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Abstract. The structural similarity (SSIM) index has been shown to
be an useful tool in a wide variety of applications that involve the assess-
ment of image quality and similarity. However, in-depth studies are still
lacking on how to incorporate it for signal representation and approxima-
tion problems, where minimal mean squared error is still the dominant
optimization criterion. Here we examine the problem of best approxima-
tion of signals and images by maximizing the SSIM between them. In
the case of a decomposition of a signal in terms of an orthonormal basis,
the optimal SSIM-based coefficients are determined with a surprisingly
simple approach, namely, a scaling of the optimal L2 coefficients. We
then examine a very simple algorithm to maximize SSIM with a con-
strained number of basis functions. The algorithm is applied to the DCT
approximation of images.

1 Introduction

The structural similarity (SSIM) index [9] was proposed as a measure to pre-
dict visual distortions between two images. If one of the images being compared
is assumed to have perfect quality, the SSIM value can also be interpreted as a
perceptual quality measure of the second image. When tested with large-scale in-
dependent subject-rated image quality databases [6, 4], SSIM has demonstrated
superior performance in comparison with traditional image distortion measures
such as the mean square error (MSE), which is the most widely employed metric
in the image processing literature [8]. In the past few years, SSIM has found a
wide range of applications, ranging from image compression, restoration, fusion,
and watermarking, to video streaming, digital camera design, biometrics, remote
sensing and target recognition [8]. In most of the existing works, however, SSIM
has been used for quality evaluation and algorithm comparison purposes only.
Much less has been done on using SSIM as an optimization criterion in the design
and tuning of image processing algorithms and systems [10, 3, 1, 2, 5].

A fundamental issue that has to be resolved before effectively employing
SSIM-based optimization in various image processing applications is how to de-
compose a signal or image as a linear combination of basis functions optimally in
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the SSIM sense (as opposed to the usual L2 sense). This is a nontrivial problem,
given the non-convex property of SSIM. It has been addressed in the partic-
ular contexts of image compression [3, 5] and image restoration [1, 2]. In this
paper, however, we “step back” in an effort to understand the problem mathe-
matically. We analyze the simpler case where the SSIM function is defined over
nonoverlapping blocks (as opposed to “local SSIM,” which involves overlapping
patches) and an orthonormal basis is employed. The unique global maximum of
the SSIM function over a block may be found by examining its partial derivatives
with respect to the expansion coefficients. In this way, an optimal SSIM-based
approximation is obtained, as opposed to the well-known L2-based result, i.e.,
mean-squared-error (MSE). We obtain the remarkable result that the optimal
SSIM-based approximation may, in fact, be determined from the optimal L2-
based approximation: The zeroth-order coefficients are the same, and the higher
order SSIM coefficients are obtained from their Fourier counterparts by scaling.

In closing this section, we mention that partial derivatives of the SSIM
have been used before. In fact, formulas for the more complicated “local SSIM”
case appear in [11]. In that paper, they were used in a numerical gradient as-
cent/descent algorithm for finding the maxima and minima of the SSIM function
over spheres of constant MSE with respect to a reference image. In this case,
however, the formulas for the derivatives are very complicated and stationary
points cannot, in general, be determined analytically. The study presented below
is intended to be a first step toward a deeper understanding of the relationship
between SSIM- and L2-based approximations.

2 SSIM-based approximations of signals/images

Very briefly, the “local SSIM,” that is, the SSIM computed between two local
image patches, say a and b, measures the similarities of three elements of these
patches: (i) the local patch luminances or brightness values, (ii) the local patch
contrasts and (iii) local patch structures. These three components are then mul-
tiplied to form a local SSIM index between a and b. The “closer” that a and b

are to each other, the closer the value of the SSIM to 1. It is possible to express
this SSIM function as a product of only two components. It is this form of the
SSIM that is employed in this paper.

In what follows, we let x,y ∈ RN denote two N -dimensional signal/image
blocks, e.g., x = (x1, x2, · · · , xN ). We consider a variation of the SSIM function
described above, a global SSIM between x and y defined as follows,

S(x,y) = S1(x,y)S2(x,y) =

[

2x̄ȳ + ǫ1
x̄2 + ȳ2 + ǫ1

] [

2sxy + ǫ2
s2
x

+ s2
y

+ ǫ2

]

, (1)

where

x̄ =
1

N

N
∑

i=1

xi, s2
x

=
1

N − 1

N
∑

i=1

(xi − x̄)2, sxy =
1

N − 1

N
∑

i=1

(xi − x̄)(yi − ȳ).

