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Abstract. In real-world visual content acquisition and distribution sys-
tems, a vast majority of visual content undergoes multiple distortions
between the source and the end user. However, traditional image quality
assessment (IQA) algorithms are usually validated and at times trained
on image databases with a single distortion stage. Existing IQA methods
for multiply distorted images remain limited in their scope and perfor-
mance. In this work we design a first-of-its-kind blind IQA model for
multiply distorted visual content based on a deep end-to-end convo-
lutional neural network. The network is trained on a newly developed
dataset which is composed of millions of multiply distorted images anno-
tated with synthetic quality scores. Our tests on three publicly available
subject-rated multiply distorted image databases show that the proposed
model outperforms state-of-the-art blind IQA methods in terms of both
accuracy and speed.
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Multiply distorted images · Convolutional Neural Networks (CNN) ·
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1 Introduction

The goal of objective Image Quality Assessment (IQA) is to predict the visual
quality of images as perceived by humans. While simple error-based methods
such as the Peak Signal-to-Noise-Ratio (PSNR) were the methods of choice in
the past, it has been comprehensively shown to be poorly aligned with human
perception of visual quality [1]. Significant strides have been made in the last
two decades in designing perceptual quality methods and three major frame-
works are now well-established in IQA research [2]: (1) Full-Reference (FR) IQA,
(2) Reduced Reference (RR) IQA, and (3) No Reference (NR) or Blind IQA. To
evaluate the quality of a distorted image, FR IQA methods require the complete
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Fig. 1. The framework of a practical media distribution system.

availability of a pristine quality reference image, while RR IQA methods require
access to certain features that have been extracted from the reference image. On
the other hand, NR IQA methods evaluate the quality of the distorted image in
the absence of the reference image. The performance of IQA methods is usually
tested on subject rated image databases such as LIVE Release 2 [3,4], TID2008
[5], TID2013 [6], CSIQ [7], VCLFER [8], and CIDIQ [9]. Training for machine
learning based IQA methods is also typically done on these databases.

Notwithstanding the significant progress made thus far in perceptual IQA
research, the following challenges need to be addressed: (1) Although IQA meth-
ods are designed to handle different types of distortions, they are typically
designed for images that have undergone a single stage of distortion, that is,
they can handle one distortion at a time. This is in contrast to real world media
delivery chains where the same visual content can undergo a number of distor-
tions before reaching the end user, as depicted in Fig. 1. Designing IQA methods
to deal with simultaneous distortions is quite challenging since the interactions
of different distortions need to be accounted for. Thus, IQA for images with
multiple simultaneous distortions has been a major challenge that future IQA
research needs to address [10]. (2) In practical media delivery systems, access
to pristine reference images is either extremely rare or altogether nonexistent,
especially at the end user level. This, coupled with the multiple distortion nature
of such systems, makes the use of FR and RR IQA infeasible. (3) One way to
address the first two challenges is to use NR IQA. However, most NR meth-
ods are trained and tested on subject rated databases mentioned earlier, which
have images with a single stage of distortion. Although there have been recent
advances in the design of NR IQA methods to handle multiply distorted images
using some new databases (as will be described later), such progress remains lim-
ited in scope. (4) The design of machine learning based IQA methods requires
large-scale annotated image databases. However, subject-rated IQA databases,
particularly for multiply distorted images remain quite limited, making it dif-
ficult to avoid model overfitting or to analyze interactions across distortions.
These challenges motivate us to develop an end-to-end deep neural network
(DNN) based NR or blind IQA model trained from synthetic scores.

