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Abstract. Numerical experiments indicate that images, in general, pos-
sess a considerable degree of affine self-similarity, that is, blocks are well
approximated in root mean square error (RMSE) by a number of other
blocks when affine greyscale transformations are employed. This has led
to a simple L2-based model of affine image self-similarity which includes
the method of fractal image coding (cross-scale, affine greyscale similar-
ity) and the nonlocal means denoising method (same-scale, translational
similarity). We revisit this model in terms of the structural similarity
(SSIM) image quality measure, first deriving the optimal affine coeffi-
cients for SSIM-based approximations, and then applying them to var-
ious test images. We show that the SSIM-based model of self-similarity
removes the “unfair advantage” of low-variance blocks exhibited in L2-
based approximations. We also demonstrate experimentally that the lo-
cal variance is the principal factor for self-similarity in natural images
both in RMSE and in SSIM-based models.

Key words: self-similarity, structural similarity index, affine approxi-
mation, image model, non-local image processing

1 Introduction

The effectiveness of a good number of nonlocal image processing methods, in-
cluding nonlocal-means denoising [1], restoration [2, 3], compression [4], super-
resolution [5–7] and fractal image coding [8–10], is due to how well pixel-blocks of
an image can, in some way, be approximated by other pixel blocks of the image.
This property of natural images may be viewed as a form of self-similarity.

In [11], a simple model of affine self-similarity which includes a number of
nonlocal image processing methods as special cases was introduced. (It was an-
alyzed further in [12].) An image I will be represented by an image function
u : X → Rg, where Rg ⊂ R denotes the greyscale range. Unless otherwise spec-
ified, we work with normalized images, i.e., Rg = [0, 1]. The support X of an
image function u is assumed to be an n1 × n2-pixel array. Let R be a set of
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n × n-pixel subblocks Ri, 1 ≤ i ≤ NR such that X = ∪iRi, i.e., R forms a
covering of X . We let u(Ri) denote the portion of u that is supported on Ri.

We examine how well an image block u(Ri) is approximated by other image
blocks u(Rj), j 6= i. Let us consider a block u(Ri) being approximated as the
range block and a block u(Rj), j 6= i, approximating it as the domain block. In
order to distinguish the roles of these blocks, we shall denote the domain blocks
as u(Dj) with the understanding that Dj = Rj . For two pixel blocks Ri and Dj ,
the approximation of an image range block u(Ri) by a domain block u(Dj) may
be written in the following general form,

u(Ri) ≈ αiju(Dj) + βij , i 6= j . (1)

The error associated with the approximation in (1) will be defined as

∆ij = min
α,β∈Π

‖u(Ri) − αu(Dj) − β‖, i 6= j , (2)

where ‖ · ‖ denotes the L2(X) norm (or RMSE) and where Π ⊂ R2 denotes the
(α, β) parameter space appropriate for each case.

The affine self-similarity model was comprised of four cases. The optimal
parameters and associated errors for each case will be given. In what follows, we
denote x = u(Ri), y = u(Dj) and N = n2. The statistical measures sx, sy, etc.,
are defined in (7) below.

Case 1: Purely translational. This is the strictest view of similarity: Two
image subblocks u(Ri) and u(Dj) are considered to be “close,” u(Ri) ≈
u(Dj), if the L2 distance ‖u(Ri) − u(Dj)‖ is small. This is the basis of
nonlocal means denoising. There is no optimization here: αij = 1, βij = 0
and the approximation error is simply

∆
(Case 1)
ij = ‖x− y‖ = N−1/2

√

(N − 1)[s2
x + s2

y − 2sxy] + [x̄ − ȳ]2 . (3)

Case 2: Translational + greyscale shift. This is a slighly relaxed definition
of simililarity. Two image subblocks are considered similar if they are close
up to a greyscale shift, i.e., u(Ri) ≈ u(Dj) + β. This simple adjustment
can improve the nonlocal means denoising method since more blocks are
available in the averaging process. In this case, αij = 1 and we optimize over
βij :

βij = x̄− ȳ, ∆
(Case 2)
ij =

[

N − 1

N

]1/2

[s2
x + s2

y − 2sxy]1/2 . (4)

Case 3: Affine transformation. A further relaxation is afforded by allowing
affine greyscale transformations, i.e., u(Ri) ≈ αu(Dj) + β. This method has
been employed in vector quantization [4]. We optimize over α and β.

αij =
sxy

s2
y

, βij = x̄− αijȳ, ∆
(Case 3)
ij =

[

N − 1

N

]1/2
[

s2
x −

s2
xy

s2
y

]1/2

.