(2)
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The small positive constants ǫ1, ǫ2 ≪ 1 are added for numerical stability and
can be adjusted to accomodate the perception of the human visual system. It
will be convenient to denote the special case where these parameters are zero as
follows,

S0(x,y) =
4x̄ȳsxy

(x̄2 + ȳ2)(s2
x

+ s2
y
)
. (3)

The functional form of the component S1 in Eq. (1) was originally chosen in an
effort to accomodate Weber’s law of perception [9]; that of S2 follows the idea
of divisive normalization [7].

Note that −1 ≤ S(x,y) ≤ 1, and S(x,y) = 1 if and only if x = y. The
component S1(x,y) measures the similarity between the means of x and y: If
x̄ = ȳ, then S1(x,y) = 1, its maximum possible value. This will be important
in the discussion below.

Unless otherwise specified, we consider x to be a given signal and y to be
an approximation to x. We shall generally consider y to be an element of a
particular subset A ⊂ RN – details to be given below – and look for solutions
to the problem

yA = arg max
y∈A

S(x,y). (4)

In the case A = RN , y = x and S(x,y) = S(x,x) = 1.
We start with a set of (complete) orthonormal basis functions RN , to be de-

noted as {ψ0, ψ1, · · · , ψN−1}. We assume that only the first element has nonzero
mean: ψk = 0 for 1 ≤ k ≤ N − 1. We also assume that ψ0 is “flat”, i.e., con-
stant: ψ0 = N−1/2(1, 1, · · · , 1), which accomodates the discrete cosine transform
(DCT) as well as Haar multiresolution system on RN .

The L2-based expansion of x in this basis is, of course,

x =

N−1
∑

k=0

akψk, ak = 〈x, ψk〉, 0 ≤ k ≤ N − 1. (5)

It follows that

x̄ = a0N
−1/2. (6)

The expansions of the approximation y will be denoted as follows,

y = y(c) =
N−1
∑

k=0

ckψk, (7)

where the notation y(c) acknowledges the dependence of the approximation on
the coefficients ck. It also follows that

ȳ = c0N
−1/2. (8)

In this study, the approximation spaces A in (4) will be the spans of subsets
of the set of basis functions {ψk}

N−1
k=0 which include ψ0: From (6) and (8), the
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inclusion of ψ0 automatically maximizes component S1(x,y) of the SSIM func-
tion. At this point, we do not specify exactly which other ψk basis functions will
be used, but consider all possible subsets of M < N basis functions:

A = span{ψ0, ψγ(1), · · · , ψγ(M−1)}, (9)

where γ(k) ∈ {1, 2, · · · , N − 1} and cγ(M) = · · · = cγ(N−1) = 0. Of course, we
are interested in finding the optimal M -dimensional subset, in the SSIM sense.

Before studying optimal SSIM approximations, however, it is most helpful to
review the well-known L2-based case.

Proposition 1. For a given x ∈ RN , the M coefficients ck of the optimal L2-
based approximation y ∈ A to x are given by c0 = 〈x, ψ0〉 and the M − 1
remaining Fourier coefficients ak = 〈x, ψk〉 of greatest magnitude, i.e.,

ck = aγ(k) = 〈x, ψγ(k)〉, 1 ≤ k ≤M − 1, (10)

where |aγ(1)| ≥ |aγ(2)| ≥ . . . ≥ |aγ(M−1)| ≥ |al| with l ∈ {1, 2, · · · , N − 1} \
{γ(1), · · · , γ(M − 1)}.

