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Abstract. In this work we determine how well the common objective
image quality measures (Mean Squared Error (MSE), local MSE, Signal-
to-Noise Ratio (SNR), Structural Similarity Index (SSIM), Visual Signal-
to-Noise Ratio (VSNR) and Visual Information Fidelity (VIF)) predict
subjective radiologists’ assessments for brain and body computed tomog-
raphy (CT) images.

A subjective experiment was designed where radiologists were asked
to rate the quality of compressed medical images in a setting similar to
clinical. We propose a modified Receiver Operating Characteristic (ROC)
analysis method for comparison of the image quality measures where the
“ground truth” is considered to be given by subjective scores. The best
performance was achieved by the SSIM index and VIF for brain and
body CT images. The worst results were observed for VSNR.

We have utilized a logistic curve model which can be used to predict
the subjective assessments with an objective criteria. This is a practical
tool that can be used to determine the quality of medical images.

1 Introduction

Speed limitations of existing networks along with the explosive growth of image
modalities with extremely high volume outputs have combined to make the issue
of irreversible medical image coding one of the key considerations in the design
of future PACS systems. Existing lossy image compression techniques are well
suited for images where the only concern is visual quality.
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As expected, increasing the degree of compression of an image leads to
decreasing fidelity. The extent of allowable irreversible compression is dependent
on the imaging modality and the nature of the image pathology and anatomy.
Image compression often results in the distortion of the images and therefore
creates the risk of losing or altering relevant diagnostic information.

If not implemented properly, distortions resulting from lossy compression can
impede the ability of radiologists to make confident diagnoses from compressed
medical images. However, defining the amount of accepted distortion is a complex
task. For this reason, reliable image quality assessment methods are needed in
order to achieve “Diagnostically Acceptable Irreversible Compression (DAIC)”,
defined in [13], which refers to an irreversible compression that has no effect on
diagnostic task.

2 Image Quality Assessment

Many objective image quality metrics have been proposed in the last decade. Due
to the wide variety of image types and applications, image quality assessment is
not (yet) fully automatic and subjective approaches are still predominant [12].
How do we measure diagnostic quality?

There is no standard method to measure the quality of compressed medical
images, however, three approaches are usually considered [3]:

1. Subjective image quality rating using psychovisual tests or questionnaires
with numerical ratings.

2. Diagnostic accuracy is measured by simulating a clinical environment with
the use of statistical analysis (e.g. Receiver Operating Characteristic (ROC)).

3. Objective quality measures such as the Mean Squared Error (MSE) and Struc-
tural Similarity (SSIM).

2.1 Objective Image Quality Methods

The existing objective image quality measures are not necessarily reliable mea-
sures of diagnostic quality for medical images. Moreover, compression ratios,
generally used as pre-compression quality predictors, indicate a poor correlation
with image quality and are image dependent [4]. According to Marmolin [10]:
“MSE is not very valid as a quality criterion for pictures reproduced for human
viewing and the improved measures could be derived by weighting the error in
accordance with assumed properties of the visual system.” Although MSE is
shown to poorly correlate with visual quality, it should not be taken for granted
that any perceptual object quality measure must be better. According to the
relevant literature, SSIM and other objective measures show better performance
than MSE for natural image/video content for consumer electronics applications
based on subjective tests [16,17]. It cannot be assumed that an objective quality
metric that performs well for natural images will ensure a superior diagnostic
quality for medical images. In spite of these pitfalls, MSE and other objective
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methods have been used in medical image quality assessment. Moreover, no
objective model has been yet “established” for medical images, especially when
using radiologists as subjects.

There are many full reference image quality assessment algorithms proposed
in the literature. A lengthy review of objective image quality was presented in
[5]. Full reference methods are based on comparison between the original image
and its distorted version. Among the most common ones are Mean Squared Error
(MSE), Signal-to-Noise Ratio (SNR), Structural Similarity (SSIM) [15], Visual
Signal-to-Noise Ratio (VSNR) [1] and Visual Information Fidelity (VIF) [14].

MSE is related to the L2 distance between image functions. The MSE between
the compressed image g and the original image f is given by

MSE(f, g) =
1

MN

M∑

i=1

N∑

j=1

(f(i, j) − g(i, j))2 . (1)

The SSIM index, introduced by Wang and Bovik [16], assumes that the HVS
is highly sensitive to structural information/distortions (e.g. JPEG blockiness,
“salt-and-pepper” noise, ringing effect, blurring) in an image and automatically
adjusts to the non-structural (e.g. luminance or spatial shift, contrast change)
ones [15]. Another assumption of the SSIM index is that images are highly struc-
tured and there exist strong neighbouring dependencies among the pixels, which
the MSE totally ignores. The SSIM index measures the difference/similarity
between two images by combining three components of the human visual sys-
tem: luminance, l(f, g), contrast, c(f, g) and structure, s(f, g).

