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ABSTRACT

Many recently proposed perceptual image quality assessment al-
gorithms are implemented in two stages. In the first stage, im-
age quality is evaluated within local regions. This results in a
quality/distortion map over the image space. In the second stage,
a spatial pooling algorithm is employed that combines the qual-
ity/distortion map into a single quality score. While great effort
has been devoted to developing algorithms for the first stage, little
has been done to find the best strategies for the second stage (and
simple spatial average is often used). In this work, we investigate
three spatial pooling methods for the second stage: Minkowski
pooling, local quality/distortion-weighted pooling, and informa-
tion content-weighted pooling. Extensive experiments with the
LIVE database show that all three methods may improve the pre-
diction performance of perceptual image quality measures, but the
third method demonstrates the best potential to be a general and
robust method that leads to consistent improvement over a wide
range of image distortion types.

Index Terms: image quality assessment, visual perception,
structural similarity, error pooling, information content

1. INTRODUCTION

Recently, a number of objective image quality assessment algo-
rithms have been proposed to predict human perception of image
quality [1]. They may be classified into full-reference algorithms
(where an original “perfect-quality” image is available as a refer-
ence), reduced-reference algorithms (where only partial informa-
tion about the original image is accessible) and no-reference al-
gorithms (where no information about the original image is avail-
able). Many of these algorithms (especially full-reference algo-
rithms) adopted a two-stage implementation: In the first stage, im-
age quality/distortion is evaluated locally within small regions, re-
sulting in a quality/distortion map. In the second stage, a spatial
pooling algorithm is employed to combine the quality/distortion
map into a single quality score. Such a two-stage approach may
be applied directly in image pixel domain or after channel decom-
positions (e.g., applied to a wavelet subband).

A pixel-domain full-reference example is shown in Fig. 1,
where the goal is to evaluate the quality of Image (b) with a given
perfect-quality reference Image (a). Two methods are used to com-
pute local quality/distortions− absolute difference and the struc-
tural similarity (SSIM) index [2]. The resulting quality/distortion
maps are shown in Figs. 1(c) and 1(d), respectively. For easy com-
parison, we have adjusted the quality/distortion map representa-
tions so that brighter indicates better quality in both maps. Careful
inspection shows that the SSIM index (computed within a local
window that slides across the image space) better reflects the spa-

tial variations of perceived image quality. For example, the block-
iness in the sky is clearly indicated in Fig. 1(d) but not in Fig. 1(c).
However, the major concern here is not on how to create a bet-
ter quality map but on how to convert a quality map into a scalar
quality score.

Surprisingly, in the literature, little investigation and careful
comparison have been devoted to developing and testing spatial
pooling methods. In practice, spatial pooling has often been treated
superficially, e.g., using a simple spatial average. Some meth-
ods incorporate human interactions or automatic object detections
and segmentations to define the regions-of-interest or points-of-
fixations before spatial pooling (e.g., [3,4]), but these methods may
not be easily applied to general-purpose image quality assessment
because for many images, it may not always be easy to find obvi-
ously outstanding objects that attract visual attention. On the other
hand, problems arise with the direct spatial average approach when
the distortion is highly non-uniform over the image space. For ex-
ample, when only a small region in an image is corrupted with
extremely annoying artifacts, but all other regions have high qual-
ity, human subjects tend to pay more attention to the low quality
region and give an overall quality score lower than the average of
the quality/distortion map.

In this paper, we will have a close look at three well-motivated
strategies for spatial pooling− Minkowski pooling, local qual-
ity/distortion weighted pooling, and information content-weighted
pooling. The questions that we would like to answer are: 1) do
these spatial pooling strategies, as compared to simple spatial aver-
age, improve the prediction capability of perceptual image quality
measures? 2) Is such improvement consistent for different types of
quality/distortion maps and over a wide variety of image distortion
types?

2. SPATIAL POOLING STRATEGIES

2.1. Minkowski Pooling

Let mi be the quality/distortion value at thei-th spatial location in
the quality/distortion map. The non-uniform quality distribution
problem discussed in Section 1 may be partially solved (though
in an indirect way) by adopting a Minkowski pooling approach,
which has been extensively used [1] and is defined as

M =
1

N

N∑
i=1

mp
i , (1)

whereN is the number of samples in the quality/distortion map,
andp is the Minkowski power. As a special case, whenmi repre-
sents the absolute difference as in Fig. 1(c), then Eq. (1) is directly
related to thelp norm (subject to a normalization constant and a
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Fig. 1. (a) Original image; (b) distorted image (created by JPEG compression); (c) absolute difference map: brighter indicates better quality
(smaller absolute difference between the original and the distorted images); (d) SSIM index map: brighter indicates better quality (larger
local SSIM value).

monotonic nonlinearity). In particular, whenp = 1, it reduces to
the mean absolute error (MAE). Whenp = 2, it becomes the mean
squared error (MSE), which can be monotonically mapped to the
widely used peak signal-to-noise ratio (PSNR). Asp increases,
more emphasis will be put at the image regions of high distor-
tions. It is often conjectured that an appropriate value ofp should
provide a reasonable estimation of how humans rate image quality.