2 Related Work

The first IQA database specifically designed for images with multiple simulta-
neous distortions (multiply distorted images), is the LIVE Multiply Distorted
(MD) database [11]. Starting with 15 reference images, LIVE MD has 450 images
divided into two parts, one each for the multiple distortion combinations of
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(1) Gaussian blur followed by JPEG compression and (2) Gaussian blur fol-
lowed by Gaussian noise. The MDID2013 database [12] has 12 reference images
and one distortion combination of Gaussian blur followed by JPEG compression
followed by white noise contamination. Overall, MDID2013 has 324 distorted
images. The MDID database [13] has 20 reference images and 1600 multiply
distorted images, where distortions are introduced first by adding Gaussian blur
and contrast change, then JPEG or JPEG2000 compression, and finally Gaussian
noise. The intensity of each distortion type is randomly selected and thus, MDID
images may be distorted from 1 to 4 distortions. The MDIVL database [14] is
composed of 10 reference images and 750 distorted images which are divided into
two parts of (1) Gaussian blur followed by JPEG compression and (2) Gaussian
noise followed by JPEG compression. Two databases composed of authentically
distorted images, where distortions are not artificially added but captured in
real-world environments, have recently been published. The CID2013 database
[15] is composed of 480 photographs captured by 79 different cameras of varying
quality. The LIVE in the Wild Image Quality Challenge (WC) database [16] is
composed of 1162 photographs taken by a diverse set of mobile device cameras.

Recently some blind IQA methods for multiply distorted images have been
proposed. SISBLIM [12] is a training-free metric designed for singly and multiply
distorted images through the fusion of estimates of noise, blur, JPEG compres-
sion, and joint effects. BoWSF [17] selects features sensitive to different distor-
tion types, which are encoded through a Bag-of-Words model and mapped to a
quality score. LQAF [18] uses Support Vector Regression (SVR) to map features
such as phase congruency, gradient magnitude, gray level gradient co-occurrence
matrix and the contrast sensitivity function to quality scores. An enhanced and
multi-scale version of LQAF, called MS-LQAF is proposed in [19]. The training-
based GWHGLBP [20] uses the gradient-weighted histogram of the local binary
pattern (LBP) generated on the gradient map of the distorted image to capture
the effects of multiple distortions. Jet-LBP [21] uses color Gaussian jets to gen-
erate feature maps from a distorted image. The LBP is applied to these feature
maps to ascertain the effect of multiple distortions, leading to a weighted his-
togram which is mapped to quality scores through SVR. MUSIQUE [22] handles
multiply distorted images and operates by performing distortion identification
followed by distortion parameter estimation and score generation.

A major challenge in building Convolutional Neural Networks (CNN) for
blind IQA is the lack of large-scale subject-rated data for training. Data aug-
mentation by simple geometric transformations is widely used [23–25], though
the content variation is still limited by the original training samples and the
perceptual quality degradation due to these transformations is ignored. Crop-
ping fixed size small patches from the original image is another popular way to
increase training samples, but assigning the subjective quality score of the entire
image to all individual patches may introduce significant label noise. The CNN
employed in [26] contains 10 convolutional layers and 2 fully connected layers to
estimate the quality of 32×32 image patches. Patch weight estimation was incor-
porated before score pooling in order to reduce label noise. In [27] the weights
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of patches were predicted based on Prewitt magnitude of segmentation of an
image. In BIECON [24], an FR IQA model was used to derive local scores of
32×32 patches and then a CNN was pre-trained using these patches with corre-
sponding FR scores. The model was then fine-tuned on a subject-rated dataset.
Several models [23,25,28–30] alleviate the label noise problem by utilizing larger
patches. As a consequence the number of training patches is reduced.

An early CNN-based blind IQA model IQA-CNN [31] was composed of a sin-
gle convolutional layer with two fully connected layers. Quality scores of 32× 32
image patches were predicted and then averaged to obtain the final result. This
model was further extended to IQA-CNN++ [32] which has deeper networks and
trained a multi-task CNN by predicting quality and distortion type simultane-
ously. Fu et al. [33] developed a CNN-based blind IQA model using a different
pooling strategy along with a higher number of features compared to [31]. Dis-
tortion type information was incorporated in MEON [23], where the distortion
classification sub-network was pre-trained without access to subject-rated data,
for which a large amount of data is available for training. The quality predic-
tion sub-network of MEON incorporated the distortion type information derived
from the first sub-network. The two sub-networks were finally joint optimized
on subject-rated datasets. Apart from end-to-end learning methods, some mod-
els [29,30,34] utilized SVR to predict the quality score based on CNN features.
Instead of predicting a single quality score, some models [25,28] predict the qual-
ity distribution of a given image using CNNs. Talebi et al. [25] approximated
the score distribution through maximum entropy optimization. Zeng et al. [28]
handle this problem by mapping the score to a series of vectorized probability
quality representations defined by quality anchors.

