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Abstract. Local phase coherence (LPC) is a recently discovered prop-
erty that reveals the phase relationship in the vicinity of distinctive fea-
tures between neighboring complex filter coefficients in the scale-space. It
has demonstrated good potentials in a number of image processing and
computer vision applications, including image registration, fusion and
sharpness evaluation. Existing LPC computation method is restricted to
be applied to three coefficients spread in three scales in dyadic scale-
space. Here we propose a flexible framework that allows for LPC compu-
tation with arbitrary selections in the number of coefficients, scales, as
well as the scale ratios between them. In particular, we formulate local
phase prediction as an optimization problem, where the object function
computes the closeness between true local phase and the predicted phase
by LPC. The proposed method not only facilitates flexible and reliable
computation of LPC, but also demonstrates strong robustness in the
presence of noise. The groundwork laid here broadens the potentials of
LPC in future applications.
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1 Introduction

Phase information plays a crucial role in preserving important structural features
in various types of signals, including 1D (e.g., speech), 2D (e.g., still images) and
3D (e.g., video or volume data) signals. For example, if the Fourier transform
domain amplitude and phase spectra of two images are interchanged, the result-
ing hybrid image is recognized from which the phase spectrum is taken [1]. In
understanding the structures of natural images, however, global Fourier phase
may not be the best option, because natural images tend to be non-stationary,
with different sizes and shapes of smooth or periodic regions, and distinctive fea-
tures (such as edges and lines) between them. Furthermore, physiological studies
suggest that many neurons located in the visual cortex are best models as filters
localized in space, frequency and orientation. As a result, local phase is a more
plausible quantity in cortical encoding and processing. In terms of image pro-
cessing and understanding, it is also a better tool in describing the structures of
natural images.
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In the pioneering work in studying the relation between congruence of local
phases [2, 3], a local energy model was introduced which postulates that in a
waveform which have unique perceptual significance as “lines” and “edges”, the
Fourier components come into phase with each other at these feature points.
Based on this observation, it was suggested that the visual system could locate
features of interest by searching for maxima of local energy points, and identify
the feature type by evaluating the value of arrival or local phase at that point [2,
3]. Almost all work thereafter concentrated on finding points of maximal phase
congruency by looking for maxima in local energy. In [4], a direct measure of
phase congruency was proposed, where a phase congruency measure is computed
as a dimensionless quantity that is invariant to changes in image brightness or
contrast and thus provides an absolute measure of the significance of feature
points. Through the use of wavelets, an extension from 1D to 2D phase con-
gruency calculation is also developed [4]. Local phase based method has also
been employed in a number of computer vision and image processing problems,
including estimation of image disparity [5] and motion [6][7], description of im-
age texture [8], recognition of persons using iris patterns [9], and video quality
assessment [10].

In [11], the local phase structures at distinctive features were examined in
more depth. The local phase coherence (LPC) relationship was first discovered,
which not only predicts the alignment of phases across scales at the location of
features (as found in earlier work), but also describes the full structure of local
phase pattern in scale-space in the vicinity of feature location. It was suggested
in [11] that the LPC relation could lead to a new theory in the perception of blur,
and may have deeper implications on how the visual system could “see beyond
the Nyquist rate”. Since the introduction of LPC, it has been found to be useful
in a number of applications, including image registration [12], fusion [13] and
sharpness evaluation [14]. One common limitation in all existing applications is
that the LPC can only be computed with 3 coefficients spread in 3 scales in
dyadic scale-space. This restricts its application, especially when one would like
to have a closer examination of LPC relationship in the scale-space where smaller
(and fractional) scale ratios are desired. The purpose of the current study is to
develop a flexible methodology in computing LPC and thus extends its potentials
in real applications.