2.2. Local Quality/Distortion-Weighted Pooling

The non-uniform quality distribution problem may also be solved
more directly by assigning spatially varying importance (weights)
over the image space. A general form of such a spatial weighting
approach is given by

M =

∑N

i=1
wimi∑N

i=1
wi

, (2)

wherewi is the weight assign to thei-th spatial location.
The idea of local quality/distortion-weighted pooling is to de-

fine the weightwi by the local quality measuremi itself, i.e.,

wi = f(mi) . (3)

For example, in the case thatmi represents a distortion measure
(higher value indicates higher distortion) and we would like to put
more emphasis on the spatial locations where the image quality is
extremely bad, then we would choosef (·) to be a monotonically
increasing function. On the other hand, ifmi is a quality measure
(higher value indicates better quality), then we would preferf (·)
to be a monotonically decreasing function.

2.3. Information Content-Weighted Pooling

In information content-weighted pooling, a similar spatial weight-
ing method as in Eq. (2) is employed. However, the weights are
determined by the local image content (of either or both of the
reference and the distorted images), rather than the measured lo-
cal quality/distortion. Letxi andyi be the local image patches
(e.g., a collection of pixels in a local window) extracted around the

i-th spatial location from the reference and the distorted images,
respectively. The weightwi is computed using a function

wi = g(xi,yi) . (4)

The local energy-weighted pooling method proposed in [5]
may be considered as a special case of this apporach, where the
weighting function is given by

g(x,y) = σ2
x + σ2

y + C . (5)

Hereσx andσy are the standard deviations ofx andy, respec-
tively, andC is a constant representing a baseline minimal weight.
The underlying justification of using Eq. (5) is that the high-energy
(or high-variance) image regions are likely to contain more infor-
mation. If the ultimate goal of visual perception is to efficiently
extract useful information from the visual scene, then the high-
energy regions are more likely to attract visual attention, and thus
should be given more importance. While this general idea is well-
motivated, the specific formulation of Eq. (5) is not directly an
information measure based on any statistical model.

Here we propose a new method, in which the perceived local
information content is quantified as the number of bits that can
be received from a statistical image information source that passes
through a noisy visual channel. To keep the algorithm tractable, we
assume a local Gaussian source model and an additive Gaussian
channel model. Similar information communication-based models
had been used previously for image quality assessment [6], though
not involved in the spatial pooling stage. Assume that the source
power isS and the channel noise power isC (which is consid-
ered as an estimate of the intrinsic noise in the visual system [6]).
A well-known result from information theory is that the received
information can be computed as

I =
1

2
log

(
1 +

S

C

)
. (6)

Now assume that the source power of a local image patchx can
be estimated asσ2

x, and the channel noise variance is a known
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Table 1. Performance comparison of spatial pooling methods. The absolute difference is used to generate the distortion map. JP2:
JPEG2000 dataset; JPG: JPEG; Noise: white Gaussian noise; Blur: Gaussian blur; Error: transmission error; AI: average improvement.

method LIVE dataset / ROCC result
pooling strategy p wi JP2-1 JP2-2 JPG-1 JPG-2 Noise Blur Error AI

spatial average 1 1 0.9026 0.8180 0.8722 0.7485 0.9857 0.7425 0.8651 0
1/8 1 0.8619∨ 0.7384∨ 0.8562∨ 0.7487− 0.9860− 0.6309∨ 0.7669∨ −0.0494
1/4 1 0.8700∨ 0.7595∨ 0.8593∨ 0.7541∧ 0.9860− 0.6621∨ 0.7998∨ −0.0348

Minkowski 1/2 1 0.8823∨ 0.7875∨ 0.8607∨ 0.7478− 0.9858− 0.7003∨ 0.8386∨ −0.0188
pooling 2 1 0.9227∧ 0.8662∧ 0.8876∧ 0.7446∨ 0.9856− 0.7921∧ 0.8931∧ +0.0225