(5)
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Case 4: Cross-scale affine transformation. u(Ri) ≈ αu(w(Dj))+ β, where
Dj is larger than Ri and where w is a contractive spatial transformation.
This is the basis of fractal image coding. The optimization process and the
error distributions for Case 4 are almost identical to those of Case 3. For
this reason, this case will not be discussed in this paper.

Note 1. In both Cases 2 and 3, the means of the range block and optimally
transformed range block are equal, i.e., x̄ = αȳ + β.

Of particular interest in [11] were the distributions of L2 errors denoted

as ∆
(Case k)
ij , in approximating range blocks u(Ri) by all other domain blocks

u(Dj), j 6= i, for the cases 1 ≤ k ≤ 3. In order to reduce the computational
cost, we employ nonoverlapping subblocks. Normally, one could consider eight
affine spatial transformations that map a square spatial domain block Dj to a
square range block Ri. In our computations, however, unless otherwise specified,
we shall consider only the identity transformation, i.e., zero rotation.

In Fig. 1 are shown the Case 1-3 ∆-error distributions for all possible matches
for the Lena and Mandrill images using 8 × 8-pixel blocks.

As we move from Case 1 to Case 3 above, the error in approximating a
given range block u(Ri) by a given domain block u(Dj) will generally decrease,
since more parameters are involved in the fitting. It was observed the Case 3 ∆-
error distributions for images demonstrate significant peaking near zero error,
indicating that blocks of these images are generally very well approximated by

other blocks under the action of an affine greyscale transformation.

For a given Case k, the ∆-error distributions of some images were observed
to be more concentrated near zero approximation error than others. The for-
mer images were viewed as possessing greater degrees of self-similarity than the
latter. A quantitative characterization of relative degrees of self-similarity was
also considered in terms of the means and variances of the error distributions.
To illustrate, for the seven well-known test images employed in the study, the
degree of Case 3 self-similarity could be ordered as follows:

Lena ≈ San Francisco > Peppers > Goldhill >

Boat > Barbara > Mandrill.

It is important to note that the above model of self-similarity was based on
the L2 distance measure since all ∆-errors were in terms of root mean squared
errors (RMSE) and the optimal greyscale coefficients α and β were determined
by minimizing the RMSE approximation error. Of course, this is not surprising
since L2-based distance measures, e.g., MSE, RMSE, PSNR, are the most widely
used measures in image processing. However, it is well known [13] that L2-based
measures are not necessarily good measures of visual quality. In this paper, we
re-examine the above self-similarity model in terms of the structural similarity
(SSIM) image quality measure [14]. SSIM was proposed as an improved measure
of assessing visual distortions between two images. The first step is to determine
the formulas for optimal SSIM-based approximations of image range blocks by
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domain blocks which correspond to Cases 1-3 above. We then present the distri-
butions of SSIM measures between domain and range blocks for the Lena and
Mandrill test images which, from above, lie on opposite ends of the L2-based
self-similarity spectrum.

It turns out that our SSIM-based results allow us to address the question,
raised in [11], whether the self-similarity of an image is actually due to the ap-

proximability of its blocks which, in turn, is determined by their “flatness.” If
range blocks of low standard deviation/variance are easier to approximate, then
perhaps a truer measure of self-similarity (or lack thereof) may be obtained if
their corresponding ∆ approximation errors are magnified appropriately to ad-
just for this “unfair advantage”. We shall show that the SSIM measure, because
of its connection with a normalized metric, takes this “unfair advantage” into
account, resulting in much less of the peaking near zero error demonstrated by
RMSE approximation errors.

As shown in [11], the histogram distributions of the standard deviations su(Ri)

of the 8 × 8-pixel range blocks of both are virtually identical to the Case 3 ∆-
error distributions in Fig. 1. This is to be expected since the standard deviation
of the image subblock u(Ri) is the RMSE associated with the approximation by
its mean: u(Ri) ≈ ū(Ri). This is, in turn, a suboptimal form of the Case 3 ap-
proximation obtained by fixing the greyscale parameter α = 0. The distribution
of α greyscale parameters is, however, found to be highly concentrated at zero
[11], implying that in most cases, the standard deviation is a very good estimate
of the Case 3 ∆-error.

(a) Cases 1, 2 and 3: Lena (b) Cases 1, 2 and 3: Mandrill

Fig. 1. Case 1-3 RMS ∆-error distributions for normalized Lena and Mandrill images
over the interval [0, 0.5]. In all cases, nonoverlapping 8×8-pixel blocks Ri and Dj were
used.