2 Local Phase Coherence and Computation

2.1 Local Phase Coherence

The concept of LPC is built upon complex wavelet analysis tools that provide
localized magnitude and phase information in multi-scales. Given a signal f(x)
localized near the position x0, where f(x) = f0(x − x0), a general complex
wavelet transform may be written as:

F (s, p) =

∫ ∞
−∞

f(x)w∗s,p(x)dx =

[
f(x) ∗ 1√

s
g
(x
s

)
eωcx/s

]
x=p

, (1)
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Fig. 1: (a) Local phase coherence structure near localized feature. (b) An example
of 1D sampling grid in scale-space.

where s ∈ R+ is the scale factor, p ∈ R is the translation factor, and the family
of wavelets are derived from the mother wavelet w(x) = g(x)ejωcx by

ws,p(x) =
1√
s
w

(
x− p
s

)
=

1√
s
g

(
x− p
s

)
eωc(x−p)/s , (2)

where ωc is the center frequency of the modulated band-pass filter, and g(x) is
a slowly varying and symmetric envelop function. Here the wavelet is considered
general because we do not specify g(x), which has many different options but
the theory derived here applies to all.

Using the convolution theorem, and the shifting and scaling properties of the
Fourier transform, we can derive:

F (s, p) =
1

2π
√
s

∫ ∞
−∞

F0

(ω
s

)
G(ω − ωc) ejω(p−x0)/sdω , (3)

where F (ω), F0(ω) and G(ω) are the Fourier transforms of f(x), f0(x) and g(x),
respectively. The phase of F (s, p) depends on the nature of F0(ω). If F0(ω)
is scale invariant, meaning that F0(ω/s) = K(s)F0(ω), where K(s) is a real
function of only s, but independent of ω, then it is not hard to find that:

F (s, p) =
K(s)√
s
F (1, x0 +

p− x0
s

) . (4)

Since both K(s) and s are real, we obtain the following phase relationship of
F (s, p):

Φ(F (s, p)) = Φ(F (1, x0 +
p− x0
s

)) . (5)
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This result indicates that there is a strong phase coherence relationship across
scale and space, where equal phase contours in the (s, p) plane form straight lines
that converge exactly at the location of the feature x0, as illustrated in Fig. 1(a).
These straight lines are defined by x0 + (p− x0)/s = C, where C is a constant.
Note that this result is based on the assumption that f0 is a scale invariant
signal, which turns out to be true for distinctive features (such as an impulse or
a step edge in a 1D signal, or an edge or line in a 2D image). Therefore, LPC
measurement can be used to detect distinctive features in a signal.

2.2 Computation of Local Phase Coherence

If the LPC relationship is satisfied at a spatial location, then the phase of a
wavelet coefficient may be predicted by the phases of its neighboring coefficients
in the scale-space. Conversely, the prediction accuracy could be used as a measure
of the strength of LPC. This approach was first employed in [11]. An example
in shown in Fig. 1(b), where the finest scale coefficients ci for i = 1, 2, 3, 4 can
be predicted from their coarser scale neighbors a, b1 and b2. For example,

Φ̂(c1) = −2Φ(a) + 3Φ(b1) . (6)

Although such prediction can lead to useful measures of the strength of LPC
and has been successfully used in several applications [11–14], it is limited to
grouping three coefficients at a time that are separated into three scales with
fixed scale ratio of 2 between successive scales, as exemplified in Fig. 1(b). Here
we propose a novel framework that allows for more flexibility in the computation
of LPC. Let us consider a group of N coefficients ai for i = 1, ..., N , each of which
is a sample of F (s, p) at (si, pi), i.e., ai = F (si, pi). If the LPC relationship is
satisfied, then we should be able to best predict the phases of these coefficients,
i.e., the error between the predicted and true phases should be minimized. The
simplest form of an error function is the mean squared error

E1 =
1

N

N∑
i=1

(
Φ(ai)− Φ̂(ai)

)2
. (7)

Note that for distinctive features such as a line or a step edge, the phase pattern
in the scale-space can be approximated using a functional form. For example, in
the case of a step edge f0(x) = K[u(x)− 1

2 ], we have:

Φ̂(F (s, p)) ≈ wc(p− x0)

s
− π

2
+ n1π , (8)

where the constant term (−π2 here) depends on feature type, for another ex-
ample, in the case f0(x) = Kδ(x), the constant is 0. Assuming that a set of
coefficients are aligned at the same position p but across consecutive scales
si = 1, r, r2, ....rN−1, where r is the scale ratio between successive scales that
may be any fractional number greater than 1. Further, we simplify the phase
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prediction expression by denoting Qp = wc(p−x0). Then the problem of solving
for best phase prediction is converted to

Q(opt)
p = arg min

Qp

E1 . (9)