Proof. For an arbitrary c ∈ RN , let ∆(x,y(c)) = ‖x − y(c)‖2, the L2 error
of approximation of x by y(c). For any p ∈ {0, 1, 2, · · · , N − 1}, consider the
change in this error produced by altering the coefficient cp by ǫ, i.e., c → c+ǫêp.
Because the squared L2-error is a quadratic form in the ck, its Taylor series in ǫ,

∆2(x,y(c + ǫêp)) = ∆2(x,y(c)) + ǫ
∂

∂cp
∆2(x,y(c)) + · · · , (11)

is finite – in fact, a quadratic polynomial:

∆2(x,y(c + ǫêp)) = ‖x− y(c)‖2
2 + 2ǫ(cp − 〈x, ψp〉) + ǫ2. (12)

We see that the only stationary point occurs when cp = ap = 〈x, ψp〉 and that it
is, in fact, a global minimum. Since ψ0 is a basis element of A, we set c0 = a0 =
〈x, ψ0〉. Now, for some choice of distinct M − 1 indices γ(k) ∈ {1, 2, · · · , N − 1},
set ck = aγ(k), 1 ≤ k ≤M − 1, and cl = 0 otherwise. Then

‖x− y(c)‖2
2 = ‖x‖2

2 − 2

N−1
∑

k=0

ck〈x, ψk〉 +

N−1
∑

k=0

c2k

= ‖x‖2
2 − a2

0 −
M−1
∑

k=1

a2
γ(k). (13)

Clearly, the smallest L2 approximation error is produced if the M−1 coefficients
aγ(k) in Eq. (13) are those with the largest magnitudes. �

We now consider the optimal SSIM-based approximation of an element x ∈
RN in the M -dimensional subspace A defined in Eq. (9).
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Proposition 2. The coefficients of the optimal SSIM-based approximation of x

in the M -dimensional subspace A defined in Eq. (9) are given by

c0 = a0, cγ(k) = αaγ(k) for 1 ≤ k ≤M − 1, (14)

where the aγ(k) = 〈x, ψγ(k)〉 are the M − 1 optimal L2-based coefficients from
Proposition 1 and the scaling coefficient α is given by

α =
−ǫ2 +

√

ǫ22 + ( 4
N−1

∑M−1
k=1 a2

γ(k))(s
2
x

+ ǫ2)

2
N−1

∑M−1
k=1 a2

γ(k)

. (15)

Proof. Without loss of generality, we assume that the last N −M coefficients ck
are zeros. After some simple algebra, we find that

sxy =
1

N − 1

N−1
∑

k=1

akck and s2
y

=
1

N − 1

N−1
∑

k=1

c2k. (16)

The dependence of the SSIM function in Eq. (1) on the ck is as follows: (i) the
first term in Eq. (1) depends only on the coefficient c0 and (ii) the second term
in Eq. (1) is independent of c0. The choice c0 = a0 maximizes the first term in
Eq. (1), giving it the value of 1. In terms of the remaining ck,

S(x,y(c)) =
2

N−1

∑M−1
k=1 akck + ǫ2

s2
x

+ 1
N−1

∑M−1
k=1 c2k + ǫ2

. (17)

We now look for stationary points which will be candidates for solutions to the
approximation problem in (4). Logarithmic differentiation yields the following
partial derivatives with respect to ck for 1 ≤ k ≤M − 1:

∂S

∂ck
= S

[

2x̄

2x̄ȳ + ǫ1

∂ȳ

∂ck
+

2

2sxy + ǫ2

∂sxy

∂ck

−
2ȳ

x̄2 + ȳ2 + ǫ1

∂ȳ

∂ck
−

1

s2
x

+ s2
y

+ ǫ2

∂s2
y

∂ck

]

. (18)

After some additional (yet simple) algebra, we obtain the following conditions
for a stationary point,

∂S

∂ck
=

S

N − 1

[

2ak

2sxy + ǫ2
−

2ck
s2
x

+ s2
y

+ ǫ2

]

= 0, 1 ≤ k ≤M − 1. (19)

If ap = 0 for any 1 ≤ p ≤M − 1, then cp = 0. Otherwise, we have that

ak

ck
=

2sxy + ǫ2
s2
x

+ s2
y

+ ǫ2
, 1 ≤ k ≤M − 1. (20)

Note that the RHS of each equation is independent of k, implying that

a1

c1
=
a2

c2
= · · · =

aM−1

cM−1
= C (constant). (21)
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Hence
ck = αak for 1 ≤ k ≤M − 1, (22)

where α = 1/C. We now rewrite Eq. (20) as follows,

(2sxy(c) + ǫ2)ck = (s2
x

+ s2
y
(c) + ǫ2)ak, (23)

and employ (22) and the expansions in Eq. (16) to arrive at the following quadratic
equation in α:

