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Abstract. There has been an increasing number of tone mapping algo-
rithms developed in recent years that can convert high dynamic range
(HDR) to low dynamic range (LDR) images, so that they can be visual-
ized on standard displays. Nevertheless, good quality evaluation criteria
of tone mapped images are still lacking, without which, different tone
mapping algorithms cannot be compared and there is no meaningful di-
rection for improvement. Although subjective assessment methods pro-
vide useful references, they are expensive and time-consuming, and are
difficult to be embedded into optimization frameworks. In this paper,
we propose a novel objective assessment method that combines a multi-
scale signal fidelity measure inspired by the structural similarity (SSIM)
index and a naturalness measure based on statistics on the brightness
of natural images. Validations using available subjective data show good
correlations between the proposed measure and subjective rankings of
LDR images created by existing tone mapping operators.
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1 Introduction

The real world scenes exhibit a wide range of luminance variations. The dy-
namic range could be on the order of 10,000 to 1 from highlights to shadows
[18]. High dynamic range (HDR) images allow us to capture greater luminance
levels between its brightest and darkest regions than standard or low dynamic
range (LDR) images. A common problem that is often encountered in practice is
concerned about the visualization of HDR images − most display devices avail-
able to us have been designed to accommodate standard LDR images and cannot
preserve all information contained in HDR images. In order to visualize HDR
images using standard displays, a number of tone mapping algorithms have been
proposed that convert HDR to LDR images, for example [15, 11, 8]. It should be
noted that due to the dynamic range reduction, tone mapping operators (TMOs)
unavoidably cause information loss. So the question is, having multiple TMOs a
hand, which TMO faithfully maintains the information in the HDR image, and
which TMO produces the most natural-looking good quality LDR image?
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Subjective evaluation is the most straightforward method to assess the per-
formance of TMOs. In [7], perceptual evaluations were carried out for six TMOs
with regard to similarity and preferences. Seven TMOs were compared in [22]
using two architectural interior scene and fourteen subjects were asked to rate
basic image attributes as well as naturalness of the LDR images. A more com-
prehensive subjective experiment was performed in [6], where ten observer were
asked to rate LDR images generated by 14 TMOs in terms of brightness, con-
trast, details and colors, and also to rank the overall quality of the images. These
subjective test data are useful references in studying tone mapping algorithms.
However, subjective experiments tend to be time-consuming and expensive. In
addition, the outcome from these experiments are difficult to be incorporated
into the design and optimization of tone mapping algorithms. Moreover, sub-
jective tests may not be able to provide a complete evaluation because subject
cannot see all details of HDR images, whose information may be missing from
the LDR images and the subjects may not be aware of the existence of the
missing details.

The progress on objective assessment of tone mapped images has been quite
limited. Typical objective image quality assessment approaches assume that the
reference and test images have the same dynamic range [18], and thus are not
applicable. A dynamic range independent approach was proposed in [3], where
the authors used a visibility model of the human visual system (HVS) to com-
pare pairs of HDR-LDR images and produce quality maps, which reflect the loss
of visible features, the amplification of invisible features, and reversal of contrast
polarity. These quality maps show good correlations with subjective classifica-
tions of image degradation types including blur, sharpening, contrast reversal,
and no distortion. However, this method does not provide a single quality score
for an entire image, making it impossible to be validated with subjective evalu-
ations of overall image quality.

In this work, we aims to develop an objective quality assessment model for
LDR images using their corresponding HDR images as references. Our model
is composed of two components − structural fidelity measurement and natural-
ness assessment. The structural fidelity measure is inspired by the success of the
structural similarity (SSIM) index [18], which has been shown to be well cor-
related with perceived image quality when tested using a number of large-scale
subject-rated independent databases [19]. Its performance can be further im-
proved when incorporated into a multi-scale framework [20]. However, SSIM or
multi-scale SSIM models cannot be directly applied to compare images with dif-
ferent dynamic ranges. Our method is built upon multi-scale SSIM but is adapted
to accommodate contrast comparisons across dynamic ranges. The naturalness
assessment component in our approach is based upon brightness statistics of
natural images. Although the model is simple, it appears to be useful and espe-
cially suited to the problem we are working with, where brightness mapping is
an inevitable issue in the design of tone mapping algorithms.
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2 Proposed Method