2 Structural Similarity and Its Use in Self-Similarity

As mentioned earlier, the structural similarity (SSIM) index [14] was proposed as
an improved measure of assessing visual distortions between two images. If one
of the images being compared is assumed to have perfect quality, the SSIM value
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can also be interpreted as a perceptual quality measure of the second image. It
is in this way that we employ it in our self-similarity study.

We express the SSIM between two blocks as a product of two components
that measure (i) the similarities of their mean values and (ii) their correlation
and contrast distortion. In what follows, in order to simplify the notation, we
let x,y ∈ RN

+ denote two non-negative N -dimensional signal/image blocks, e.g.,
x = (x1, x2, · · · , xN ). The SSIM between x and y is defined as follows,

S(x,y) = S1(x,y)S2(x,y) =

[

2x̄ȳ + ǫ1

x̄2 + ȳ2 + ǫ1

] [

2sxy + ǫ2

s2
x + s2

y + ǫ2

]

, (6)

where

x̄ =
1

N

N
∑

i=1

xi , ȳ =
1

N

N
∑

i=1

yi ,

s2
x =

1

N − 1

N
∑

i=1

(xi − x̄)2 , s2
y =

1

N − 1

N
∑

i=1

(yi − ȳ)2 , (7)

sxy =
1

N − 1

N
∑

i=1

(xi − x̄)(yi − ȳ) .

The small positive constants ǫ1, ǫ2 ≪ 1 are added for numerical stability along
with an effort to accomodate the perception of the human visual system.

The component S1 in (6) measures the similarity of the mean values, x̄ and ȳ

of, respectively, x and y. If x̄ = ȳ, then S1(x,y) = 1, its maximum possible value.
Its functional form was originally chosen in an effort to accomodate Weber’s
law of perception [14]. The component S2 in (6) follows the idea of divisive
normalization [15]. Note that −1 ≤ S(x,y) ≤ 1, and S(x,y) = 1 if and only if
x = y. A negative value of S(x,y) implies that x and y are negatively correlated.

2.1 Optimal SSIM-Based Affine Approximation

We now consider the approximation of an image range block u(Ri) by a domain
block u(Dj) as written in (1) in terms of the structural similarity measure. The
SSIM measure associated with the approximation in (1) will be defined as

Sij = max
α,β∈Π

S(u(Ri), αu(Dj) + β) , i 6= j . (8)

The optimal parameters and associated SSIM measures are given below, but
only for the zero stability parameter case, i.e., ǫ1 = ǫ2 = 0. Because of space
restrictions, we omit the algebraic details and simply state the results. In what
follows, we once again denote x = u(Ri), y = u(Dj) and N = n2.

Case 1: Purely translational. There is no optimization in this case: αij = 1,
βij = 0 and the SSIM measure is simply

S
(Case 1)
ij = S(x,y) . (9)
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Case 2: Translational + greyscale shift. Here, αij = 1 and we optimize
over β.

βij = x̄ − ȳ , S
(Case 2)
ij = S2(x,y) =

2sxy

s2
x + s2

y

. (10)

Note that the SSIM-optimal β parameter is identical to its L2 counterpart.
Case 3: Affine greyscale transformation. We optimize over α and β.

αij = sign(sxy)
sx

sy

, βij = x̄− αij ȳ , S
(Case 3)
ij =

|sxy|

sxsy

, (11)

where sign(t) = 1 if t > 0, 0 if t = 0, and −1 if t < 0. In this case, the SSIM
measure Sij is the magnitude of the correlation between x and y.

Note 2. In Cases 2 and 3, the means of the range block and optimally trans-
formed range block are equal, i.e., x̄ = αȳ + β, as was the case for L2-fitting.

Since more parameters are involved as we move from Case 1 to Case 3, the
associated SSIM measures behave as follows,

S
(Case 1)
ij ≤ S

(Case 2)
ij ≤ S

(Case 3)
ij . (12)

In Fig. 2 are shown the Case 1-3 SSIM measure distributions over the interval
[−1, 1] of the Lena and Mandrill images, once again using 8 × 8-pixel blocks.

(a) Cases 1, 2 and 3: Lena (b) Cases 1, 2 and 3: Mandrill

Fig. 2. Case 1-3 SSIM measure distributions for normalized Lena and Mandrill images
over [−1, 1]. In all cases, nonoverlapping 8 × 8-pixel blocks Ri and Dj were used.