A critical problem of the aforementioned learning-based methods including
CNN-based models is that they are trained on datasets like LIVE Release 2 [3,4],
LIVE MD [11], LIVE WC [16], CSIQ [7], TID2008 [5] and TID2013 [6], which
only have a limited number of subject-rated images. Multi-task learning (such
as MEON [23]) and data augmentation only partially mitigate the problem. The
lack of training data often leads to overfitting of these models and makes them
hard to generalize to new data on which they are not trained. The ultimate goal
of a blind IQA metric is to be robust to unseen data.

3 Proposed Model

We propose a CNN based approach to build a blind IQA model for multiply
distorted images, namely End-to-end Optimized deep neural Network using Syn-
thetic Scores (EONSS). EONSS addresses the following design issues: (1) The
complex interactions between multiple distortions are learned through the deep
CNN of perceptually motivated activation function; (2) a large-scale database
of diverse content type and distortion variation is created. Such a database,
together with a dedicated synthetic score generation approach, is employed to
train the CNN, as opposed to earlier machine learning based methods that used
very limited data for training; (3) the trained model operates in a fast manner,
suited for practical time-critical applications.
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Fig. 2. The architecture of the proposed EONSS network. The format of the notation
of the convolution layer is (Conv | kernel width × kernel height | input channel ×
output channel | stride | padding).

The network takes a 235 × 235 RGB image patch as input and predicts
its quality. 235 × 235 patches contain more visually meaningful content than
small patches and can represent the whole image better, therefore alleviating
the issue of label noise. However, due to the limited training images in the clas-
sic IQA datasets (mentioned earlier), the number of training patches for many
models decrease dramatically when larger patch size is utilized. Our model does
not suffer from this issue since the number of training images in our dataset
is sufficiently large (described later). We illustrate the architecture of the net-
work in Fig. 2. The network consists of 6 stages of processing. Each of the first
4 stages contains a convolutional, generalized divisive normalization (GDN) [35]
and max-pooling layer. These 4 stages aim at mapping the 235×235×3 raw pix-
els from the image space to a lower-dimensional feature space where perceptually
aware image distortions can be quantified more easily. The network reduces the
spatial dimension through the use of convolution with stride 2 × 2 in the first
4 stages. 2 × 2 max-pooling is also used after each GDN layers in the first
4 stages to select the neurons that have the highest local response. Finally, the
last 2 stages, which consist of 2 fully connected layers and a GDN transform layer
in between, map the extracted features to a single quality score. The spatial size
of features is reduced to 1×1 before they are sent into the last 2 fully connected
layers so that the number of weights in the fully connected layers are dramat-
ically reduced. We apply GDN [35] instead of ReLU [36] after the convolution
layers in the first 5 stages as the activation function to add non-linearity to the
model. Although ReLU [36] is widely used as the activation function in CNNs, it
suffers from strong higher-order dependencies, which is often compromised with
a much larger network. Here we utilized a bio-inspired normalization transform,
GDN, as the activation function. It helps decorrelate the high-dimensional fea-
tures by using a joint nonlinear gain control mechanism. As a result a much
smaller network is needed in order to achieve competitive performance.