The invisibility of HDR reference image casts big challenges to objective quality
assessment of tone mapped images. Because of the reduction of dynamic range,
TMOs are deemed not to be able to preserve all information in HDR images, and
human observers may not be aware of this. One of the most important factors
in assessing TMOs is that how much structural information is preserved after
tone mapping. In [21], we presented a novel approach to measure the structural
fidelity between HDR and its tone mapped LDR images based on the philosophy
of SSIM. However, this does not suffice to provide an overall quality evaluation
of tone mapped images because an LDR image that maintains the structural
information of the HDR image may not look natural, for example, in our study
we observed some LDR images that well maintain the structural information
in the HDR images look overly dark. Therefore, we would desire tone mapped
images that achieve the best balance between two (sometimes competing) factors
− structural fidelity preservation and high naturalness. Our quality assessment
model is thus built upon these ingredients.

2.1 Structural Fidelity

Local Structural Fidelity Assessment Our approach is derived from the
philosophy behind the design of SSIM, which is based on the belief that the
main purpose of human vision is to extract structural information from the
visual scene, and thus perceived image distortion should be predictable by a
measure of structural information loss. The original local SSIM definition in-
cludes a luminance, a contrast and a structure comparison components. Since
the local luminance and contrast between HDR and LDR images are meant to
be different, it does not make good sense to directly compare local luminance
and contrast. Let x and y be two local image patches extracted from the HDR
and LDR images respectively. Our local similarity measure is defined as

Slocal(x, y) =
2σ′xσ

′
y + C1

σ′x
2 + σ′y

2 + C1

· σxy + C2

σxσy + C2
. (1)

The second term is the structure comparison component as in SSIM, where σx,
σy and σxy are the local standard deviations and cross correlation between the
two patches in HDR and LDR images, respectively, and C1 and C2 are positive
stabilizing constants. The modified local contrast comparison method is given in
the first term, which is developed based on two considerations. First, the contrast
difference between HDR and LDR image patches should not be penalized as
long as their contrasts are both significant or both insignificant, as opposed
to comparing images with the same dynamic range, where SSIM penalizes any
change in contrast. Second, the algorithm should penalize the cases that the
contrast is significant in one of the image patches, but insignificant in the other.
The key issue here is to quantify the significance of local contrast. In order to do
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this, we pass the local standard deviation through a nonlinear mapping function
given by

σ′ =


0, σ < T1

1
2

{
1 + cos

[
π

T2−T1
(σ − T2)

]}
, T1 ≤ σ ≤ T2

1, T2 < σ ,
(2)

where T1 and T2 are two threshold values that define the ranges of insignificant
and significant contrasts, and a raised cosine function is employed to provide a
smooth transition between the two ranges. Note that when two image patches
are both significant (σ greater than T2) or both insignificant (σ smaller than T1),
the first term of Eq. (1) equals 1, and thus the Slocal measure is fully determined
by the structure comparison component in Eq. (1).

Multi-scale Assessment The local Slocal measure described above is applied
to an entire image using a sliding window approach across the image space,
resulting in a quality map that indicates the quality variation across space.
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Fig. 1. Multi-scale framework of structural fidelity assessment method.

The perceivability of image details also depends on the sampling density of
the image signal, the distance from the image to the observer, the display reso-
lution, and the perceptual capability of the observer’s visual system. In practice,
the subjective evaluation of a given image varies with these parameters. A single-
scale method as described in the previous section cannot capture such variations,
and a multi-scale method is a convenient way to incorporate HVS features and
image details at different resolutions. As in [20], we carry out signal fidelity as-
sessment using a multi-scale structure depicted in Fig. 1, where the images are
iteratively low-pass filtered and downsampled, creating an image pyramid struc-
ture [4]. The local structural fidelity map is generated at each scale, and the map
is then averaged to provide a single score for the scale by

Sl =
1
Nl

Nl∑
i=1

Slocal(xi, yi) , (3)

where xi and yi are the i-th patches in the two images being compared, and
Nl is the number of patches in the l-th scale. Fig. 2 shows examples of quality
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maps computed using the proposed multi-scale approach. Finally, the structural
fidelity measures computed at each scale are combined to a multi-scale measure
of the overall structural fidelity:

S =
L∏
l=1

Sβl

l , (4)

where L is the total number of scales and βl is the weight assigned to the l-th
scale.