4 1 0.9449∧ 0.9105∧ 0.9052∧ 0.7573∧ 0.9845− 0.8413∧ 0.9012∧ +0.0443
8 1 0.9566∧ 0.9438∧ 0.9355∧ 0.7934∧ 0.9843− 0.8731∧ 0.8931∧ +0.0636
1 |mi|1/8 0.9152∧ 0.8431∧ 0.8721− 0.7479− 0.9855− 0.7536∧ 0.8840∧ +0.0095
1 |mi|1/4 0.9204∧ 0.8539∧ 0.8753∧ 0.7438∨ 0.9853− 0.7671∧ 0.8875∧ +0.0141

local quality 1 |mi|1/2 0.9280∧ 0.8709∧ 0.8858∧ 0.7385∨ 0.9849− 0.7856∧ 0.8956∧ +0.0221
/distortion- 1 |mi|1 0.9412∧ 0.8956∧ 0.8944∧ 0.7359∨ 0.9844− 0.8218∧ 0.9006∧ +0.0342

weighted pooling 1 |mi|2 0.9529∧ 0.9302∧ 0.9173∧ 0.7457− 0.9841− 0.8470∧ 0.8873∧ +0.0471
1 |mi|4 0.9592∧ 0.9485∧ 0.9360∧ 0.8068∧ 0.9836− 0.8514∧ 0.8550∨ +0.0580
1 |mi|8 0.9594∧ 0.9461∧ 0.9487∧ 0.8453∧ 0.9826∨ 0.8412∧ 0.8466∨ +0.0622

info. content- 1 Eq. (5) 0.9512∧ 0.9341∧ 0.9294∧ 0.7850∧ 0.9858− 0.8287∧ 0.9214∧ +0.0573
weighted pooling 1 Eq. (7) 0.9556∧ 0.9332∧ 0.9210∧ 0.7864∧ 0.9859− 0.8809∧ 0.9299∧ +0.0655

parameter (as in [6]). Then the weighting function is given by

g(x,y) = log

[(
1 +

σ2
x

C

)(
1 +

σ2
y

C

)]
. (7)

Here we have removed the front scalar constant, which has no
effect on the final pooling result because of the normalization in
Eq. (2). We have also added the information content of both the
reference and the distorted image patches, so as to make the al-
gorithm symmetric. Figure 2 gives an example of an information
content-based weighting function over the image space, which is
computed for the images shown in Fig. 1. As in [2], in the compu-
tation of localσ2

x andσ2
y, a sliding Gaussian window with standard

deviation of 1.5 pixels is employed.

(a)
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Fig. 2. Weighting function calculated based on local information
content of Images (a) and (b) in Fig. 1. (a) computed using Eq. (5);
(b) computed using Eq. (7).

3. TEST

We test the objective image quality measures with different spa-
tial pooling approaches using the LIVE database [7], which con-
tains seven subject-rated datasets, including two datasets for JPEG
2000 compression (contains 87 and 82 images, respectively), two
for JPEG compression (contains 87 and 88 images, respectively),
one for white Gaussian noise contamination (145 images), one for
Gaussian blur (145 images), and one for transmission errors of
JPEG 2000 compressed images (145 images). For each objective
quality measure being evaluated, we report the Spearman rank-
order correlation coefficients (ROCC) between the subjective and
objective scores for each dataset. The ROCC is defined as

r = 1− 6
∑N

i=1
d2

i

K(K2 − 1)
, (8)

whereK is the number of images in the dataset, anddi is the dif-
ference between thei-th image’s ranks in subjective and objective
evaluations. ROCC is one of the metrics adopted by the video
quality experts group (VQEG) for the evaluation of video quality
measures [8]. Similar results are obtained by other VQEG metrics,
though not reported here because of the space limit.

The image quality measures being evaluated are divided into
two groups. The first group uses the absolute difference to cre-
ate the distortion map, and the second group uses the SSIM index
to generate the quality map (as in [2], the SSIM index maps are
computed after downsampling the images by a factor of 2). For
each group, we first use the simple spatial average as the pooling
method. The results will then be used as the baseline performance
to compare the other pooling methods. Next, six Minkowski pool-
ing methods are tested, where the values ofp are 1/8, 1/4, 1/2, 2, 4,
and 8, respectively. Seven local quality/distortion-weighted pool-
ing methods are also tested for each group, where we usef(mi)
= |mi|q to compute the weighting functions and the values ofq
are 1/8, 1/4, 1/2, 1, 2, 4, and 8 for the first group and−1/8,−1/4,
−1/2, −1, −2, −4, and−8 for the second group, respectively.
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Table 2. Performance comparison of spatial pooling methods. The SSIM index is used to generate the quality map. JP2: JPEG2000
dataset; JPG: JPEG; Noise: white Gaussian noise; Blur: Gaussian blur; Error: transmission error; AI: average improvement.