The (local) SSIM is given by:

SSIM(f, g) =

(
2μfμg + C1

μ2
f + μ2

g + C1

)
·
(

2σfσg + C2

σ2
f + σ2

g + C2

)
·
(

σfg + C3

σfσg + C3

)
. (2)

where μ is the mean, σ2
f is the variance, and σfg is the covariance. SSIM is com-

puted over m × n pixel neighbourhoods. The (non-negative) parameters C1, C2

and C3 are stability constants of relatively small magnitude, which are designed
to avoid numerical “blowups”, which could occur in the case of small denomi-
nators. In the special case C3 = C2/2, the following simplified, two-term version
of the SSIM index is obtained:

SSIM(f, g) =

(
2μfμg + C1

μ2
f + μ2

g + C1

) (
2σfg + C2

σ2
f + σ2

g + C2

)
. (3)

For natural images there are recommended default values for these parame-
ters [15]. On the other hand, the question of optimal values for these stability
constants for medical images is still an open one. The smaller the values of
these constants, the more sensitive the SSIM index is to small image textures
such as noise. In our study the constants were adopted from our previous work
[8,9], where we examined a range of stability constants in order to determine the
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value(s) which are optimal for the assessment of diagnostic quality of medical
images.

In this study, we also employ the local MSE. This score is computed in a sim-
ilar manner as the SSIM index, i.e. for a local m × n pixel neighbourhood. The
quality score is computed by averaging the local MSE scores. In this work we use
11 × 11 pixel neighbourhoods for the computation of SSIM and local MSE mea-
sures, which is the default parameter in the computation of the SSIM index [15].

SNR is a measure of quality that considers the MSE and the variance of the
original signal. It is defined as follows,

SNR(f, g) = 10 log10
σ2
f

MSE(f, g).
(4)

The result is measured in decibels. SNR is considered in the literature as a valid
quality measure [3].

Another image fidelity measure that we consider in our work is the VSNR
[2]. The VSNR is a low complexity method that considers near-threshold and
suprathreshold properties of the HVS. There are two stages in the algorithm.
In the first one, wavelet-based models for the computation of contrast thresh-
olds for distortions detection are used in order to determine whether distortions
are visible. Based on the outcome of the first step, if the distortions are below
the threshold of detection, then no further computation is required and the
distorted image is of perfect visual fidelity. In the case where distortions are
“suprathreshold”, a second step of the algorithm is applied. In the second step,
two properties are computed: the perceived contrast of the distortions and the
disruption of global precedence. Finally, VSNR is computed as follows,

V SNR(f, g) = 20 log10

(
C(f)

αdpc + (1 − α)(dgp/
√

2)

)
(5)

where C(f) denotes the contrast of the original image f , dpc = C(E) is the
perceived contrast of the distortions, E = f − g is the distortion, dgp is the
global precedence and α ∈ [0, 1] determines the relative contribution of dpc and
dgp. A detailed explanation and equations required to compute the VSNR are
presented in [2]. According to the author, the VSNR metric has relatively low
computational complexity.

VIF is based on visual information fidelity that considers natural scene sta-
tistical information of images. A detailed description can be found in [14]. The
idea is to quantify the statistical information that is shared between the original
and distorted images using conditional mutual information.

VIF(f,g) = Distorted Image Information / Reference Image Information. (6)

3 Design of the Subjective Experiment

A subjective experiment was designed in order to assess the global prediction
of the image quality assessments being examined. The experiment employed
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sixty CT slices - thirty neurological and thirty upper body images- obtained
from Medical Informatics Research Centre at McMaster (MIIRC@M), Hamilton,
Canada. These images were first windowed according to their default viewing
parameters (window width and window centre) in order to reduce their bit-
depth from 16 to 8 bits per pixel (bpp). The resulting 512 × 512 pixel, 8 bpp
images were compressed at five different compression levels using both the JPEG
and JPEG2000 compression algorithms. Preliminary visual observations were
used to select the compression levels employed in the experiment. The range of
compression ratios was intended to represent a wide variety of visual qualities,
from no and barely noticeable to fairly noticeable distortion.

An image viewer was developed specifically for this study in order to pro-
vide an easy-to-use graphical interface for the radiologists. The viewer displayed
a compressed image beside its uncompressed counterpart without zoom. The
compressed images were presented randomly and independently to each subject.
During the course of the experiment, each compressed image was presented to
each radiologist with some repetitions, but without the radiologists’ knowledge.
The subjects were not made aware of the compression ratios or quality factors
of the compressed images. Three buttons were placed at the bottom of the user
interface: (1) not noticeable and acceptable, (2) noticeable and acceptable and
(3) noticeable and not acceptable. A confirmation was requested before passing
to the next stimulus. The experiment can be summarized as follows,

– The subjects were six radiologists including experienced radiologists as well
as residents (McMaster University, Hamilton, ON, Canada).