2α2

N − 1

M−1
∑

k=1

a2
k + αǫ2 = s2

x
+

α2

N − 1

M−1
∑

k=1

a2
k + ǫ2. (24)

The roots of this equation are

α1,2 =
−ǫ2 ±

√

ǫ22 + ( 4
N−1

∑M−1
k=1 a2

k)(s2
x

+ ǫ2)

2
N−1

∑M−1
k=1 a2

k

. (25)

Notice that α1 ≥ 1 and α2 ≤ −1. Substituting ck = α1,2ak into Eq. (17) we
observe that α1 and α2 correspond to the scaling factors for, respectively, a local
maximum and a local minimum.

Now that the natures of the critical points have determined, we examine
the behaviour of S(x,y) “on the boundaries,” i.e., as |ck| → ∞. In this case,
|S(x,y)| → 0, which allows us to conclude that ck = α1ak at the global maxi-
mum, thus proving Eq. (15). For the remainder of the proof, we let α = α1.

For a given M < N , it now remains to determine which subset of M − 1
coefficients ck should be chosen in order to maximize the structural similarity
S(x,y(c)). The global maximum value of the structural similarity, which we
denote as Smax, is found by substituting ck = αak, 1 ≤ k ≤ M − 1, into
Eq. (17):

Smax(x,y(c)) =
2α

N−1

∑M−1
k=1 a2

k + ǫ2

s2
x

+ α2

N−1

∑M−1
k=1 a2

k + ǫ2
. (26)

From Eq. (24), we have the interesting result that

Smax(x,y(c)) =
1

α
. (27)

Substitution of this result into Eq. (26) yields a quadratic equation in Smax.
Only the positive root of this equation is admissible and it is given by

Smax(x,y(c)) =
ǫ2 +

√

ǫ22 + ( 4
N−1

∑M−1
k=1 a2

k)(s2
x

+ ǫ2)

2(s2
x

+ ǫ2)
. (28)

From this expression, it is clear that the maximum possible value of Smax is
achieved if the M − 1 Fourier coefficients ak with the largest magnitudes are
employed in the summation. �
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A few remarks regarding these results are in order.

1. An important consequence of Proposition 2 is that the optimal SSIM-based
approximation y(c) of x may be obtained by first computing the best L2

approximation of x that includes ψ0 (which is almost always the case), then
setting c0 = a0 and finally scaling the remaining Fourier coefficients accord-
ing to Eqs. (14) and (15).

2. Since c0 = a0, it follows that x̄ = ȳ(c). Regarding the other coefficients, the
fact that the scaling factor α > 1 for M < N implies that the SSIM-based
approximation y represents a contrast-enhanced version of x.

3. In the special case that ǫ2 = 0, the optimal scaling factor α in Eq. (15) has
the simple form

α =

[

N−1
∑

k=1

a2
k

]1/2 [

M−1
∑

k=1

a2
k

]−1/2

. (29)

4. In the special case M = N , we have α = 1 and Smax = 1, as expected since
there is no approximation, i.e., y = x.

5. The existence of such a simple analytic solution to this problem is made pos-
sible by the simplicity of the approach – we have been considering “global”
SSIM, i.e., the entire signal/image (or block), as opposed to “local SSIM”
where overlapping patches/neighbourhoods are employed. In the latter case,
the derivatives of the SSIM function with respect to the ck coefficients are not
as straightforward. The above approach applies directly to (nonoverlapping)
block-based coding, which includes DCT and Haar wavelet coding.

6. The assumption that the first function ψ0 is “flat” may be relaxed, in which
case Eqs. (6) and (8) would have to be modified. This, however, will not
change the condition that c0 = a0 in the SSIM-optimality condition.

