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Abstract. We examine two approaches of modifying L2-based approx-
imations so that they conform to Weber’s model of perception, i.e.,
higher/lower tolerance of deviation for higher/lower intensity levels. The
first approach involves the idea of intensity-weighted L2 distances. We
arrive at a natural weighting function that is shown to conform to Weber’s
model. The resulting “Weberized L2 distance” involves a ratio of func-
tions. The importance of ratios in such distance functions leads to a
consideration of the well-known logarithmic L2 distance which is also
shown to conform to Weber’s model.

In fact, we show that the imposition of a condition of perceptual invari-
ance in greyscale space Rg ⊂ R according to Weber’s model leads to the
unique (unnormalized) measure in Rg with density function ρ(t) = 1/t.
This result implies that the logarithmic L1 distance is the most natu-
ral “Weberized” image metric. From this result, all other logarithmic Lp

distances may be viewed as generalizations.

1 Introduction

In this paper we examine some methods of modifying, or “Weberizing,” L2-based
approximations so that they conform as much as possible to Weber’s model of
perception. The term “Weberized” has been used in recent papers which have
incorporated Weber’s model into classical image processing methods, namely,
total variation (TV) restoration [5] and Mumford-Shah segmentation [6].

For a long time, it has been recognized that the well known and very com-
monly used mean squared error (MSE) and PSNR – examples of L2-based mea-
sures – perform poorly in terms of perceptual image quality [2,8]. Nevertheless,
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L2-based methods are still employed to a large degree, most probably due to
their relative simplicity of computation. Other perceptually more meaningful
image quality measures are generally more difficult to optimize. The Weberized
L2 methods examined in this paper are quite straightforward to compute.

That being said, the structural similarity (SSIM) image quality measure [8,9],
which has demonstrated a superior performance in comparison with traditional
quality measures such as MSE and PSNR, already has a “Weberized” compo-
nent, namely, the luminance term, denoted as S1(x,y), which characterizes the
similarity between mean values, x̄ and ȳ, of image patches/blocks x and y,
respectively. The fact that S1(x,y) may be expressed as a function of the ratio
x/y (or y/x) accounts for its “Weberized” form.

Let us first recall Weber’s model of perception which, for simplicity of treat-
ment, will be restricted to the case of greyscale images: Given a greyscale back-
ground intensity I > 0, the minimum change in intensity ΔI perceived by the
human visual system (HVS) is related to I as follows,

ΔI

I
= C, (1)

where C is constant, or at least roughly constant over a significant range of inten-
sities I [7]. Eq. (1) suggests that the HVS will be less/more sensitive to a given
change in intensity ΔI in regions of an image at which the local image intensity
I(x) is high/low. As such, a Weberized L2 distance between two functions u and
v should tolerate greater/lesser differences over regions in which they assume
higher/lower intensity values.

The basic mathematical ingredients of our formalism are as follows:

1. The base (or pixel) space X ⊂ R on which our signals/images are sup-
ported. Here, we assume, without generality, that X = [0, 1]. For images,
X = [0, 1]2. In the case of digital images, X can be the set of pixel locations
(i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

2. The greyscale range Rg = [A,B] ⊂ ( 0,∞).
3. The signal/image function space F = {u : X → Rg}. Note that from

our definition of the greyscale range Rg, u ∈ F is positive and bounded, i.e.,
0 < A ≤ u(x) ≤ B < ∞ for all x ∈ X. A consequence of this boundedness is
that F ⊂ Lp(X) for all p ≥ 1, where the Lp(X) function spaces are defined
in the usual way. For any p ≥ 1, the Lp norm can be used to define a metric
dp on F : For u, v ∈ F , dp(u, v) = ‖u − v‖p. Our primary concern is the
approximation of functions in the case p = 2, i.e., the Hilbert space, L2(X).
In this case, the distance between two functions u, v ∈ L2(X) is given by

d2(u, v) = ‖u − v‖2 =
[∫

X

[u(x) − v(x) ]2 dx

]1/2

. (2)

2 The Use of Intensity-Dependent Weighting Functions

The approximation of signals and images – and functions in general – must
involve some mesaurement of “distance,” as determined by an appropriate
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metric. In the usual L2-based methods of approximation employed in signal and
image processing, the L2 metric in Eq. (2) is used. This metric, and indeed all
other Lp- based metrics, p ≥ 1, are not adapted to Weber’s model of perception
since they involve integrations over appropriate powers of intensity differences,
|u(x) − v(x)|, with no consideration of the magnitudes of u(x) or v(x).