– Types of pathologies: Based on previous findings by Koff et al. [6,7], the
pathologies include subtle lesions in the liver for the body, and parenchyma
and posterior fossa for brain. Subtle lesions include the following two types:
• Very small lesions, limit in size, of less than 2 mm, but high contrast (cal-

cifications) or low density (tiny cysts);
• Subtle parenchymal alterations translating into subtle differences in density

such as cerebral infarcts.
– The brain CT and body CT images used in the experiment were carefully

chosen with the help of radiologists and contain pathological and normal cases
(about 1/3 of images represented normal cases).

– Working environment: MIIRC@M office (Hamilton, ON, Canada); Eizo Radi-
force monitor, 54 cm (21.3”) display, with a 1200×1600 native resolution (3:4
aspect ratio) and a viewing size of 324.0 × 432.0 mm. Capable of displaying
10-bit colors.

– Compression levels: Five quality factors (JPEG input parameters) were
chosen:
• [90, 65, 45, 20, 5] for brain CT images, [90, 75, 55, 35, 10] for body CT images.

First the images were compressed using JPEG algorithm, then using
JPEG2000 with the corresponding compression ratios.

– Trial and main experiments:
• Trial experiment included 6 images from each brain CT and body CT sets.

These images were repetitions of images that were included in the main
part of the experiment.
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• Main experiment: Number of images: 306 brain CT, 306 body images (30
different images compressed at five compression ratios using JPEG and
JPEG2000 algorithms including 6 repetitions added at the end of the
sequence).

– Repetitions were included in the trial experiment as well as at the end of the
first part of the main experiment.

– Duration of the experiment: The number of images was adjusted to the time
limitation of the experiment. Expected duration of the experiment: 60 min.
• Trial experiment including explanation of the task: 10 min.
• Main experiment, Part 1:

∗ brain CT: 25 min, body CT: 25 min.

4 Data Analysis

4.1 Modified ROC Analysis

The Receiver Operating Characteristic (ROC) curve is a common tool for visu-
ally assessing the performance of a classifier in medical decision making [11].
ROC curves illustrate the trade-off of benefit (true positives, TP) versus cost
(false positives, FP) as the discriminating threshold is varied. In our experiment,
we employed a three-level subjective rating of image quality by radiologists: (1)
not noticeable and acceptable, (2) noticeable and acceptable and (3) notice-
able and not acceptable. Since we are concerned about diagnostic quality, we
combine the images that fell into the two classes during subjective assessments:
(1) not noticeable (distortions) and acceptable, (2) noticeable (distortions) and
acceptable. By doing so, we now have a binary rating scale: acceptable and
unacceptable images. At this point, we must clarify that due to the nature of
the problem we are investigating, our definitions of FP and TP differ from those
normally applied for the purposes of medical diagnosis. In this study, we wish to
examine how well different “image quality indicators” compare to the subjective
assessments of image quality by radiologists. As such, we must assume that the
“ground truth” for a particular experiment, i.e., whether or not a compressed
image is acceptable or unacceptable, is defined by the radiologist(s). From this
ground truth, we measure the effectiveness of each image quality indicator in
terms of FP, TP, etc. This leads to the following definitions of P, N, TP, FP,
etc.:

P= FP+TP total positives (acceptables) and N= TN+FN total negatives
(unacceptables): these refer to radiologists’ subjective opinions, which represent
the True Class. On the other hand, P’ and N’ belong to the Hypothesis Class
which, in our experiment, corresponds to a given objective image quality assess-
ment method.

TP (true positives): images that are acceptable to both radiologists and a given
quality assessment method.
TN (true negatives): images that are unacceptable to both radiologists and a
given quality assessment method.



Modelling of Subjective Radiological Assessments 9

FN (false negatives): images that are acceptable to radiologists but unaccept-
able to a given quality assessment method.
FP (false positives): images that are unacceptable to radiologists but acceptable
to a given quality assessment method.

The Acceptability/unacceptability of a given quality measure is defined with
respect to the discrimination threshold s′ associated with the method, where
0 ≤ s′ ≤ 1 . Using this threshold value s′, FPR and TPR are computed. Each
threshold value s′ generates a point on the ROC curve which corresponds to the
pair of values (FPR, TPR) = (1-SP, SE), where SP denotes specificity and
SE denotes sensitivity, i.e.,

FPR (false positive rate) = FP/N = 1 − SP (specificity)
TPR (true positive rate) = TP/P = SE (sensitivity)
FNR (false negative rage) = FN/N = 1 − SE
TNR (true negative rate) = TN/N = SP.

