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Abstract. We derive mathematically a class of metrics for signals and
images, considered as elements of RN , that are based upon the structural
similarity (SSIM) index. The important feature of our construction is
that we consider the two terms of the SSIM index, which are normally
multiplied together to produce a scalar, as components of an ordered
pair. Each of these terms is then used to produce a normalized metric,
one of which operates on the means of the signals and the other of which
operates on their zero-mean components. We then show that a suitable
norm of an ordered pair of metrics defines a metric in RN .

Key words: structural similarity index, normalized metrics, extended
metrics, image quality assessment

1 Introduction

Image quality assessment consists in modeling the perceptual fidelity between
an original (ideal) image and a distorted version of it. The goal is not only
to evaluate or compare the performance of image processing algorithms, but
also to design an objective function to be optimized in order to develop better
algorithms [1]. Traditionally, mean squared error (MSE) is used for this task,
due to its simplicity and its many nice mathematical properties [1]. However, it
is well known [1] that L2-based measures, e.g., mean squared error (MSE), are
not necessarily good measures of visual quality.

Several image quality measures have been proposed in the literature as candi-
dates to replace MSE [2]. While they generally outperform MSE in psycho-visual
experiments, they are not known to share the mathematical properties of the
MSE, making optimization very difficult to achieve. One concern is that these
quality measures are not metrics in the strict mathematical sense since they do
not satisfy the triangle inequality. As such, they are not amenable to standard
procedures of mathematical analysis that may establish important properties,
e.g., convergence, contractivity of operators.

An example of an application where these properties are important is collec-
tive sensing as described by Li in [3]. The main idea is to model an image as the
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fixed point of a non-local operator, such as non-local means [4], BM3D [5] or a
simplified version of non-local total variation [6]. One of the ideas of Li in [3] is
to use an image representation that, contrary to cosine transforms and wavelets,
is not based on a Hilbert space structure, but only on a metric space. Still, in his
examples it was assumed implicitly that the metric used is the one associated
with the L2-norm (i.e., MSE), which in fact is an inner product norm.

The structural similarity (SSIM) index [7] is an example of an image quality
measure designed to provide better assessments of visual distortions between
two images. The original formulation of the SSIM measure S(x,y) between two
signals or images, x,y ∈ RN

+ , involves a product of three terms, each of which
measures a particular aspect of two images or image patches being compared,
namely (i) the similarity of their mean values, (ii) the similarity between their
contrasts and (iii) their correlation. The final two terms, however, can be col-
lapsed into a single term. The resulting SSIM measure represents a combination
of two pieces of information to produce a single number that characterizes the
visual similarity of two image blocks. Such a procedure is known as scalariza-
tion. The question arises, however, whether it might be desirable to keep the two
components, S1(x,y) and S2(x,y), of the SSIM separate, i.e., to treat the SSIM
measure as a vector, an ordered pair, as opposed to a scalar. In this way, for
example, their contributions could be weighted.

We show in this paper an example of a class of metrics for images derived
from the SSIM index for which are associated neither norms nor inner products.
This is done by first decomposing a signal x into two orthogonal components,
a one-dimensional space, RN

1 , which involves only x̄, the mean of x, and an
(N − 1)-dimensional space, RN

2 , containing the zero-mean component of x. We
then show that if d1 and d2 are any two metrics on the spaces RN

1 and RN
2 ,

respectively, then the Lp norm of the ordered pair d = (d1, d2) is a metric on
RN . Finally, we employ SSIM-based metrics for d1 and d2 in order to obtained
our desired class of image metrics.