One way to “Weberize” this metric is to insert a weighting function in the
integrand of Eq. (2). The use of weighting functions in metrics is, of course, not a
new idea. In mathematics, they have generally been functions of the independent
variable – in this case, the spatial variable x. In image processing applications,
they have been employed for spatial weighting, for example, in foveated or region-
of-interest image processing and coding [3] or frequency weighting in perceptual
image quality assessment [10]. In our application, the weighting function should
be dependent upon one or both of the intensities of the image functions u(x)
and v(x). As such, the weighted L2 metric may be written in the generic form,

d2W (u, v) =
[∫

X

g(u(x), v(x))[u(x) − v(x)]2 dx

]1/2

, (3)

where g : Rg × Rg → R+ denotes the intensity-dependent weighting function.
This leads to an interesting set of questions regarding the properties that

must be satisfied by the weighting function g as well as the possible functional
forms that it may assume, keeping in mind two important requirements:

1. d2W (u, v) should, if possible, satisfy the mathematical properties of a metric,
2. d2W (u, v) should, in some way, conform to Weber’s model of perception.

A detailed discussion of these questions, many of which represent open problems,
is well beyond the scope of this paper.

Perhaps one of the most fundamental properites that must be satisfied in
order that Weber’s model of perception can be accommodated is that g(u, v) be
decreasing in both of its arguments. This requirement is satisfied, for example,
by the symmetric family of functions, g(u(x), v(x)) = |u(x)v(x)|−q, where q > 0.

A simplification is achieved if we consider g to be a function of only one
intensity function. Furthermore, if we assume that g(u(x), v(x)) = g(u(x)) =
u(x)−2, then the weighted L2 distance in Eq. (3) becomes

d2W (u, v) =

[∫
X

[
1 − v(x)

u(x)

]2

dx

]1/2

=: Δ(u, v). (4)

In this case, we consider the function u, which defines the weighting function g,
to be the reference function. If we then consider v to be an approximation to u,
then Δ(u, v) in Eq. (4) is the approximation error.

If we assume a weighting function of the form g(u(x), v(x)) = g(v(x)) =
v(x)−2, the weighted L2 distance in Eq. (4) becomes

d2W (u, v) =

[∫
X

[
1 − u(x)

v(x)

]2

dx

]1/2

=: Δ(v, u). (5)
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Note that in general, Δ(u, v) 	= Δ(v, u) , which implies that Δ is not a metric in
the strict mathematical sense of the term. This is the price paid for employing
weighting functions g(x) which are not symmetric in the functions u(x) and v(x).
This complication, however, is not a serious limitation because of the following
results that apply to our space F of image functions.

Theorem 1: Let u, v ∈ F , with the assumption that the greyscale range [A,B]
is bounded away from zero, i.e., A > 0. Then

1
B

d2(u, v) ≤
{

Δ(u, v)
Δ(v, u)

}
≤ 1

A
d2(u, v) , (6)

where d2 denotes the L2 metric in Eq. (2) from which it follows that
[
2 − B

A

]
Δ(u, v) ≤ Δ(v, u) ≤ B

A
Δ(u, v) . (7)

The proofs are rather straightforward and will be omitted.

A consequence of the above Theorem is that it it is sufficient to consider
only one of these two distance functions, which will be the approach adopted for
the remainder of this paper. Unless otherwise stated, the function u will be the
reference function and v an approximation to it, in which case the approximation
error will be given by Δ(u, v) in Eq. (4).

From Eq. (4), we see that for Δ(u, v) to be small, the ratio v(x)/u(x) must be
close to 1 for all x ∈ X. This already suggests that Weber’s model of perception
is being followed: Larger values of u(x) will tolerate larger deviations between
v(x) and u(x) so that the ratio v(x)/u(x) is kept within a specified distance from
1. The following simple example illustrates this.