We finally remark that SSIM-based approximation (with no stability con-
stants) may be viewed as a kind of (inverse) variance-weighted L2 approximation
of signals after their means have been subtracted out, as shown by Richter and
Kim [5]. To see this result, let x,y ∈ RN and define x0 = x− x̄ and y0 = y− ȳ

so that x̄0 = ȳ0 = 0. Then

‖x0 − y0‖
2 =

N
∑

k=1

(x0,k − y0,k)2

= (N − 1)[s2
x0

+ s2
y0

− 2sx0y0
]. (30)

From this, the definition of the SSIM function S0(x,y) in Eq. (1) and a little
algebra, we find that

1 − S0(x0,y0) =
1

N − 1

‖x0 − y0‖
2

s2
x0

+ s2
y0

. (31)

This, along with Proposition 2, gives an idea of the link between L2- and SSIM-
based approximations.
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3 SSIM-based image reconstruction from a constrained
number of DCT coefficients

Proposition 2 provides a very simple procedure to optimize L2-based expansions
from the SSIM point of view. The procedure, however, has very limited applica-
bility. When the the same number M of coefficients are employed in the L2- and
SSIM-based optimizations, we find that the latter generally yields very little, if
any, noticeable improvement in perceptual quality. Indeed, the greatest increase
in the SSIM value is usually found for small values of M , in which case both the
L2- and SSIM-based optimizations yield poor approximations.

On the other hand, SSIM-based optimization may yield significant improve-
ments in perceptual quality when it is employed to decide the allocation of a
prescribed number of coefficients/bits. We illustrate below with an application
to the block-based discrete cosine transform (DCT).

Our simple algorithm starts with the set of zeroth-order coefficients for all
blocks. The goal is to add K of the remaining higher-order DCT coefficients to
this set. At each step of the selection process, we estimate the gain in structural
similarity (with respect to the original image, using the original DCT coeffi-
cients) produced by adding a DCT coefficient that has not yet been employed.
The unused coefficients from all blocks of the image are examined. The DCT
coefficient yielding the greatest increase in the SSIM is then added to the set.
For comparison, we perform a similar algorithm in which the decrease in the L2

error of approximation is used as the criterion for selection at each step.

We define the following quantities:

1. BSSIM: the average value of the structural similarities, (Eq. 1), of all non-
overlapping blocks of the image,

2. MSSIM: the average of the weighted SSIM, computed with a Gaussian sliding
window with the parameters as in [9]. Our method will give us a BSSIM-
optimal reconstructed image, but not necessarily a MSSIM-optimal image,

3. xi: the i-th block of the image x being approximated,

4. V i
Ki

:=
1

N − 1

Ki
∑

k=1

(ai
γ(k))

2: the variance of the DCT approximation of the xi

using Ki non-zero higher-order DCT coefficients.

5. ci
Ki

: the set of Ki non-zero higher-order coefficients which, along with the

zeroth-order coefficient, define the SSIM-based approximation yi to block xi.

For a given block xi, the gain in structural similarity produced by adding
the first non-zero coefficient, ci1, is, from Eq. (28),

S(xi,yi(ci
1)) − S(xi,yi(ci

0)) =

√

ǫ22 + 4V i
1 (s2

xi + ǫ2) − ǫ2

2(s2
xi + ǫ2)

. (32)
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For a given block xi, the gain in SSIM produced by adding the coefficient ciKi+1

(Ki > 0) to the existing set of SSIM-optimized DCT coefficients is given by

S(xi,yi(ci
Ki+1)) − S(xi,yi(ci

Ki
)) =

√

ǫ22 + 4V i
Ki+1(s

2
xi + ǫ2) −

√

ǫ22 + 4V i
Ki

(s2
xi + ǫ2)

2(s2
xi + ǫ2)

. (33)

After examining all blocks, the coefficient ci
∗

Ki∗+1 yielding the highest gain in
SSIM, according to either Eq. (32) (Ki∗ = 0) or Eq. (33) (Ki∗ > 0) is then added
to the set. The algorithm is terminated when K coefficients have been added.

As an example, the 512×512 8bpp Lena test image was decomposed with the
discrete cosine transform (DCT) over 8×8 nonoverlapping pixel blocks. In Fig. 1
are shown the results for a “total budget” of K = 10, 000 non-zero higher-order
coefficients. (4096 zeroth-order ci0 coefficients are also employed in the expansion,
but not counted, in this simple scheme.) In the first row of this figure, we show
(a) the original Lena image, (b) the “BSSIM map” of the optimal BSSIM DCT
approximation and (c) the “BSSIM map” of the optimal L2 DCT approximation
that employs the same budget. In (b) and (c), the greyscale assigned to each
block is proportional to its SSIM value, with black representing 0, and white
representing 1.