Before commenting on these plots, we briefly discuss the issue of the stability
parameters, ǫ1 and ǫ2 in (6). As proposed in [14], in all computations reported
below the stability parameters employed were ǫ1 = 0.012 and ǫ2 = 0.032. In
the case ǫ1 = ǫ2 = 0, the Case 1 SSIM measure distributions of the Lena and
Mandrill images are almost identical. The slightly nonzero values of the stability
parameters will increase the SSIM values associated with domain-range pairs
with low variance. Since the Lena image contains a higher proportion of such
blocks, there is a slight increase of the distribution for S > 0.
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The difference between the two distributions is more pronounced for Case 2.
For the Lena image, the better domain-range block approximations yielded by
the greyscale shift causes its SSIM measure distribution to increase over the
region S ⊂ [0.5, 0.8].

But the situation is most interesting for Case 3, i.e., affine greyscale approx-
imation. For both images, there are no negative SSIM values. This follows from
the positivity of Sij in (11) which is made possible by the inclusion of the α

scaling factor. When the domain and range blocks are correlated, as opposed to
anticorrelated, i.e., sxy > 0 then the optimal α coefficient is positive, implying
that S will be positive. When α < 0, the domain and range blocks are anticor-
related – multiplying the domain block by a negative α value will “undo” this
anticorrelation to produce a roughly correlated block.

The SSIM distribution for the Lena image has a much stronger component
near S = 1, indicating that many more blocks are well approximated in terms
of the SSIM measure. Conversely, the SSIM measure for the Mandrill image is
quite strongly peaked at S = 0. In summary, the SSIM measure corroborates
the fact that the Lena image is more self-similar than the Mandrill image. That
being said, despite the dramatic peaking of the RMS ∆-error distribution of the
Lena image at zero error – primarily due to a high proportion of low-variance
blocks – its SSIM measure distribution does not demonstrate such peaking near
S = 1. This will be explained in the following section.

2.2 Relation between Optimal L
2- and SSIM-Based Greyscale

Coefficients

At this point it is instructive to compare the affine greyscale transformations of
the L2- and SSIM-based approximations. Obviously, for Case 1, no comparison
is necessary since no greyscale transformations are employed. For Case 2, the
greyscale shift β = ū(Ri) − ū(Dj) is the same in both approximations. For
Case 3, it is sufficient to compare the α greyscale coefficients. Recall that for a
given domain block x = u(Dj) and range block y = u(Ri),

αL2 =
sxy

s2
y

, αSSIM = sign(sxy)
sx

sy

. (13)

It follows that
αSSIM

αL2

=
sxsy

|sxy|
≥ 1 , (14)

where the final inequality follows from (11).
This result implies that the SSIM-based affine approximation αu(Dj) + β

will have a higher variance than its L2-based counterpart. Such a “contrast
enhancement” was also derived for SSIM-based approximations using orthogonal
bases [16].

Finally, note that the coefficients αSSIM and αL2 always have the same sign.
Numerically, we find that their values generally do not differ greatly: A histogram
plot of their ratios is strongly peaked at 1.
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2.3 SSIM, Normalized Metrics and Image Self-Similarity vs. Image

“Approximability”

The fact that S(x,y) = 1 if and only x = y suggests that the function

T (x,y) = 1 − S(x,y) , x,y ∈ RN
+ , (15)

could be considered a measure of the distance between x and y, since x = y

implies that T (x,y) = 0. We now show that for Case 2 and Case 3, the function
T (x,y) may be expressed in terms of the L2 distance ‖x− y‖.

First recall that for both Case 2 and Case 3 and for L2- and SSIM-based ap-
proximations of a range block x = u(Ri), the mean of the best affine approxima-
tion y = αu(Dj)+β is equal to the mean of x. As such, we consider the function
T (x,y) in the special case that x̄ = ȳ. This implies that S(x,y) = S2(x,y), the
second component of SSIM, and that

T (x,y) = 1 −
2sxy + ǫ2

s2
x + s2

y + ǫ2
=

s2
x + s2

y − 2sxy

s2
x + s2

y + ǫ2
=

1

N − 1

‖x− y‖2

s2
x + s2

y + ǫ2
. (16)

In other words, the function T (x,y) is an inverse variance-weighted squared L2-
distance between x and its optimal affine approximation y. In fact, one can show
(see [17]) that

√

T (x,y) is indeed a metric when the means are matched.
As mentioned earlier, lower-variance blocks are more easily approximated

in the L2 sense than higher-variance blocks. Consequently, the Case 3 ∆-error
distributions of images with a higher proportion of “flatter,” i.e., low variance,
blocks will exhibit a greater degree of peaking near zero, particularly for Case 3.
The structural similarity index compensates for this “flatness bias.” The question
is whether this greater peaking should actually be interpreted as self-similarity.
This is addressed in the next section.