Example 1: Consider the “flat” reference image u(x) = I, where I ∈ Rg. Now
let v(x) = I + ΔI, with ΔI > 0, be the constant approximation to u(x), where
ΔI = CI is the minimum perceived change in intensity corresponding to I,
according to Weber’s model in Eq. (1). The L2 distance between u and v is

d2(u, v) = K · ΔI = KCI , where K =
[∫

X

dx

]1/2

. (8)

A simple computation shows that the weighted L2 distance in Eq. (4) is

Δ(u, v) = K
ΔI

I
= KC . (9)

The L2 distance in Eq. (8) increases with the intensity level I. This is expected
since ΔI increases with I. However, the weighted L2 distance in Eq. (9) remains
constant. As such, we claim that Δ(u, v) can better accommodate Weber’s model
of perception: Perturbations ΔI of image intensities I according to Eq. (1) yield
the same distance measure.
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3 Best Approximation in Terms of Δ(u, v)

Firstly, let {φk}∞
k=1 denote a set of real-valued functions that form a complete

orthonormal basis of L2(X), i.e., 〈φi, φj〉 = δij , where δij denotes the usual Kro-
necker delta. Now let u ∈ F ⊂ L2(X) denote the reference signal/image function
to be approximated. Given an N > 0, we are interested in best approximations
of the form

u ≈ uN =
N∑

k=1

ckφk . (10)

As is well known, the best L2 approximation to u, which is the minimizer of the
L2 distance ‖u − uN‖2, is yielded by the Fourier coefficients of u in the {φk}
basis, i.e.,

ck = 〈u, φk〉 =
∫

X

u(x)φk(x) dx, 1 ≤ k ≤ N . (11)

We now wish to determine the “best Weberized” approximation, i.e., the
expansion in Eq. (10) that minimizes the weighted L2 distance Δ(u, uN ). For
simplicity, we consider the squared distance Δ2(u, uN ),

Δ2(u, uN ) =
∫

X

g(x)

[
u(x) −

N∑
k=1

ckφk(x)

]2

dx =: f(c1, c2, · · · , cN ) . (12)

Here, the weighting function is g(x) = 1/u(x)2 but the algebraic expressions
presented below apply to any weighting function g(x).

Imposition of the stationarity constraints ∂f
∂ck

= 0, 1 ≤ k ≤ N , yields a linear
system of equations in the unknowns ck of the form,

Ac = b, (13)

where c = (c1, c2, · · · , cN ),

aij =
∫

X

g(x)φi(x)φj(x) dx, bj =
∫

X

g(x)u(x)φj(x) dx, 1 ≤ i, j ≤ N . (14)

Note that in the special case g(x) = 1, the matrix A = I, the n × n identity
matrix, and the solution reduces to the Fourier coefficients in Eq. (11).

Note: In the examples that follow, we shall denote the “Weberized approxima-
tion” yielded by the solution of Eq. (13) as uW

N in order to distinguish it from
the best L2 approximation, uN , yielded by the Fourier coefficients Eq. (11).

Example 2: Consider the following step function on X = [0, 1],

u(x) =
{

1, 0 ≤ x ≤ 1/2,
3, 1/2 < x ≤ 1.

(15)

The following set of L2[0, 1] basis functions was used: φ1(x) = 1, φk(x) =√
2 cos(kπx), k ≥ 2 . In Figure 1 are presented plots of the best L2 and best
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weighted/Weberized L2 approximations to u(x) using N = 5 (left) and N = 10
(right) basis functions. As expected, the Weberized L2 approximations, uW

N ,
yield a higher L2 errors than their best L2 counterparts, uN . Also as expected,
the approximations uW

N yield better approximations of u(x) than uN over [0, 0.5]
and a poorer approximations over [0.5, 1]. The Logarithmic L2 approximations
uL

N shown in the figure will be discussed in Section 5.