2 The structural similarity (SSIM) quality measure

In what follows, we let RN
+ denote the space of non-negative N -dimensional

signal/image blocks, i.e., x ∈ RN
+ implies that x = (x1, x2, · · · , xN ), with xk ≥ 0,

1 ≤ k ≤ N . We also consider the L2 distance between two such signals x,y ∈ RN
+

to be the usual root mean squared error (RMSE), denoted as follows,

‖x − y‖2 =

[

1

N

N
∑

k=1

(xk − yk)2

]1/2

. (1)

The original definition of the SSIM measure between x and y is as follows,

S(x,y) =

[

2x̄ȳ + ǫ1
x̄2 + ȳ2 + ǫ1

] [

2sxsy + ǫ2
s2
x

+ s2
y

+ ǫ2

] [

sxy + ǫ3
sxsy + ǫ3

]

. (2)
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where

x̄ =
1

N

N
∑

i=1

xi , ȳ =
1

N

N
∑

i=1

yi ,

s2
x

=
1

N − 1

N
∑

i=1

(xi − x̄)2 , s2
y

=
1

N − 1

N
∑

i=1

(yi − ȳ)2 , (3)

sxy =
1

N − 1

N
∑

i=1

(xi − x̄)(yi − ȳ) .

The small positive constants ǫ1, ǫ2 ≪ 1 are added for numerical stability along
with an effort to accomodate the perception of the human visual system.

In the special case that ǫ3 = ǫ2/2, the above formula simplifies to the follow-
ing product of two terms,

S(x,y) = S1(x,y)S2(x,y) =

[

2x̄ȳ + ǫ1
x̄2 + ȳ2 + ǫ1

] [

2sxy + ǫ2
s2
x

+ s2
y

+ ǫ2

]

, (4)

It is this form of SSIM, which is frequently used in applications, that will be
examined in this paper. The extension to the three-term formulation in (2), if
desired, is straightforward.

The component S1 in (4) measures the similarity of the mean values, x̄ and
ȳ of, respectively, x and y. Its functional form was originally chosen in an effort
to accomodate Weber’s law of perception [7]. The component S2 in (4) is a
combination of the correlation and a measure of contrast distortion (similarity
between the variances) between x and y. Its functional form follows the idea of
divisive normalization [8].

Since we are working with signals in x,y ∈ RN
+ , it follows that 0 ≤ S1 ≤ 1

and S1(x,y) = 1 if and only if x̄ = ȳ. Note also that −1 ≤ S2(x,y) ≤ 1 and
S2 = 1 if and only if x − x̄ = y − ȳ. It implies that −1 ≤ S(x,y) ≤ 1 and that,
for non-negative signals, S(x,y) = 1 if and only if x = y. (A negative value of
S(x,y) implies that x and y are negatively correlated.) This suggests that the
function,

T (x,y) = 1 − S(x,y) , (5)

could act as some kind of distance function, since x = y implies that T (x,y) = 0.
Note also that 0 ≤ T (x,y) ≤ 2.

We now examine the components, S1 and S2 in (4), in this way. For S1,

1 − S1(x,y) = 1 − 2x̄ȳ + ǫ1
x̄2 + ȳ2 + ǫ1

=
|x̄ − ȳ|2

x̄2 + ȳ2 + ǫ1
. (6)

The RHS of (6) may be viewed as a normalized squared L2 distance between the
mean values x̄ and ȳ. For S2,

1 − S2(x,y) = 1 − 2sxy + ǫ2
s2
x

+ s2
y

+ ǫ2
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=
s2
x

+ s2
y
− 2sxy

s2
x

+ s2
y

+ ǫ2
. (7)

In the special case x̄ = ȳ = 0,

1 − S2(x,y) =
‖x − y‖2

‖x‖2 + ‖y‖2 + N−1

N ǫ2
, (8)

which is also a normalized squared L2 distance between x and y. Equations (6)
and (8) suggest that it is natural to consider SSIM-based metrics which operate
on a decomposition of signals into their means and zero-mean components. This
will be done in the next section.