3 Self-Similarity of Natural Images vs. Pure Noise Images

The presence of noise in an image will decrease the ability of its subblocks to be
approximated by other subblocks. In [11] it was observed that as (independent,
Gaussian) noise of increasing variance σ2 is added to an image, any near-zero
peaking of its ∆-error distribution becomes diminished. Moreover, a χ-squared
error distribution associated with the noise which peaks at σ eventually dom-
inates the ∆-error distribution. This peaking at σ is actually the basis of the
block-variance method of estimating additive noise.

Naturally, the SSIM measure distributions will also be affected by the pres-
ence of noise. But instead of simply adding noise to natural images, we wish to
study pure noise images. Synthesizing such kinds of images allows us to compare
the ∆-error distributions of natural images with a benchmark image that pos-
sesses no self-similarity. Indeed, for independent pure noise images there is no
self-similarity between two blocks in the sense that the expectation of the covari-
ance between them is zero. The only parameters affecting the self-similarity (in
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RMSE or in SSIM-sense) are the local mean and the local variance of the image.
This leads to the following idea: Generate an image from a uniform distribution
with the local mean and variance matched to the statistics of a natural image.
In our experiments, we chose an uniform distribution, but the histograms would
have been similar for Gaussian or Poisson probability distribution. In Fig. 3
are shown two examples of pure noise images for which the local statistics are
matched to a natural image. Also shown is a pure noise image following i.i.d.
uniform distribution on [0, 1]. Disjoint blocks were used to compute the local
statistics to be consistent through the paper, but it is by no means necessary to
generate pure noise images block by block.

(a) Lena-like noise (b) Mandrill-like noise (c) Uniform noise

Fig. 3. Images made of uniform noise with statistics matching the local mean and
variance of natural images: (a) Lena (b) Mandrill (c) Noise image with each pixel value
taken from an uniform distribution on [0,1].

In Fig. 4, we compare the RMS ∆-error distribution of natural images with
the RMS ∆-error distribution of a pure noise image with the local statistics
matched and of an pure noise image following an uniform distribution on [0, 1].
We observe that there is no more self-similarity for natural images than for
pure noise images with matched statistics. Notice that all possible blocks were
compared, whereas in non-local image processing only a limited number of (best)
blocks are usually needed. So even if the best matches are generally more self-
similar, on average, natural images are not more self-similar than pure noise
images with matched statistics. We conclude that low variance is the principal

factor for self-similarity according to RMSE.

In order to correct this low variance bias, the same experiment was performed
with the SSIM index for Case 1-3. The results are shown in Fig. 5. Now, we can
see a difference between the SSIM measure distributions of natural images and
pure noise images. We quantify the self-similarity of images by computing the
center of gravity (the mean of the distribution) of the SSIM measure distribu-
tions. The results are shown in Table 1. Again, the local variance has a major
influence on the self-similarity of images, but now we can see, as hoped, that
natural images are more self-similar than pure noise images in the SSIM-sense.
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(a) Lena Case 1 (b) Mandrill Case 1

(c) Lena Case 2 (d) Mandrill Case 2

(e) Lena Case 3 (f) Mandrill Case 3

Fig. 4. Comparison of RMS ∆-error distribution of Lena and Mandrill for Case 1-3
(grey histogram) with the RMS ∆-error distribution of pure noise images for which the
local mean and local variance are matched (red) and with the RMS ∆-error distribution
of a i.i.d. uniform pure noise image on [0, 1] (blue).

To determine theoretically the distribution of the structural similarity between
two blocks generated by a known probability distribution remains a open ques-
tion. The difficulty here is the fact that rational functions are involved in the
definition of the SSIM measure.
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(a) Lena Case 1 (b) Mandrill Case 1

(c) Lena Case 1-2 (d) Mandrill Case 1-2

(e) Lena Case 3 (f) Mandrill Case 3

Fig. 5. Comparison of SSIM measure distribution of Lena and Mandrill for Case 1-3
(grey histogram) with the SSIM measure distribution of pure noise images for which
the local mean and local variance are matched (red) and the SSIM measure distribution
of a i.i.d. uniform pure noise image on [0, 1] (blue).

Table 1. Mean of the SSIM measure distributions of natural images (NI), pure noise
images with matched statistics (MN) and uniform pure noise image (UN) for Case 1-3
Lena and Mandrill.

Case 1 Case 1 Case 2 Case 2 Case 3 Case 3
Lena Mandrill Lena Mandrill Lena Mandrill

NI 0.2719 0.0682 0.3091 0.0731 0.5578 0.2246
MN 0.2698 0.0684 0.3074 0.0735 0.5206 0.1896
UN 0.0057 0.0057 0.0057 0.0057 0.1003 0.1004
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