Fig. 1. Best L2 (uN , dotted), Weighted L2 (uW
N ) and Logarithmic L2 (uL

N ) approxi-
mations to step function in Eq. (15) using cosine basis functions. Left: N = 5. Right:
N = 20. Approximation errors:

N ‖u − uN‖2 ‖u − uW
N ‖2 ‖u − uL

N‖2

5 0.315 0.399 0.345
20 0.142 0.194 0.156

Example 3: The 512 × 512-pixel, 8 bits-per-pixel Lena image, partitioned into
nonoverlapping 32 × 32-pixel blocks, with the first N = 70 standard 2D DCT
basis functions used over each block (i.e., starting at (0, 0), then {(1, 0), (0, 1)},
etc.. In Figure 2 are shown the best L2 (left), Weberized L2 (center) and Loga-
rithmic L2 (right) approximations to the shoulder region. The rather small value
of N was chosen in order to demonstrate the significant differences as well as sim-
ilarities between the L2 and Weberized approximations in this region. The most
significant differences occur in blocks containing edges that are formed between
regions of low and high greyscale intensities, e.g., the edge defining Lena’s shoul-
der. In each case, as expected, there is a ringing effect due to the low number of
DCT basis functions employed (N = 70 out of a total of 322 = 1024 functions).
In the L2 case (left), the error due to the ringing appears to be of similar magni-
tude in both light (shoulder) and dark (background) regions. In the Weberized
L2 cases, however, the ringing error appears to be larger over the lighter region
(shoulder) than over the darker background (hair), which is consistent with the
Weberized approximation method – a kind of two-dimensional analogy to the
1D step function in Example 2 above. As expected, blocks with little greyscale
variation, e.g., the shoulder region without edges, are approximated equally well
by the three methods.
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Fig. 2. Best L2 (left), Weberized L2 (center) and Logarithmic L2 (right) approxima-
tions to Lena image using N = 70 2D DCT basis functions over 32 × 32-pixel blocks
comprising the shoulder region of Lena image

4 Logarithmic L2 Metric

Looking back at Eqs. (4) and (5) for the weighted L2 metrics Δ(u, v) and Δ(v, u),
we see that their accommodation of Weber’s model of perception comes from the
fact that their integrands involve ratios of the signals/images u and v. Indeed, a
ratio between signals/images can also be obtained if we consider their logarithms.
This, of course, is the basis of homomorphic filtering [4] and, indeed, this portion
of our paper may be viewed from such a perspective. In this study, however,
logarithms of image functions are used for the purpose of image approximation
as opposed to image enhancement.

Our choice of logarithms may appear ad hoc but can actually be justified
mathematically. Only a brief account can be presented here. As introduced in
[1], we consider a measure ν defined over the greyscale space Rg. Then define
the following intensity-weighted distance between two functions u and v:

D(u, v; ν) =
∫

Xu

ν(u(x), v(x)] dx +
∫

Xv

ν(v(x), u(x)] dx , (16)

where Xu = {x ∈ X | u(x) < v(x)} ⊂ X and Xv = {x ∈ X | u(x) ≥ v(x)} ⊂
X. This distance involves an integration of the sizes of the greyscale intervals
(u(x), v(x)] or (v(x), u(x)] over X. Note that in the special case, ν = mg, uni-
form Lebesgue measure on Rg, the distance D(u, v; ν) in Eq. (16) becomes the
L1 distance between u and v [1].

Theorem 2: The unique measure ν on Rg which accommodates Weber’s model
of perception over the greyscale space Rg ⊂ R+ is (up to a normalization con-
stant) defined by the continuous density function ρ(t) = 1

t .

Sketch of Proof: For any two greyscale intensities I1, I2 ∈ Rg,∫ I1+ΔI1

I1

1
t

dt =
∫ I2+ΔI2

I2

1
t

dt =⇒ ν(I1, I1 + ΔI1) = ν(I2, I2 + ΔI2) , (17)
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where ΔI1 = CI1 and ΔI2 = CI2, are the minimum changes in perceived inten-
sity at backgrounds I1 and I2, respectively, according to Weber’s model in Eq.
(1). Eq. (17) is a kind of invariance result with respect to perception.

Using this measure ν, the distance between u and v in Eq. (16) becomes

D(u, v; ν) =
∫

Xu

[∫ v(x)

u(x)

1
t

dt

]
dx +

∫
Xv

[∫ u(x)

v(x)

1
t

dt

]
dx

=
∫

X

| ln u(x) − ln v(x)| dx , (18)

the logarithmic L1 distance between u and v. All other logarithmic Lp distances,
p > 1, may be viewed as generalizations of this result. This brief treatment hope-
fully shows why logarithms provide a natural representation for Weber’s model.