method LIVE dataset / ROCC result
pooling strategy p wi JP2-1 JP2-2 JPG-1 JPG-2 Noise Blur Error AI

spatial average 1 1 0.9545 0.9636 0.9598 0.9028 0.9737 0.9497 0.9546 0
1/8 1 0.9549− 0.9660− 0.9609− 0.9069∧ 0.9777∧ 0.9559∧ 0.9554− +0.0027
1/4 1 0.9547− 0.9652− 0.9608− 0.9063∧ 0.9768∧ 0.9552∧ 0.9554− +0.0022

Minkowski 1/2 1 0.9542− 0.9642− 0.9605− 0.9035− 0.9755− 0.9531∧ 0.9551− +0.0011
pooling 2 1 0.9537− 0.9620− 0.9589− 0.8978∨ 0.9712− 0.9430∨ 0.9529− −0.0027

4 1 0.9506∨ 0.9551∨ 0.9573− 0.8808∨ 0.9707∨ 0.9321∨ 0.9505∨ −0.0088
8 1 0.9473∨ 0.9443∨ 0.9556∨ 0.8662∨ 0.9712− 0.9078∨ 0.9447∨ −0.0174
1 |mi|−1/8 0.9541− 0.9637− 0.9600− 0.9023− 0.9743− 0.9513− 0.9550− +0.0003
1 |mi|−1/4 0.9544− 0.9642− 0.9605− 0.9030− 0.9755− 0.9537∧ 0.9552− +0.0011

local quality 1 |mi|−1/2 0.9552− 0.9661− 0.9609− 0.9083∧ 0.9779∧ 0.9566∧ 0.9551− +0.0031
/distortion- 1 |mi|−1 0.9577∧ 0.9698∧ 0.9606− 0.9114∧ 0.9825∧ 0.9603∧ 0.9492∨ +0.0047

weighted pooling 1 |mi|−2 0.9617∧ 0.9708∧ 0.9613− 0.9096∧ 0.9849∧ 0.9640∧ 0.9381∨ +0.0045
1 |mi|−4 0.9638∧ 0.9678∧ 0.9627− 0.8527∨ 0.9592∨ 0.9603∧ 0.8797∨ −0.0161
1 |mi|−8 0.9673∧ 0.9615− 0.9629∧ 0.8664∨ 0.9584∨ 0.9507− 0.8668∨ −0.0178

info. content- 1 Eq. (5) 0.9535− 0.9671∧ 0.9439∨ 0.9288∧ 0.9723− 0.9672∧ 0.9662∧ +0.0058
weighted pooling 1 Eq. (7) 0.9612∧ 0.9743∧ 0.9591− 0.9401∧ 0.9776∧ 0.9716∧ 0.9659∧ +0.0130

Finally, two information content-weighted pooling methods are
tested, in which the weighting functions are computed by Eq. (5)
and Eq. (7), respectively.

The ROCC results for the two groups of objective image qual-
ity measures are shown in Table 1 and Table 2, respectively. For
easy visualization, we have added a “∧”, a “∨” or a “−” mark
behind each ROCC number to indicate an increase/decrease/no-
significant-change of ROCC value as compared to the baseline
ROCC (given by spatial average pooling). We have also added
a final column that gives the average improvement of ROCC val-
ues over the baseline. It can be observed that all three pooling
strategies may lead to improvement of quality prediction perfor-
mance. However, the best parameter choices of the Minkowski
pooling methods and the local quality/distortion-weighted pooling
methods depend on the underlying specific local quality/distortion
measure. For example, Minkowski pooling withp = 4 results in
improvement when the local quality/distortion measure is the ab-
solute difference, but not the SSIM index. Comparatively, the in-
formation content-weighted pooling method, especially when the
newly proposed Eq. (7) is used as the weighting function, appears
to be more stable and general. It results in consistent and most
of the time significant improvement over a wide range of image
distortion types for both cases of local quality/distortion measures.

4. CONCLUSION

We have tested three spatial pooling strategies for perceptual im-
age quality assessment based on an extensive experiment with the
LIVE database. Our results suggest that all three methods may
improve the prediction performance of image quality measures.
Among them, the newly proposed information content-weighted
pooling approach demonstrates the best potential to be a general
and stable approach that provides consistent improvement over a
wide range of image distortion types. Future work includes in-
vestigating the dependencies between the pooling strategies and
the local quality/distortion measures, testing the pooling meth-

ods with other local quality/distortion measures (including those
that involve wavelet decompositions), and developing improved
method for the estimation of local information content by adopt-
ing advanced statistical image models.
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