3 A Class of SSIM-Based Metrics

3.1 Orthogonal Decomposition of the Signal/Image Space

Here, we shall work in the space RN of N -dimensional signals/image blocks. We
also let RN

2 ⊂ RN denote the (N − 1)-dimensional subspace (hyperplane) of
zero-mean signals, i.e.,

x = (x1, x2, · · · , xN ) ∈ RN
2 ⇒ x̄ = 0 or

N
∑

k=1

xk = 0 . (9)

Finally, define the one-dimensional subspace RN
1 = span{(1, 1, · · · , 1)}, i.e.,

RN
1 = {y = (y1, y2, · · · , yn) | y = c (1, 1, · · · , 1) for some c ∈ R} . (10)

RN
1 and RN

2 are orthogonal complements of each other since x ∈ RN
2 and

y ∈ RN
1 implies that

〈x,y〉 =

N
∑

k=1

xkyk = 0 . (11)

Moreover,
RN = RN

1 ⊕ RN
2 . (12)

We shall denote the orthogonal decomposition of an element x ∈ RN in terms
of these two subspaces as follows,

x = x1 + x2, x1 ∈ RN
1 , x2 ∈ RN

2 . (13)

The component x1 is the projection of x onto the subspace RN
1 , i.e.,

x1 = 〈x, ê1〉 ê1, where ê1 =
1√
N

(1, 1, · · · , 1) . (14)

Therefore,
x1 = (x̄, x̄, · · · , x̄) = x̄ (1, 1, · · · , 1) . (15)

where x̄ is the mean of x defined in (3). It follows that the zero-mean component,
x2, of x in RN

2 is given by
x2 = x − x1 . (16)
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3.2 A Class of Two-Dimensional Metrics

The next step is to consider metrics on these orthogonal spaces. Let d1 be a
metric on R and d2 a metric on RN−1. Then for any two elements x,y ∈ RN ,
define the corresponding ordered pair,

d = (d1(x̄, ȳ), d2(x2,y2)) ∈ R2 . (17)

It is clear that x = y implies that d = 0. The following result shows that d can
be used to define a metric on RN .

Theorem 1. Let ‖ · ‖ be a norm in R2 that satisfies the following increasing
property in R2

+: For any a ∈ R2
+ and any positive ordered pair b = (b1, b2), with

b1, b2 > 0,
‖a + b‖ ≥ ‖a‖. (18)

Then for d defined in (17),
d(x,y) := ‖d‖ (19)

is a metric in RN .

Note 1. This theorem can be generalized for a combination of M metrics on
RN .

Before proving this theorem we state that for any p ≥ 1, the Lp norm in R2

satisfies the above increasing property. It also applies to the case p = ∞, i.e.,
the L∞ norm. This can be checked by using Taylor’s Theorem for multivariable
functions.

Proof. It is quite straightforward to show that d(x,y) in (19) satisfies following
necessary properties of a metric:

1. d(x,y) = d(y,x) (symmetry),
2. d(x,y) ≥ 0 (positivity),
3. d(x,y) = 0 if and only if x = y (strict positivity).

It remains to prove that d(x,y) satisfies the triangle inequality, i.e., for any
x,y, z ∈ RN ,

d(x,y) ≤ d(x, z) + d(z,y). (20)

This result follows from the assumptions that d1 and d2 are metrics and that
the ‖ · ‖ norm satisfies the increasing property:

d(x,y) = ‖(d1(x̄, ȳ), d2(x2,y2))‖
≤ ‖(d1(x̄, z̄) + d1(z̄, ȳ) , d2(x2, z2) + d2(z2,y2)‖
= ‖(d1(x̄, z̄), d2(x2, z2)) + (d1(z̄,y), d2(z2,y2))‖
≤ ‖(d1(x̄, z̄), d2(x2, z2))‖ + ‖(d1(z̄, ȳ), d2(z2,y2))‖
= d(x, z) + d(z,y). (21)

⊓⊔
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Note 2. The increasing property in (18) also holds for suitably weighted Lp

norms, e.g.,

‖x‖ =

[

N
∑

k=1

wk,p|xk|p
]1/p

, (22)

where wk,p > 0 for 1 ≤ k ≤ N . But (18) does not hold for all norms. That
being said, the validity for Lp and weighted norms is sufficient for most, if not
all, practical purposes.