4.2 ROC Analysis Results

ROC curves were computed corresponding to SSIM, MSE, SNR, VIF, VSNR
for body and brain CT images; they are shown in Fig. 1 and 2. Table 1 shows
the Area Under the (ROC) Curve (AUC) scores corresponding to each of the
objective measures studied. The largest AUC corresponds to the SSIM index.
The second best method is the VIF measure. We observed that MSE, MSE
local, SNR and VSNR have smaller AUC. Moreover, the AUC scores from ROC
analysis are larger for brain CT images than for body CT images with respect to
all objective image quality measures considered. This indicates that the studied
objective measures can predict the subjective assessments of radiologists of brain
CT images with better accuracy than those corresponding to body CT images.

According to the presented modified ROC analysis, SSIM index provides the
closest match with radiologists’ subjective assessments. The second best measure
is the VIF. A worse performance is observed for MSE, local MSE, SNR and

Table 1. AUC scores resulting from ROC analysis corresponding to objective quality
measures and subjective radiologists’ assessments for brain and body CT images.

Objective quality measure AUC (brain CT) AUC (body CT)

SSIM 0.9924 0.9618

MSE (local) 0.9899 0.9326

MSE 0.9892 0.9366

SNR 0.9896 0.9351

VNSR 0.9662 0.9400

VIF 0.9916 0.9571
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Fig. 1. ROC curves corresponding to
SSIM, MSE, local MSE, SNR, VSNR
and VIF for brain CT images(Color
figure online).
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Fig. 2. ROC curves corresponding to
SSIM, MSE, local MSE, SNR, VSNR
and VIF for body CT images(Color
figure online).

VSNR. According to our previous work, where we studied both local and global
image quality [9], SSIM also showed a better correspondence with subjective
assessments of image quality.

4.3 Logistic Curve Model

For medical images, the goal is to find an objective image quality measure that
can best predict the subjective radiologists’ assessments. The performance of
an objective quality measure to predict subjective scores is usually measured
by means of a curve-fitting model. First MSE values are plotted against mean
scores of subjective assessments, then a curve (e.g. polynomial spline, quadratic,
exponential, logistic) is fitted to the resulting points [3].

In this study we used a logistic curve model as a proposed predictor of sub-
jective radiologists’ assessments corresponding to the studied objective quality
measures. In order to take into account the variability in the subjective quality
assessment of compressed medical images, a logistic cumulative probability dis-
tribution is assumed to model the decision of a radiologist to either accept or not
accept an image at a given objective score. A robust curve-fitting is performed
on the plot of the average subjective score over all the radiologists as a function
of the objective score.

Given x1, the predicted value (SSIM, VIF) and y1, the average subjective
score, we determine the parameters a and b of the logistic function

y = 1/(1 + exp (−a ∗ x + b))

that produce the least weighted square error, with weighting according to the
bisquare method.

A threshold can be selected so that the cumulative probability distribution
model represents the desired level of confidence that the quality of the compressed
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Fig. 3. Logistic curves corresponding to SSIM for (top left) brain, (bottom left) body
CT images and VIF for (top right) brain, (bottom right) body CT images.

image is diagnostically acceptable. For example, if one requires a 99 % confidence,
the recommended threshold has to be selected at the value for which the fitted
logistic curve is at 0.99. Figure 3 shows logistic curves fitted with LAD Regression
corresponding to SSIM and VIF for brain and body CT images.

5 Conclusions

The task of achieving Diagnostically Acceptable Irreversible Compression
(DAIC) of medical images is a complex one. It involves tuning technology
with radiological subjective responses/preferences. In this work, we compared
the performances of some of the most popular image quality measures (MSE,
SNR, SSIM, VSNR, VIF) based on experimental data collected in an experiment
involving radiologists’ subjective assessment of image quality. The experiment
involved a global quality assessments of brain and body CT images at several
compression ratios. Six radiologists evaluated compressed images as acceptable
(with and without noticeable distortions) or unacceptable as compared to their
uncompressed counterparts. An ROC analysis indicates that SSIM demonstrated
the best performance, i.e., it provides the closest match to the radiologists’ assess-
ments. The worst performance was observed for the VSNR quality measure.

We have utilized a logistic curve model, which can be used to predict the
subjective assessments with an objective criteria. This is a practical tool that
can be used to determine the quality of medical images. The optimal quality
score can be selected so that the cumulative probability distribution model rep-
resents the desired level of confidence that the quality of the compressed image
is diagnostically acceptable.
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Our current work involves developing advanced techniques of choosing a
threshold for compression using the most popular quality measures.
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