  

 

 

 

 

 

  

 

 

 
 

 
 

  

 

 

 

 

 

 

 

 

(a) S = 0.9288 (S1 = 0.9371; S2 = 0.9642; S3 = 0.9524; S4 = 0.9158; S5 = 0.8286)  

 

 

 

 

 

  

 

 

 
 

 
 

  

 

 

 

 

 

 

 

 

(b) S = 0.7980 (S1 = 0.8419; S2 = 0.8573; S3 = 0.8330; S4 = 0.7795; S5 = 0.6361)

Fig. 2. LDR images and their fidelity maps and scores in five scales. The images were
created using Adobe Photoshop “Highlight compression” and “Exposure and Gamma”
methods (not optimized for quality), respectively. The structural details of the brightest
regions are missing in Image (b), but are more visible in Image (a). These are clearly
reflected in the quality maps.
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There are several parameters in the implementation of the multi-scale struc-
tural fidelity model. When computing Slocal, we set C1 = 0.01, C2 = 10, T1 =
0.5, and T2 = 4, respectively. In our test, we find that the overall performance
of our quality model is insensitive to these parameters within an order of mag-
nitude, though fine tunings are yet to be performed through carefully designed
psychophysical experiment. To create the fidelity map at each scale, we employ
a Gaussian sliding window of size 11×11 with standard deviation 1.5. When
combining the measures across scales, we set L = 5 and {βl} = {0.0448, 0.2856,
0.3001, 0.2363, 0.1333}, which follows the psychophysical experiment results re-
ported in [20]. To assess the quality of color images we first convert them from
RGB color space to Yxy space and we apply the proposed structural fidelity
measurement on luminance component Y only.

2.2 Naturalness

Tone mapping operators should be designed in a way that not only preserves
structural information but also reproduces natural looking images. However,
naturalness in general is a very subjective quantity and has not been clearly de-
fined. A large literature has been dedicated to natural image statistics and their
connections to biological vision. An excellent review can be found in [16]. Nat-
uralness has also been studied in the context of subjective quality evaluation of
tone mapped images. In [5], a subjective experiment was carried out and average
correlation coefficients between image naturalness and different image attributes
such as brightness, contrast, color reproduction, visibility and reproduction of
details, are provided. The results show that among all attributes being tested,
brightness and contrast have more correlation with perceived naturalness by
subjects. This motivates us to build our naturalness model based on these two
attributes. This choice may be oversimplifying in defining the general concept of
image naturalness, but it captures the most important ingredients of naturalness
that are related to the tone mapping evaluation problem we are trying to solve,
where brightness mapping is an inevitable issue in all tone mapping operations.

Our method is built upon statistics of good-quality natural images. We gath-
ered almost 3000 8bits/pixel natural images taken from many different scenes.
These images are available at [1, 2]. Figure 3 shows the histograms of the means
and standard deviations of these images, which are useful measures that reflect
the global luminance and contrast of images. We find that these histograms can
be well fitted using a Gaussian and a Beta probability density functions, re-
spectively, where the model parameters can be found by regression. The fitting
curves are also shown in Fig. 3. Since brightness and contrast can be considered
independent quantities in terms of both natural image statistics and biological
computation [13], their joint probability density function would be the product
of the two. Therefore, we define our naturalness measure as

N =
1
K
Pp Pc , (5)



Objective Assessment of Tone Mapped Images 7

where K is a normalization factor given by K = max{Pp Pc}, such that the
naturalness measure is bounded between 0 and 1.
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Fig. 3. Histograms of (a) means (fitted by Gaussian PDF) and (b) standard deviations
(fitted by Beta PDF) of natural images.

2.3 Quality Assessment Model

Given a tone mapped LDR image, we now have two available measurements,
structural fidelity S and naturalness N , which are given by Eq. (4) and Eq. (5),
respectively. These two quantities can be used individually or jointly as a 2D
vector that characterizes different aspects of the quality of the LDR image. How-
ever, in most applications, users would prefer to have a single quality score of the
image. Therefore, an overall quality evaluation that combines both quantities is
desirable. In particular, we define the following 3-parameter function to combine
the two components

Q = aSα + (1− a)Nβ , (6)

where 0 ≤ a ≤ 1 determines the relative weights assigned to the two components,
and α and β defines the sensitivities of the two components, respectively. Since
both S and N are upper-bounded by 1, this overall quality measure is also
upper-bounded by 1. The parameters a, α and β, are left to be determined.
In our implementation, they are tuned to best reflect subjective evaluations by
utilizing machine learning techniques described next.