3.3 The Normalized Metric Relevant to SSIM

We now return to the results of (6) and (8) in order to construct a SSIM-based
metric. The following result will be necessary.

Theorem 2. For M ≥ 1, let ‖ · ‖2 the L2 norm in RM . Then for ǫ ≥ 0,
d̄ : RM × RM → R, given by

d̄(x,y) =

{

‖x−y‖2√
‖x‖2

2
+‖y‖2

2
+ǫ

, (x,y) 6= (0,0),

0, x = y = 0,
(23)

is a metric.

This theorem was proved for the case ǫ = 0 in [9]. The proof for the case
ǫ > 0 will appear elsewhere [10].

Note 3. The metric d̄ is an example of a normalized metric. The range of values
assumed by d̄ is the bounded interval [0,

√
2]: d̄(x,y) = 0 when x = y and, for

ǫ = 0, d̄(x,y) =
√

2 when y = −x.

Note 4. For every ǫ ≥ 0, d̄(x,0) is not a norm, since d̄(αx,0) 6= αd̄(x,0) for any
α > 0.

Note 5. The following is an interesting property of this metric: In the case ǫ = 0,

d̄(x,0) = 1 for all x ∈ RM . (24)

This implies that no sequences {xn} can converge to 0 in this metric: Even if
xn → 0 in the metric defined by the RM norm ‖ · ‖, i.e. limn→∞ ‖xn − 0‖ = 0, it
cannot converge to 0 in d̄ metric since limn→∞ d̄(xn, 0) = 1. This is not a major
problem since, in general, we are concerned only with non-zero signals.

Nevertheless, this nonconvergence of sequences to 0 in the d̄ metric disappears
when ǫ > 0. This parameter will, in fact, appear if we consider nonzero stability
constants in the SSIM function of (4).

Note 6. Once again in the case ǫ = 0, we have a scale invariance property: For
any α ∈ R, d̄(αx, αy) = d̄(x,y), which is consistent with (24).
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Unlike the L2 case (Euclidean metric), the level sets associated with this metric
are nonconcentric (hyper)spheres. To illustrate, we consider the simple R2 case
with ǫ = 0. Let a = (a1, a2) denote a reference point in R2. The C-level set of
the metric d̄ is the set of x = (x1, x2) for which d̄(x,a) = C, where C ∈ [0,

√
2],

i.e.,
‖x− a‖2

√

‖x‖2
2 + ‖a‖2

2

= C ⇒ ‖x− a‖2
2 = C2‖x‖2

2 + C2‖a‖2
2. (25)

After a little algebra, we found that the level sets may be classified into the
following cases:

Case 1: 0 ≤ C < 1. For each C-value, the corresponding C-level set is com-
posed of the points x = (x1, x2) that satisfy the equation,

[

x1 −
a1

1 − C2

]2

+

[

x2 −
a2

1 − C2

]2

=
C2(2 − C2)

(1 − C2)2
(a2

1 + a2
2) . (26)

This is a circle centered at
1

1 − C2
(a1, a2) with radius r =

C‖a‖2

1 − C2

√

2 − C2.

The centers of these circles lie on the line that extends from the origin 0 to
the point a. They start at a (C=0) and travel outward to infinity as C → 1−.

Case 2: C = 1. The level set is the line a1x1 + a2x2 which contains the origin
(0, 0). This line is perpendicular to the line that supports the centers of the
level sets in Case 1.

Case 3: 1 < C ≤
√

2. For each C-value the corresponding C-level set is com-
posed of the points x = (x1, x2) that satisfy the equation,

[

x1 +
a1

C2 − 1

]2

+

[

x2 +
a2

C2 − 1

]2

=
C2(2 − C2)

(C2 − 1)2
(a2

1 + a2
2) . (27)

This is a circle centered at
1

C2 − 1
(−a1,−a2) with radius r =

C‖a‖2

C2 − 1

√

2 − C2.

Their centers of these circles lie on the line that extends from the origin 0 to
the point −a. They are coming in from infinity (C =

√
2) and travel toward

−a as C →
√

2. At C =
√

2, the level set is the single point −a.

