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Abstract. Macroblocking is a type of widely observed video artifact
where severe block-shaped artifacts appear in video frames. Macroblock-
ing may be produced by heavy lossy compression but is visually most an-
noying when transmission error such as packet loss occurs during network
video transmission. Since receivers do not have access to the pristine-
quality original videos, macroblocking detection needs to be performed
using no-reference (NR) approaches. This paper presents our recent re-
search progress on detecting macroblocking caused by packet loss. We
build the first of its kind macroblocking database that contains approx-
imately 150,000 video frames with labels. Using the database, We make
initial attempts of using transfer learning based deep learning techniques
to tackle this challenging problem with and without using the Apache
Spark big data processing framework. Our results show that it is benefi-
ciary to use Spark. We believe that the current work will help the future
development of macroblocking detection methods.
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1 Introduction

Macroblocking is a video artifact in which objects or areas appear to be made
up of blocks rather than proper details in the original content. The blocks may
appear throughout the image, or just in certain regions. Macroblocking may
occur due to heavy video compression, especially in video frames of fast motion or
abrupt scene changes, but the most annoying types of macroblocking in practical
visual communication systems are often caused by transmission errors such as
packet loss. The latter is the main focus of the current research.

Early work in detecting macroblocking caused by packet loss [1] used sub-
jective test to identify circumstances of packet loss, and constructed a classifier
that uses objective factors to predict macroblocking. A strong correlation is ob-
served in the variability of mean opinion scores against packet loss levels [2]. The
impact of packet loss on QoE in video streaming services is reviewed in [3]. In
[4][5], various pixel level statistical features are extracted to detect macroblock-
ing. However, packet loss based assessment is not applicable in the scenarios
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Fig. 1: Sample images without (top) and with (bottom) macroblocking

that the packet information is not available, for example, when the video frames
are decoded. In addition, they are not capable of localizing the macroblocking
artifacts in the exact video frames and spatial locations. In [6], a neural im-
age assessment model based on transfer learning is proposed that is claimed to
produce quality scores well correlated with distributions of subjective scores in
a limited test. Nevertheless, the performance of existing methods has not been
fully validated largely due to the lack of large-scale high-quality databases that
cover a wide range of image content and packet loss levels. Furthermore, the
potentials of transfer learning [7] has not been thoroughly investigated.

2 Macroblocking Database Construction

We create the largest of its kind database of video frames of macroblocking
caused by packet loss. The database construction is divided into three steps:
video clip/frame extraction, macroblocking simulation, and image labeling.

A set of original videos (around 25) of 10-second in length, 1080p resolution
(1920×1080), and 24 or 30 frames per second (fps), are collected and all indi-
vidual frames are extracted. Each video is encoded using 3 types of video codecs
of MPEG2, H.264 and H.265, respectively. Macroblocking is simulated by ran-
domly dropping packets from different frames of the video using OpenCV library
at 7 drop rate percentages of 1, 5, 10, 20, 50 and 100%, respectively. The 100%
drop rate was used to augment the macroblocked class to reduce class imbalance.
Therefore, a total of 25*3*7 = 525 video clips are generated with around 150,000
frames. Figure 1 shows sample images with and without macroblocking.
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Given the number of frames, manually labeling all of them is infeasible. Thus
we use a semi-automatic method to label the images. We first compute the PSNR
values of all images and pre-determine two threshold values on the scale of PSNR.
Any frame that has a PSNR value larger than the higher PSNR threshold is con-
sidered a frame free of macroblocking. Any frame that has a PSNR value smaller
than the lower PSNR threshold is considered a frame of macroblocking. Any
frame that has a PSNR value larger than the lower threshold and smaller than
the higher threshold is visually inspected and assigned a label (macroblocking
or not) by a human subject.

3 Macroblocking Detection

The built database allows us to explore machine learning approaches for mac-
roblocking detection, for which we present the results of our initial attempts
here. Motivated by the success of transfer learning based approaches designed
for other image classification problems [8], we opt to use the framework and
pipelines shown in Fig. 2.

Fig. 2: Methodology comparison of Spark and non-Spark way to classify images

For data loading, in terms of pipeline 2, in the non-Spark way we use keras 
image data generator that reads images in batches from file directory and con-
verts them into tensors on the go. In pipeline 1, the spark way we use the efficient 
readImages library from SparkDL package. This reads a directory of images into a 
spark dataframe. The dataframe encodes the images as an Im-ageSchema which 
contains all the pixel level data and other metadata of the image. This efficient 
read is a parallel read and on the go, stores all the image data in a spark 
dataframe. For feature extraction, we use a state-of-the-art pre-trained machine 
learning model (Inception V3) and remove the last classification layer. We feed 
the Inception V3 feature vector to our own classification model trained to classify 
the images. In the non-Spark way we directly use the Keras
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Method Train(70%) Validation(15%) Test(15%) Speed

Transfer Learning (Keras) 87.6% 82.1% 78.7% 2.10 sec

Transfer Learning (Spark) 88.3% 83.4% 80.1% 0.38 sec

Table 1: Classification accuracy and speed (second/test image) comparison.

Inception V3 model and extract the features sequentially. In the spark pipeline
we use SparkDL DeepImageFeaturizer library which performs the same task but
extracts the Image features in parallel from the Image loader step. This way it
extracts features much faster. In model training we use logistic regression on top
of the Inception V3 features. We create the Spark ML pipeline using the “pys-
park.ml.Pipeline” package and add DeepImageFeaturizer and LogisticRegression
as the stages and run for 20 epochs with regularization parameter of 0.05. In
the non-Spark pipeline we use a fully-connected last layer with output units as
2. For the pipeline we use a keras pipeline with the keras image data generator,
Inceptionv3 feature extraction and the fully connected last layer as stages and
we finally fit the model on the training data. The model once trained is saved
and used to predict on the testing data. In spark pipeline we do this parallelly
using the transform method from sparkdl and in the keras pipeline we have to
do this sequentially.

We use accuracy (percentage of correct classification) to evaluate the pre-
diction results on the test set, and compute the training time for the 20 epochs
to compare the run time of both the models. Accuracy here refers to the ratio
between correct classification and total number of samples. We use a 10x10 fold
validation approach. We ensure each fold represents the original data distribu-
tion as close as possible. The results are tabulated in Table 1. The same model
was tested on two different frameworks while varying the size of the data (num-
ber of images) and the running time was compared and plotted in Figure 4. It
can be observed that the non-Spark method does not scale well with the data
size whereas using Spark achieves the same accuracy at roughly 1

10th
of the time.

4 Conclusion and Future Work

In this paper we present our recent research progress on automatic detection of
macroblocking caused by transmission errors such as packet loss. We construct
the largest database of its kind that is composed of around 150,000 images
with or without macroblocking artifacts. Using the database, we investigated
two transfer learning approaches with and without using the Apache Spark big
data processing framework. The results clearly show that the model performs
well on the database with close to 80% accuracy with minimal fine tuning, and
it is beneficiary to use Spark. The major bottleneck in terms of training with
large number images is that a sequential disk read training is much slower when
compared to a distributed training on spark cluster. We believe that the built
database and the attempted methods will help the future development of mac-
roblocking detection methods. In the future, the built database may be used
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Fig. 3: Running time for Spark Vs No-Spark methods as functions of data size

for other machine learning based approaches. Pixel based approaches may also
be incorporated as an additional feature layer on top of the transfer learning
approach to further improve the accuracy of macroblocking detection.
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