The new Waterloo Multiply Distorted (Waterloo MD) IQA database has
been used to learn the EONSS model. The construction of this database is
beyond the focus of this work and will be covered in detail in our other publi-
cations. Suffice it to say that the Waterloo MD database is composed of 3570
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pristine reference images and has distorted images which have been afflicted
by up to two distortions. The database has three single distortion categories
of Noise, Blur and JPEG compression, with 39270 images in each category.
More importantly, the database has five multiple distortion categories of Noise-
JPEG, Noise-JPEG2000, Blur-JPEG, Blur-Noise and JPEG-JPEG, with 667590
images in each category. Overall the database has around 3.45 million distorted
images that have been annotated with synthetic quality scores in place of human
subjective ratings. The Waterloo MD database is split randomly into training,
validation and testing sets without overlapping image content of size 60%, 20%
and 20%, respectively. Since the input dimension of the network is fixed to
235× 235× 3, in the training phase, for the sake of time efficiency, we randomly
sample one 235 × 235 patch from each image if its dimensions are larger. Since
our dataset is large, this does not hinder us from creating a sufficiently large
training set. In addition, by doing this, we obtain a batch of image patches of
greater diversity and therefore significantly increase the time efficiency and pre-
vent overfitting. The image quality of the sampled patch is considered to be the
same as the original image during training since the 235 × 235 patch size can
cover a relatively large area of the original image and therefore is able to con-
tain perceptually meaningful content. In the validation and testing phases, for
images with larger dimensions, we sample 235 × 235 patches from the original
image with a stride of 128 × 128 in an overlapping manner. The average of the
predicted quality scores of these patches is computed as the predicted quality of
the original image.

We follow the approach in [37] to initialize the weights of the convolution
layers. Adam [38] is used for optimization. The training batch size is chosen
to be 50 and the image patches in each batch are randomly sampled from the
training set only. The initial learning rate is set to 0.001 and is decreased by a
factor of 10 after every 2 epochs. Other parameters of Adam are set as default.
We test the model performance (PLCC and SRCC) on the validation set after
each epoch and stop training after 10 epochs when the performance on the
validation set reaches a plateau. Finally, the model after 10 epochs of training
is applied to the testing set.

4 Experimental Results

In addition to evaluating the performance of EONSS on the test set of the new
Waterloo MD database, we tested its performance on three publicly available
multiply distorted image databases: MDID [13], LIVE MD [11] and MDIVL
[14]. It is pertinent to mention here that these three databases were not used in
the training and validation process of EONSS, and their ground truths are the
mean opinion scores (MOSs) obtained from subjective testing rather than syn-
thetic scores. To compare how EONSS performs against other IQA methods, we
also tested the performance of 15 publicly available blind IQA methods. These
include two methods designed for multiply distorted images, GWHGLBP [20]
and SISBLIM [12], and two methods designed by using CNNs, DeepIQA [26] and
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Table 1. Performance comparison of IQA algorithms. FR methods are in bold.

Part 1: SRCC Part 2: PLCC

Metric MDID LIVE MD MDIVL Weighted MDID LIVE MD MDIVL Weighted

Average Average

IWSSIM 0.8911 0.8836 0.8588 0.8812 0.8983 0.9109 0.9056 0.9023

EONSS 0.8297 0.7260 0.8833 0.8274 0.8179 0.8437 0.8744 0.8372

CORNIA 0.7918 0.8340 0.8336 0.8098 0.7907 0.8679 0.8277 0.8130

GWHGLBP 0.7032 0.9698 0.5841 0.7141 0.7035 0.9663 0.5737 0.7110

ILNIQE 0.6900 0.8778 0.6238 0.7025 0.7053 0.8923 0.6303 0.7153

dipIQ 0.6612 0.6678 0.7131 0.6762 0.6738 0.7669 0.7627 0.7126

HOSA 0.6412 0.6393 0.7399 0.6673 0.6521 0.6768 0.7167 0.6734

SISBLIM 0.6554 0.8770 0.5375 0.6594 0.6700 0.8948 0.5724 0.6800

NIQE 0.6523 0.7738 0.5713 0.6501 0.6728 0.8387 0.5688 0.6716

PSNR 0.5784 0.6771 0.6136 0.6037 0.6091 0.7398 0.6806 0.6493

BIQI 0.6276 0.5556 0.5711 0.6009 0.6372 0.7389 0.6215 0.6493

NRSL 0.6458 0.4145 0.6047 0.5976 0.6502 0.4829 0.6794 0.6311

BRISQUE 0.4035 0.5018 0.6647 0.4893 0.4558 0.6045 0.6516 0.5321

MEON 0.4861 0.1917 0.5466 0.4550 0.5168 0.2339 0.5722 0.4862

DeepIQAa 0.4040 0.2379 0.5614 0.4195 0.4215 0.2897 0.5213 0.4271

QAC 0.3239 0.3579 0.5524 0.3906 0.6043 0.4145 0.5713 0.5650

LPSI 0.0306 0.2717 0.5736 0.2148 0.4336 0.5464 0.5715 0.4887

GMLOG 0.0546 0.1841 0.2656 0.1319 0.2626 0.3087 0.3830 0.3023
a Of the four NR models provided by the authors, the weighted model trained on LIVE
Release 2 was used.

