lower-sharpness, respectively. We apply the proposed fusion algorithm to these
images and compare it with the result obtained by using the local energy activity
measure (as in Eq. (8)) only. The fused images are shown in Fig. 5. It appears
that using only the local energy measure, the higher sharpness of the top-right
object in Image 1 and bottom-left object in Image 2 cannot be incorporated. By
contrast, all useful information has been appropriately fused by the proposed
method.

The purpose of the second experiment is to test the robustness of the pro-
posed method in the presence of noise. The same images used in the first ex-
periment are employed, but with added independent white Gaussian noise. The
results are shown in Fig. 6. It can be observed that the performance of the
proposed algorithm does not change, demonstrating the robustness of the local
phase coherence and local energy measures as well as the fusion algorithm.

In the third experiment, we test the proposed fusion algorithm using mi-
croscopy images acquired by light microscope with varying focus settings. The
result is shown in Fig. 7, where the microscopy images were obtained from the
Vision Research lab web site at University of California, Santa Barbra [13]. It can
be seen that high contrast and sharp features from both images are appropriately
merged in the fused image.

In the last experiment, we test the proposed method using natural images.
Fig. 8 demonstrates the results. In Fig. 8(a), two images, each with one object in-
focus and another out-of-focus, are fused to create a new image with both objects
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Fig. 7. (a),(b): Two images of radioleria acquired by optical microscope; (c): Fused
Image using the proposed algorithm.

in-focus. In Fig. 8(b), by applying the proposed approach to a low contrast/sharp
image and a high contrast/blurred image, we obtain a fused image with both
high contrast and high sharpness.

5 Conclusions

In this paper, we propose a multifocus image fusion algorithm based on local
phase coherence. The major contributions of our work include a novel activity
measure of local phase coherence (Eq. (7)) and a new fusion algorithm (Eq. (9))
that combines maximal local energy and maximal local sharpness in the complex
wavelet transform domain. Experimental results demonstrate the importance
of using separate measures for local energy and local sharpness. The proposed
method is robust to noise and computationally efficient, making it suitable for
real-world applications.
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