Machine Learning Process The parameters in Eq. (6) can be learned from
subjective quality evaluation data of tone mapped images. We were provided
with subjectively ranked databases from the authors of [17], where the subjects
were instructed to look at two LDR images at a time (produced by two differ-
ent TMOs) and then choose the one with better quality. Two groups of studies
have been carried out with such paired comparison approach. The first group
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of comparisons was conducted at Zhejiang University. 59 naive volunteers were
invited to make the paired comparisons and fill the preference matrix. The sec-
ond comparison was carried out by using Amazon Mechanical Turk, which is an
online service for subjective evaluations. Each comparison task was assigned to
150 anonymous subjects. The database includes 6 folders, each of which contains
images generated by 5 well-known TMOs, namely adaptive logarithmic mapping
[8], bilateral operator [9], uniform rational quantization [10], photoreceptor phys-
iology [15] and exposure fusion [14]. The subjective ranking scores in each folder
can then be computed using the preference matrix.

Finding the best parameters in Eq. (6) using subjective data is essentially a
regression problem. The major difference from traditional regression problems is
that here we are provided with relative ranking data between images only, but
not quality scores associated with individual images. We developed an iterative
method to learn the parameters. At each iteration, one pair of images is randomly
selected from the database. If the model produce the correct order, then there
is no change to the model parameters; Otherwise, each parameter is updated
towards the direction of correcting the ranking error. To maintain the robustness
of our approach, we carried out a cross validation process, where we divided the
database into 6 folders and chose 5 as training set and the rest for testing. We
repeat the same process 6 times, each with a different division between training
and testing sets. Although each time ends up with a different set of parameters,
they are fairly close to each other and result in the same ranking results. In the
end, we fix a = 0.8037, α = 0.3958 and β = 0.8093 as our final model parameters.

3 Validation

We used two independent subject-rated databases to test the proposed algo-
rithm. The first is the database from [17] (which has also been used for training
the parameters in Eq. (6)). We used leave-one-out cross-validation method de-
scribed in the previous section to test our model. Table 1 shows the means and
standard deviations of Kendall and Spearman rank order correlation coefficients
between subjective rankings and our model predictions.

Table 1. Cross validation based on KRCC and SRCC using subjective data from [17]

KRCC SRCC

Mean 0.7333 0.8166
Std 0.2065 0.2136

The second database is from [6, 12], where we utilized the overall quality
rankings by 10 naive subjects of 14 tone mapped images. KRCC and SRCC
between subjective rankings and our structural fidelity, naturalness and overall
quality scores are given in Table 2. Fig. 4 shows the scatter plots of the re-
sults, where rank numbers 1 and 14 correspond to the best and worst quality
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images, respectively. It can be observed that the overall quality score generally
agrees quite well with subjective rankings and is significantly better than using
structural fidelity or naturalness measures alone. It is worth mentioning that
the KRCC and SRCC values are even higher than those obtained in the training
database, implying good generalization ability.

Table 2. KRCC and SRCC evaluations based on subjective data from [6, 12]

KRCC SRCC

Structural Fidelity 0.6154 0.7967
Naturalness 0.4103 0.5606

Overall Quality 0.7692 0.8846
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Fig. 4. Comparisons of subjective ranking versus structural fidelity, naturalness and
overall quality scores using 14 tone mapped images from [6, 12].

4 Conclusion

In this paper, we proposed an objective method to assess the quality of LDR
images created from HDR images by tone mapping algorithms. The proposed
approach is based on the combination of two measures, structural fidelity and
naturalness. The structural fidelity measure follows the framework of the multi-
scale SSIM approach to assess the structural information maintained after tone
mapping operations. The naturalness criterion is designed by comparing with
luminance statistics taken from natural scenes. Our experiments demonstrate
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that the proposed measure correlates well with subjective rankings of overall
image quality. The proposed algorithm is computationally efficient and provides
not only an overall quality score, but also multi-scale fidelity maps that indicate
local structural variations across scale and space. As one of the initial attempts
in objective assessment of tone-mapped images, the proposed method is quite
promising and shows good potentials in the evaluation, design and optimization
of tone mapping algorithms.
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