We now outline the mathematical formalism for a logarithmic L2-based
approximation method. First define the space of functions G composed of the
logarithms of all functions u ∈ F , i.e.,

G = {U : X → [ log A, log B ] , U(x) = log u(x), ∀x ∈ X } . (19)

Now consider the L2(X) distance between two elements U, V ∈ G,

d2(U, V ) =
[∫

X

[U(x) − V (x) ]2 dx

]2

< ∞ . (20)

Use this distance to define the following “logarithmic L2 distance” on F ,

dlog(u, v) = d2(U, V ) = d2(log u, log v) , u, v ∈ F . (21)

Since U = log u implies that u = eU for all U ∈ G, it can be shown that dlog

is a metric on F , i.e., it satisfies all of the properties of a metric, including the
triangle inequality. From Eq. (21),

dlog(u, v) =
[∫

X

[ log u(x) − log v(x) ]2 dx

]1/2

=

[∫
X

[
log

u(x)
v(x)

]2

dx

]1/2

=

[∫
X

[
log

v(x)
u(x)

]2

dx

]1/2

. (22)

The appearance of both ratios is a consequence of the symmetry of the metric.

Example 1 Revisited: The reference image u(x) = I and constant approxi-
mation v(x) = I + ΔI as before. A quick calculation yields

dlog(u, v) = log
(

1 +
ΔI

I

)
= K log(1 + C) , (23)
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where K is given in Eq. (8). As in the case of the weighted L2 metric, Δ(u, v),
the logarithmic L2 distance is independent of the intensity level I.

As an interesting side note, in the case that the Weber constant C in Eq. (1)
is small, then log(1 + C) ≈ C, so that, from Eq. (9),

dlog(u, v) ≈ KC = Δ(u, v) . (24)

Experimentally, C ≈ 0.02 [7] which justifies the above approximation.

5 Best Approximation in Terms of Logarithmic L2 Metric

We shall now use the logarithmic L2 distance to approximate a function u ∈ F .
As before, we consider, for an N > 0, an approximation uN of the form in Eq.
(10). The best approximation will minimize the squared dlog distance,

d2
log(u, uN ) =

∫
X

[
log u(x) − log

(
N∑

k=1

ckφk(x)

) ]2

dx =: h(c1, · · · , cN ). (25)

Unfortunately, application of the stationarity conditions ∂h
∂ck

= 0, 1 ≤ k ≤ N ,
yields an extremely complicated set of nonlinear equations in the unknown coeffi-
cients ck. A huge simplification is accomplished if we consider the L2 approxima-
tion of the logarithmic function U(x) = log u(x). The goal is then to approximate
U ∈ G ⊂ L2(X) as follows,

U ≈ UN =
N∑

k=1

akφk . (26)

The minimization of the squared L2 distance, d2
2(U,UN ), is provided by the

Fourier coefficients ak of U in the φk basis, i.e.,

ak = 〈U, φk〉 =
∫

X

U(x)φk(x) dx . (27)

We bypass some technical mathematical details and simply state that the loga-
rithmic L2-based approximations to u, which we shall denote by uL

N , are
given by

uL
N (x) = exp (UN (x)) = exp

(
N∑

k=1

akφk(x)

)
. (28)

In summary, the logarithmic L2 approximation method is seen to be much
simpler than the weighted/Weberized L2 method. One finds the Fourier coef-
ficients of the logarithm U of the signal and then exponentiates to recover the
approximation uN . There is no system of equations to be solved.

Example 2 Revisited: We again consider the step function u(x) in Eq. (15)
and employ the same orthonormal cosine basis on [0, 1]. The best logarithmic
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L2 approximations, uL
N , to u(x) using N = 5 basis functions (left) and N = 10

basis functions (right) are plotted in Figure 1 along with their L2 and Weber-
ized L2 counterparts. As expected, the logarithmic L2 approximations are seen
to behave in a “Weberized” way. Note that the L2 approximation errors associ-
ated with the logarithmic approximations are significantly lower than those of
the weighted L2 method.

Example 3 Revisited: The Lena image, approximated over 32×32 pixel blocks
with N = 70 2D DCT basis functions. The approximations afforded by the Log-
arithmic L2 method are virtually identical to their Weberized L2 counterparts.
As such, they display the same kind of “Weberized ringing” over regions with
edges separating high and low greyscale intensities, with lesser ringing error over
the latter regions.
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