This can be solved by setting ∂E1/∂Qp = 0 and solve for Qp, which leads to the
following closed-form solution

Q(opt)
p =

∑N
i=1 r

(n−i) (Φ(ai) + π
2

)∑N
i=1 r

2(i−1)
. (10)

In the case that the coefficients in scale-space are located at more than one
position, say M , then we can solve for a series of Qp values Qp1 , Qp2 , ...., QpM
using similar approaches. After computing all Qp values, we will be able to
calculate the predicted phases for all coefficients. We can then define an LPC
measure as

PC1 =
<
{∏

i aie
−jΦ̂(ai)

}
∏
i |ai|+ C1

=
<
{∏

i |ai|ej[Φ(ai)−Φ̂(ai)]
}

∏
i |ai|+ C1

, (11)

where the numerator is the real part of the phase prediction error in the com-
plex plane weighted by the coefficient magnitude, so that the coefficients with
higher magnitudes are given more importance. The result is normalized by the
magnitude of the coefficients. C1 is a small positive constant in order to stabilize
the measurement when the signal is close to flat, in which case the coefficients
have near zero magnitudes. This measurement states that if the predicted phases
are very close to the actual phases and the signal is significant (such that their
magnitude is significantly larger than the constant C1), then we achieve good
LPC with a PC1 value close to 1. At the other extreme, if the predicted phases
are perpendicular to the true phases, then the value of PC1 will be close to 0.

Although the above method and solution is elegant in the sense that it offers
closed-form analytical solution, it does not give us satisfactory results in our
experiments. This may be partially due to the 2π wrap-around effect of angular
variables (for which direct least square error function is deemed not appropriate).
It may also be because the constant terms in the phase prediction form (e.g.,
Eq. (8)) varies for different types of features. For example, the −π2 term in
Eq. (8) would be +π

2 for a step edge f0(x) = K[ 12 − u(x)] and 0 for an impulse
f0(x) = Kδ(x).

To overcome the above problems, we define a new error energy function
between the true and predicted phases as follows

E2 =

[
1− 1

N

N∑
i=1

cos
(

4Φ(ai)− 4Φ̂(ai)
)]2

. (12)

The trick here is to multiply the angles by a factor of 4. This eliminates the am-
biguities between the types of features because all the feature-dependent phase
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constants (such as the −π2 term in Eq. (8)) are raised to a multiplier of 2π. In
addition, the use of the cosine function in Eq. (12) avoids the 2π wrap-around
effect of angular variables. Notice that when the phase prediction is in effect, the
difference 4Φ(ai)−4Φ̂(ai) will be either close to 0 or a multiplier of 2π, and thus
the cosine of it will be close to 1. Consequently, the total error energy function
E2 will be close to 0.

Fig. 2: An example of the search space of E2 against Qp.

Fig. 3: (a) Original signal; (b) calculated LPC using Eq. (13)

Although the definition of E2 has many good properties, it is a difficult
function to optimize. For example, finding Qp using a closed-form solution like
Eq. (10) is difficult. Indeed, E2 could be a fairly complicated function. An exam-
ple is shown in Fig. 2, where the function of E2 with respect to Qp is smooth but
has many local minima. In our implementation, we use an iterative numerical
method to minimize the function, where the full search range is divided into
8 equally spaced segments, each associated with a different initial point at the
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center of the segment as the initial guess in the iteration. This results in multiple
local minima, and then the global minimum is obtained by picking the lowest
local minima. Finally, the LPC is computed by

PC2 =
<
{∏

i(ai)
4e−j4Φ̂(ai)

}
∏
i |(aj)4|+ C2

=
<
{∏

i |(ai)|4ej4(Φ(ai)−Φ̂(ai))
}

∏
i |(aj)|

4
+ C2

. (13)

Similar to Eq. (11), C2 is a positive stabilizing constant, and this is an energy
weighted phase consistency measure, where the maximal value is achieved if all
phase predictions are perfect. Fig. 3(a) shows a simulated signal with ideal step
edges, and Fig. 3(b) gives the LPC computation result using Eq. (13). It can be
seen high PC2 values are achieved (high peaks) at the step edges.

3 Simulations

In this section we will present several experiments meant to gauge the perfor-
mance and robustness of the proposed technique for LPC computation. Although
the experiments were carried out in 1D (which helps us better visualize the per-
formance of the algorithm), similar techniques can also be applied to 2D or
higher dimensional signals.