MEON [23]. The following state-of-the-art blind IQA methods were also tested
for comparison: BIQI [39], BRISQUE [40], CORNIA [41], dipIQ [42], GMLOG
[43], HOSA [44], ILNIQE [45], LPSI [46], NIQE [47], NRSL [48], and QAC [49].
The performance of two FR IQA methods, PSNR and the state-of-the-art IWS-
SIM [50] was also evaluated to provide a FR reference point. Two performance
evaluation criteria were used: Spearman Rank Correlation Coefficient (SRCC)
to assess prediction monotonicity and Pearson Linear Correlation Coefficient
(PLCC) to assess prediction accuracy [51]. A five-parameter logistic function
[4] was used to perform non-linear mapping of objective scores to MOS/DMOS
of respective databases before the computation of PLCC. A better objective
method should have higher SRCC and PLCC values, ideally close to 1. Parts 1
and 2 of Table 1 respectively show the SRCC and PLCC of all tested methods for
all three databases. To provide an overall comparison, weighted average SRCC
and PLCC have been provided in Table 1 based on the number of images in the
databases and methods in the table have been listed in descending order with
respect to the weighted average SRCC numbers.
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Table 2. Statistical Significance Testing results for competing IQA models [Database
Order: MDID, LIVE MD, MDIVL]. Legend: IWSSIM (m1), EONSS (m2), CORNIA
(m3), ILNIQE (m4), dipIQ (m5), GWHGLBP (m6), SISBLIM (m7), HOSA (m8),
NIQE (m9), PSNR (m10), BIQI (m11), NRSL (m12), QAC (m13), BRISQUE (m14),
LPSI (m15), MEON (m16), DeepIQA (m17), GMLOG (m18).

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18

m1 111 111 111 111 101 111 111 111 111 111 111 111 111 111 111 111 111

m2 000 101 101 111 101 101 111 1 1 111 111 111 111 111 111 111 111 111

m3 000 010 101 111 101 101 111 111 111 111 111 111 111 111 111 111 111

m4 000 010 010 110 0 1 110 11 11 11 11 11 11 11 11 111 111

m5 000 000 000 001 01 01 11 01 1 1 1 1 11 111 111 111 111 111 111

m6 010 010 010 1 10 11 110 1 110 11 110 11 110 11 11 11 111

m7 000 010 010 0 10 00 10 1 110 1 10 11 110 11 11 11 111

m8 000 000 000 001 00 001 01 01 10 01 1 111 111 111 111 111 111

m9 000 0 0 000 00 10 0 0 10 110 1 10 11 110 11 11 11 111

m10 000 000 000 00 0 0 001 001 01 001 1 01 11 11 111 111 111 111

m11 000 000 000 00 0 0 00 0 10 0 0 10 1 11 11 11 111 111

m12 000 000 000 00 00 001 01 0 01 10 01 1 1 10 1 1 111 111 111

m13 000 000 000 00 000 00 00 000 00 00 0 0 0 100 10 1 1 1 1

m14 000 000 000 00 000 001 001 000 001 00 00 01 011 1 11 11 111

m15 000 000 000 00 000 00 00 000 00 000 00 0 0 01 0 01 1 111

m16 000 000 000 00 000 00 00 000 00 000 00 000 0 00 10 1 1 1

m17 000 000 000 000 000 00 00 000 00 000 000 000 0 00 0 0 1 1

m18 000 000 000 000 000 000 000 000 000 000 000 000 0 0 000 000 0-0 0-0

To draw statistically sound inferences about the performance of IQA meth-
ods, we carried out hypothesis testing on model prediction residuals (after non-
linear mapping). First, a simple Kurtosis-based criterion was used to check for
Gaussianity of residuals as in [4]. All model prediction residuals had a Kurtosis
between 2 and 4, with the exception of GMLOG residuals on MDID database,
and were assumed to be Gaussian. This allowed us to compare the model resid-
uals through statistical significance testing by using the F -test [52]. The results
are shown in Table 2, where “1”, “ ”, or “0” mean that the method in the row
is statistically better, indistinguishable, or worse, than the method in the col-
umn respectively, with 95% confidence. Each table entry has three digits, which
represent testing on the MDID, LIVE MD and MDIVL databases, respectively.