Note that the BSSIM map in (b) is, for the most part, “lighter” than that
in (c) which, of course, is expected, since the former corresponds to SSIM opti-
mization. However, there are some blocks, most notably those containing edges,
in which the SSIM values of (b) are lower than those of (c). This is revealed in
the lower portion of Fig. 1, where three representative patches – (i) a part of the
hat, (ii) the face and (iii) the shoulder – of the Lena image are presented. In the
first column are shown the three patches from the original image. The second
column of the array presents the patches from the SSIM-optimized image. The
third column shows the patches from the L2-optimized image. We see that the
BSSIM-optimized approximation demonstrates less blocking effects on smooth
regions than its L2-optimized counterpart. It also preserves more details such
as the fine textures of the hat – in fact, the improvement afforded by the SSIM
method over the L2 method is quite remarkable here.

On other hand, the BSSIM-optimized approximation performs less efficiently
on edges. Here, the contrasts – as determined by the scaling factor α for each
block – are too large, giving rise to noticeable blocking effects. This could be
explained in part by the fact that the BSSIM-optimal image enhances the con-
trast of the image locally on each block without taking neighbouring blocks
into account. An MSSIM-optimized approximation could correct such blocking
problems around edges.

The excessively large contrasts exhibited in these blocks may also be due to
a small number of coefficients being assigned to them in the BSSIM procedure,
with its “total bit budget” for the entire image. From Proposition 2, the scaling
function α in Eq. (15) is greater than one, and approaches one as the number
of coefficients M approaches N , the size of the block. In the case M = 2 (corre-
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(a) (b) (c)

Fig. 1. Top row. (a): Original 512×512 8bpp Lena image. (b): BSSIM map of BSSIM-
optimized block-DCT approximation of Lena with 10, 000 non-zero higher-order DCT
coefficients. (c): BSSIM map of L2-optimized block DCT approximation of Lena with
10, 000 non-zero higher-order DCT coefficients. Bottom rows. First column: Patches
of the original image. Second column: Patches of the BSSIM-optimized image. Third
column: Patches of the L2-optimized image. Second row: Hat, cropped from (81, 169)
to (176, 264). Third row: Face, cropped from (257, 257) to (362, 362). Fourth row:
Shoulder, cropped from (401, 289) to (496, 384).
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sponding to only one higher-order coefficient), it is not too hard to show that,
for small ǫ2 and nonzero sx, α ≈ sx. This implies that blocks with large variance
– typically those with edges – can have large α values when a low number of
coefficients is being used. This feature is demonstrated in the figure, particularly
along the shoulder.

In Fig. 2 are presented plots of the BSSIM values vs. the number of non-zero
coefficients for the SSIM- and L2-based optimization methods. For this particular
example, we see that the greatest increase in BSSIM from the L2-based method
occurs when the number K of non-zero higher-order coefficients is between 2000
and 3000. As K increases toward 10,000, the difference between the two methods
decreases.

Fig. 2. Graphs of the BSSIM values of the BSSIM-optimized and L2-optimized 8 × 8
block-DCT approximations of Lena image, as a function of the number of non-zero
higher-order DCT coefficients employed.

4 Concluding remarks

We have mathematically examined the problem of SSIM-based approximations of
signal/image blocks in terms of an orthogonal basis. In general, the non-convex
nature of the SSIM function complicates optimization problems. In this case,
however, a closed-form solution can be found since the partial derivatives of the
SSIM function with respect to the expansion coefficients are rather straightfor-
ward and stationary points can be determined. The optimal SSIM approximation
is found to be related to the well-known optimal L2 approximation in a quite sim-
ple manner: The zeroth-order coefficients of both expansions are the same, and
higher-order SSIM coefficients are obtained from their Fourier counterparts by
simple scaling. On its own, this algorithm does not yield any significant improve-
ment in the usual L2-optimized expansions. But we have shown its potential use
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in the construction of approximations that are subject to fixed “bit budgets.”
Only a simple example was studied here – there are many possibilities for further
exploration, including coding/compression and enhancement.

The results of Section 2 have inspired an investigation of more general cases
which will be reported elsewhere. These cases include a generalization of the
basis set to the nonorthonormal and overcomplete cases. Other avenues of future
research include the combination of SSIM-optimization with prior image models
in a Bayesian framework.
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