(a) (b) (c)

Fig. 4: LPC computation by grouping local coefficients in three different ways.

The first experiment aims to demonstrate the flexibility of our framework
in picking arbitrary group of neighboring coefficients in LPC computation. The
upper figures in Fig. 4 show three different selections of complex wavelet coeffi-
cients in the scale-space, where the coefficients spread in three scales and up to
five spatial locations. The scale ratios between successive scales are fixed at 2.
The lower figures show the LPC measure PC2 computed as a function of space
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for the signal in Fig. 3(a). Despite the quite different coefficient grouping, it can
be observed that the resulting phase coherence functions are approximately the
same. This result suggests that in practice, LPC can be computed in the complex
wavelet transform domain with any coefficient setup, and may also be useful in
the applications where only partial information of the local phase measurement
is available.

(a) r = 1.223 (b) r = 1.414 (c) r = 1, 1.4, 1.2

Fig. 5: LPC computation for a signal by using fractional scale ratios between
coefficients. (a) Fixed scale ratio of r = 1.223 between 3 consecutive scales; (b)
Fixed scale ratio of r = 1.414 between 3 consecutive scales; (c) Varying scale
ratio r = 1.4 between the first 2 scales and r = 1.2 between the second and third
scales.

The second experiment demonstrates the flexibility in picking scale ratios
between successive scales. Most existing wavelet transforms were designed in
dyadic scale-space, i. e., the scale ratio between successive scales is fixed at 2.
From the derivations in the last section, this should not be a necessary condition
in the computation of LPC. The scale ratio can be any other fractional number
greater than 1. Even further, the scale ratio does not have to be the same between
Scales 1 to 2 and Scales 2 to 3. Figure 5 shows the resulted phase coherence
using different setup of scale ratios. In the first two example, the scale ratios are
fixed across three scales but are fractional numbers of r = 1.223 and r = 1.414,
respectively. In the third example, the scale ratio is varying between the first two
scales r = 1.4 and the last two scales r = 1.2. In all three cases, the resulting
PC2 functions are almost the same when applied to the same signal. This is a
useful feature in practical applications because real world signals often contain
mixtures of many distinctive features, and thus local measurement up to coarse
scales often suffers from interference from nearby features. If the scale ratios can
be fractional (preferably less than 2), then we will be able to carry out closer
scale-space analysis of local features and avoid interference from nearby features.

The last experiment is concerned about the impact of noise on our LPC
computation. Figure 6 shows the PC2 function computed for a signal contam-
inated with additive white Gaussian noise at three noise levels. It can be seen
that the LPC computation successfully detects the distinctive features (edges
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(a) σn = 0.01 (b) σn = 0.05 (c) σn = 0.1

Fig. 6: LPC computation in the presence of additive white Gaussian noise, with
noise standard deviation equaling (a) σn = 0.01, (b) σn = 0.5, and (c) σn = 0.1.

and impulse) in all three cases, showing its strong robustness to noise (though
the heights of LPC values may be moderately affected by heavy noise). This is
another useful feature in practical applications, where many other techniques
(e.g., derivative or gradient based edge detectors) are often sensitive to noise
contaminations.

4 Conclusion

The purpose of this work is to extend the theory and methodology of local phase
coherence, so that it can be converted to more practical techniques that can be
applied to various signal processing applications for the analysis of signals and
the detection of features. The major contribution of the current work as opposed
to existing LPC computation is to formulate the problem using an optimization
framework. Several technical issues have been studied in order to overcome a
series of problems encountered in formulating the optimization problem and
in finding the optimal solutions. The resulting LPC computation exhibits sig-
nificantly broadened flexibilities such that it can be computed with arbitrary
grouping of neighboring complex wavelet coefficients spread at any fractional
scale ratios between successive scales. It also demonstrates strong robustness to
noise. These flexibilities make our approach desirable in many potential applica-
tions, especially in the cases when multiple features exist and are close to each
other, when only partial information of local phases is available, and/or when
significant noise exists in the signal. Our future work is to apply the methodol-
ogy developed in this work to practical signal and image applications, such as
those in [12–14], so as to better exploit the advantages of LPC.
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