From Tables 1 and 2 the following observations can be made: (1) EONSS per-
forms better than all other blind IQA methods and the FR PSNR on the MDID
and MDIVL databases. On LIVE MD, EONSS is statistically outperformed only
by CORNIA, GWHGLBP, ILNIQE and SISBLIM, though it needs to be men-
tioned that GWHGLBP was trained on this very database. (2) Of all the blind
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Table 3. IQA method execution time.

Metric Processing Execution Time Execution Time

Unit (Seconds) Relative to PSNR

PSNR CPU 0.0013 1.00

LPSI CPU 0.0397 30.54

EONSS GPU 0.0604 46.46

EONSS CPU 0.0817 62.85

MEON CPU 0.0819 63.00

MEON GPU 0.0876 67.38

GMLOG CPU 0.1044 80.31

HOSA CPU 0.1309 100.69

QAC CPU 0.1357 104.38

NRSLa CPU 0.1421 109.31

GWHGLBPa CPU 0.1469 113.00

DeepIQA GPU 0.1549 119.15

BRISQUE CPU 0.1823 140.23

NIQE CPU 0.2941 226.23

BIQI CPU 0.4634 356.46

IWSSIM CPU 0.6067 466.69

dipIQ CPU 1.6592 1276.31

CORNIA CPU 2.0304 1561.85

SISBLIM CPU 2.2005 1692.69

ILNIQE CPU 2.5227 1940.54

DeepIQA CPU 6.2818 4832.15
aFeature extraction time only.

IQA methods under test, EONSS and CORNIA are the only robust metrics since
they perform consistently well on all three databases (PLCC greater than or close
to 0.8). While methods such as SISBLIM, ILNIQE, NIQE, and dipIQ perform
well on one database, their performance drops on other databases. (3) Although
CORNIA was originally designed by using images with a single distortion, its per-
formance extends well for multiply distorted images. (4) The performance of all
blind IQA methods is still a distance away from state-of-the-art FR IQA method
IWSSIM, suggesting space for improvement. (5) The computational complexity
of all IQA methods under test was evaluated in terms of their execution time to
determine the quality of a 1024 × 1024 color image on a desktop computer with
a 3.5 GHz Intel Core i7-7800X processor, 16 GB of RAM, NVIDIA GeForce GTX
1050Ti GPU, and Ubuntu 18.04 operating system. The execution time relative
to PSNR is given in Table 3, where metrics have been sorted in ascending order
with respect to execution time. It appears that EONSS is around twenty or more
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times faster than competitive methods such as dipIQ, CORNIA, SISBLIM and
ILNIQE, making it an excellent choice for practical applications.

5 Conclusion

We propose a new deep learning based blind IQA model called EONSS. Com-
pared to other CNN-based models, such as DeepIQA [26] and MEON [23],
EONSS uses a much simpler network architecture, but delivers superior per-
formance with fairly low computational cost. The success of EONSS is partially
due to its architecture design and its adoption of the perceptually motivated
GDN as the activation function, and is also attributed to the Waterloo MD
training database, which consists of millions of multiply distorted images whose
quality has been synthetically annotated. The enormity and content-diversity
of this database has provided sufficient data to the DNN to learn an adequate
end-to-end blind IQA model. Since EONSS has been tested on publicly available
subject-rated databases which were not part of the training and validation pro-
cess, its superior performance has also validated the novel methodology of using
large-scale synthetically annotated databases for learning new IQA models, pro-
viding a new perspective on how to resolve the longstanding problem of the lack
of large-scale datasets in IQA research. Detailed account about the construction
of the Waterloo MD database will be made available to the IQA community.
The trained version of the EONSS model will also be made publicly available to
facilitate reproducible research.
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