In Fig. 1 are plotted some level sets associated with the point a = (1, 1).

3.4 Construction of the SSIM-Based Metric

We may now define the SSIM-based metric that results from the above construc-
tions. The normalized metric d̄ will be used in each of the subspaces RN

1 and
RN

2 defined in Sect. 3.1.

Given x,y ∈ RN , we now define the following vector of metrics,

d(x,y) = (d1(x̄, ȳ), d2(x2,y2)) ∈ R2 , (28)
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Fig. 1. Level sets d̄(x,a) = C about the reference point a = (1, 1) for C = 1

20
k,

1 ≤ k ≤ 28, over the region (x1, x2) ∈ [−1, 3] × [−1, 3].

where

d1(x̄, ȳ) = d̄(x̄, ȳ) =
|x̄ − ȳ|

√

x̄2 + ȳ2 + ǫ1

d2(x2,y2) = d̄(x2,y2) =
‖x2 − y2‖2

√

‖x2‖2
2 + ‖y2‖2

2 + N−1

N ǫ2

, (29)

The components, x2 and y2 of, respectively, x and y were defined in Sect. 3.1.

In the particular case of two-dimensional signals, i.e., N = 2, which was
illustrated in Fig. 1, we may view the d1 metric as operating on the line x1−x2 =
0 and the d2 metric operator as operating on the orthogonal space x1 + x2 = 0
(zero-mean signals).

Now let ‖·‖ denote any norm in R2 satisfying the increasing property defined
in Theorem 1. From that theorem, we have the resulting metric on RN :

D(x,y) = ‖(d̄(x̄, ȳ), d̄(x2,y2))‖ . (30)

In the case that ‖ · ‖ = ‖ · ‖p, the weighted Lp norm on R2, with p ≥ 1, the
metric is given explicitly as

Dp(x,y) = ‖(d̄(x̄, ȳ), d̄(x2,y2))‖p

=
(

w1,p

[

d̄(x̄, ȳ)
]p

+ w2,p

[

d̄(x2,y2)
]p )1/p

. (31)

The cases p = 1 and p = 2 will probably be most relevant to standard image
processing procedures:

D1 = d̄(x̄, ȳ) + d̄(x2,y2) , (32)

D2 =
√

d̄2(x̄, ȳ) + d̄2(x2,y2) . (33)
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Note that in the special case p = 2 with unit weights, the above metric becomes
the square root of the sum of the expressions in (6) and (7). Finally, the case
p = ∞ may also be useful in some applications,

D∞(x,y) = max{d̄(x̄, ȳ), d̄(x2,y2)} . (34)

By comparing the equation for D2 with
√

1 − SSIM we can understand their
relationship:

√
1 − SSIM =

√

1 − (1 − d2
1)(1 − d2

2) =
√

d2
1 + d2

2 − d2
1d

2
2. (35)

D2 may be viewed as a low order approximation of the SSIM index. In fact,
most image distortions, e.g. JPEG and JPEG2000 compression, blur and zero-
mean noise, preserve the mean. It implies that d1 = d̄(x̄, ȳ) will be close to
zero. Thus, D2 is a very good approximation of SSIM for most of the distortions
encountered in image processing. In fact, when the means are exactly matched,
D2(x,y) =

√

1 − SSIM(x,y).

Example 1. To offer some comparison between the new class of metrics and
SSIM – and to show some of their limitations – we present an example involving
a distortion of both the local structure and the local mean value. In Fig. 2 are
shown several quality maps which compare the test image Boat (top left) with
a JPEG compressed version (quality factor 10/100) to which was added a hori-
zontal mean shift ramp from −100/255 to +100/255 (top middle). We see that
all the different metrics detect the same error than the SSIM map, but none
of them give exactly the same weight than SSIM for luminance distortion and
structural distortion.

Psychovisual experiments will need to be performed to find the best param-
eters p and wk,p associated with these metrics. One of these metrics could be
then used in image processing applications as optimization objective.
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